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Abstract: Laser Engineered Net Shaping (LENSTM) is currently a promising and developing technique.
It allows for shortening the time between the design stage and the manufacturing process. LENS is an
alternative to classic metal manufacturing methods, such as casting and plastic working. Moreover,
it enables the production of finished spatial structures using different types of metallic powders
as starting materials. Using this technology, thin-walled honeycomb structures with four different
cell sizes were obtained. The technological parameters of the manufacturing process were selected
experimentally, and the initial powder was a spherical Ti6Al4V powder with a particle size of
45–105 µm. The dimensions of the specimens were approximately 40 × 40 × 10 mm, and the wall
thickness was approximately 0.7 mm. The geometrical quality and the surface roughness of the
manufactured structures were investigated. Due to the high cooling rates occurring during the LENS
process, the microstructure for this alloy consists only of the martensitic α’ phase. In order to increase
the mechanical parameters, it was necessary to apply post processing heat treatment leading to the
creation of a two-phase α + β structure. The main aim of this investigation was to study the energy
absorption of additively manufactured regular cellular structures with a honeycomb topology under
static and dynamic loading conditions.

Keywords: honeycomb structure; additive manufacturing; laser engineered net shaping; LENS;
Ti6Al4V alloy; energy absorption; dynamic tests

1. Introduction

Currently, the progress of civilization forces scientists and engineers to discover new technologies
and materials necessary to optimize the products used in all areas of life. The automotive and aviation
industries still require new solutions in terms of safety, where a strong impact is placed on the
elements used so that they possess high energy absorption capacity during crash tests [1–4]. Moreover,
these requirements are also essential in relation to military applications, such as passive protective
systems [5,6] and various kinds of critical infrastructure elements [7]. There are many solutions based
on lightweight cellular structures made from different materials, i.e., tubes, sandwiches, or honeycombs,
which have been studied under static as well as dynamic loading conditions [8–13]. Particularly
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noteworthy is honeycomb structure topology, which is popular as an energy absorber; it also has
received great attention in the biomedical field for applications such as 3D porous scaffolds for tissue
engineering and its regeneration [14–17]. The phenomena of this structure result from its original
properties. It is a combination of a low value of relative density and a high stiffness that derives from
geometry and allows for the minimization of the amount of material used. Additionally, the periodic
arrangement of cells plays a significant role. It has been observed that the crush strength depends on cell
shape (hexagonal cells with different branch angles were studied) [18–22] and wall thickness [23–26].
The honeycomb structures were investigated with numerical analysis or experimentally in both
in-plane [27–31] and out-of-plane directions [20,32–36] to obtain various parameters to provide answers
about the mechanisms of failure.

Cellular structures exist as regular and stochastic objects. Stochastic objects are mostly manufactured
by conventional methods such as vapor deposition, casting, sintering, and foaming polymer or
metallic materials [37,38]. Unfortunately, there are some difficulties associated with these techniques,
such as insufficient precision of cell projections, porosity of the produced structures and anisotropy
of mechanical properties that derive from the stochastic arrangement of cells and differing unit cell
sizes. Researchers have been looking for new technological solutions to overcome these limitations.
One of the rapidly developing routes in manufacturing technologies is additive manufacturing (AM),
which enables the production of regular cellular structures [39,40]. It is also called rapid prototyping
(RP), which can be used as an original method for the fabrication of elements with periodically spaced
cells. There are several different techniques that direct the fabrication of component parts by building
them layer by layer with the use of various types of metal alloys. Generally, these methods are divided
in two categories: Powder Bed Fusion (PBF) and DED (Direct Energy Deposition) [41]. The first
one is represented by SLM (Selective Laser Melting), (DMLS) Direct Metal Laser Sintering, and EBM
(Electron Beam Melting). Mentioned systems are very popular and allow for manufacturing regular
structures with a complex geometry and a very low mass. The main idea of working this type of
system is described in detail in following papers [40,42,43]. The other DED group of Metal Additive
Manufacturing system is represented by the Laser Engineering Net Shaping system. It was discovered
at Sandia National Laboratories and commercialized by Optomec, Inc. in 1997 [44]. It is a technique
that allows for saving processing time by shortening the period between the design stage and the
manufacturing process. The building of near-net shaped components can be fully controlled, and
this is one of the most important benefits. The amount of given powder, the feed of the work table,
the laser power and the focus of the laser beam can be precisely selected depending on the needs.
The completed 3D parts are made by building them layer-by-layer from powder applied directly to the
place the laser beam affects. Components manufactured by the LENS technique can be made from
easily accessible engineering materials such as stainless steel, Ni-based super alloys or titanium alloys.
The mechanical properties of parts made by the LENS technique have been presented in following
scientific papers [37,45–47]. The microstructure, mechanical properties and corrosion resistance of 316L
stainless steel samples manufactured by the LENS technique were investigated by Ziętala et al. [48].
These samples were characterized by unique dual-phase microstructures unprecedented in stainless
steel fabricated by conventional methods, which is the reason for the improvement of the mechanical
and corrosion properties. There are also a few works concerning the components made from titanium
alloys using the LENS technique. The relationship between the influence of building parameters
and deposition of Ti6Al4V samples was investigated by Kummailil [49]. Furthermore, Zhai et al.
conducted small and long fatigue crack growth tests [50]. In the results, it was shown that the lamellar
structure that is created during post-LENS heat treatment offers higher fracture toughness and ductility.
Blackwell et al. examined the possibility of the production of alpha-beta Ti6Al2Sn4Zr6Mo (Ti-6246)
titanium alloy samples [46]. Additionally, materials with a chemical gradient obtained by the LENS
technique are becoming more focused. There are many different combinations of materials used, i.e.,
TiC/Ti composite with compositions changing from pure Ti to 95 vol.% TiC [45] or thin wall tubes
with a Fe3Al/SS316L graded structure [51].
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On the basis of a conducted literature review, the authors have spotted that there is a limited
number of papers considering the possibility of using the DED LENS system in the manufacturing
process of regular cellular structures with high energy absorption capacity. Results of investigations
presented in many papers are limited to simple geometrical shapes of absorbers like cylindrical and
rectangular tubes. Moreover, many of them were realized with the use of stainless-steel powder alloys
which give good-quality manufactured models. Titanium alloy seems to be the perfect candidate
because of its significant properties of high strength-to-weight ratio, excellent corrosion resistance
and high melting point. All these advantages make this alloy very attractive for applications in the
medical, aviation, and aerospace industries. The Ti6Al4V chemical composition is the most popular
among titanium-based alloys, and it is very popular as a material used in additive manufacturing
techniques. The mechanical properties of this alloy closely depend on the structure and size as well as
the morphology of the grains. At equilibrium, Ti6Al4V is an alloy consisting of two phases: α and
β phase. However, additive manufacturing techniques are characterized by the fact that during
production of the details, the degree of cooling rates is so high whereby a martensitic α’ phase creates.
The presence of this phase increases the yield strength and tensile strength with a simultaneous
decrease in the plasticity of the built samples. In order to improve the ductility or the fracture
toughness a post-processing heat treatment is required and provides a two-phases structure [43,52,53].
The heat treatment applied for the components manufactured using additive techniques from various
materials can also improve the microstructure homogeneity or removes stresses created during the
building process [54,55].

Taking into account the mechanical properties of Ti6Al4V titanium alloy and the technological
possibilities of the LENS system, the authors proposed investigations to examine the possibility of
obtaining Ti6Al4V regular structures with hexagonal cells by the LENS technique. Mapping quality,
metallurgical quality and microstructure were tested for the structures before and after applying the
appropriate heat treatment. This paper is a continuation of the authors’ previous paper [56] in which a
methodology investigation of the deformation process of honeycomb cellular structures manufactured
using LENS was discussed. Additionally, the mechanical response of manufactured specimens of
structures were evaluated not only in static, but also under dynamic loading conditions.

2. Materials and Methods

2.1. LENSTM Technique

The components presented in this work were manufactured by the Optomec LENS MR-7
(Albuquerque, USA). The scheme of the LENS system operation is shown in Figure 1. In general, the
principle of the device’s operation is based on the selective deposition of metallic or ceramic powders
on a prepared substrate or on the previously built layer and melting of them with 500 W of high-power
fiber laser at the same time.

The LENS machine has an operating system that allows the operator to design and prepare the
manufacturing process. The building of components starts with a 3D CAD solid model, which is
sliced by the PartPrep program into layers of an assumed thickness. In the next step the LENS control
software selects and determines production parameters, such as the powder flow rate, acceleration,
and deceleration of the working table or laser power.



Materials 2019, 12, 1225 4 of 20Materials 2017, 10, x FOR PEER REVIEW  4 of 20 

 

 

Figure 1. Scheme of the laser engineered net shaping (LENS) system [56]: 1. Powder supply; 2. 
pneumatic vibrating system; 3. optical system; 4. IPG fiber laser; 5. controlling computers; 6. input 
data; 7. working chamber; 8. optical path of the laser; 9. working head with four nozzles; 10. 
numerically controlled working table (movement in the X-Y plane); 11. antechamber. 
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spherical shape. The recommended particle size distribution ranges from 45–150 µm [57]. Meeting 
these requirements will ensure good metallurgical quality of the produced components. Four 
chemically different powders can be used simultaneously during one technological process since the 
device is equipped with four powder feeders. In addition, the feeding of powders from nozzles 
placed in the laser head is very precise, even if the quantity of the powder’s flow is small. This allows 
for creating gradient structures or structures reinforced with the strengthening phase. The substrate 
on which the previously designed element will be built should have the same chemical composition 
as the batch powder. This will avoid the occurrence of very high stresses that can be generated during 
the process. 

The LENS process is carried out under an argon gas atmosphere; therefore, the amount of 
oxygen molecules in the chamber is below 10 parts per million. For this reason, powders with high 
reactivity can be used in the production process.  

2.2. Modelling of Thin-Walled Honeycomb Structure 

The aim of this work was to produce four variants of thin-walled honeycomb structures differing 
in the size of the unit cells. The selection of the cell sizes was a result of the structure’s geometrical 
optimization and the technological capabilities of the device. It was determined that the smallest 
diameter of a circle described on a hexagonal cell possibly obtained by the LENS technique is 3 mm 
(Figure 2). The other three cells are 4, 5, and 6 mm in diameter. The assumed dimensions of the 
obtained structures were approximately 40 × 40 × 10 mm, and the wall thickness should be 
approximately 0.7 ± 0.1 mm. The value of the relative density obtained for the specimens is presented 
in Table 1.  

Figure 1. Scheme of the laser engineered net shaping (LENS) system [56]: 1. Powder supply;
2. pneumatic vibrating system; 3. optical system; 4. IPG fiber laser; 5. controlling computers;
6. input data; 7. working chamber; 8. optical path of the laser; 9. working head with four nozzles;
10. numerically controlled working table (movement in the X-Y plane); 11. antechamber.

Powders used in this technique should be of high purity and chemically homogenous with a
spherical shape. The recommended particle size distribution ranges from 45–150 µm [57]. Meeting
these requirements will ensure good metallurgical quality of the produced components. Four chemically
different powders can be used simultaneously during one technological process since the device is
equipped with four powder feeders. In addition, the feeding of powders from nozzles placed in the
laser head is very precise, even if the quantity of the powder’s flow is small. This allows for creating
gradient structures or structures reinforced with the strengthening phase. The substrate on which the
previously designed element will be built should have the same chemical composition as the batch
powder. This will avoid the occurrence of very high stresses that can be generated during the process.

The LENS process is carried out under an argon gas atmosphere; therefore, the amount of oxygen
molecules in the chamber is below 10 parts per million. For this reason, powders with high reactivity
can be used in the production process.

2.2. Modelling of Thin-Walled Honeycomb Structure

The aim of this work was to produce four variants of thin-walled honeycomb structures differing
in the size of the unit cells. The selection of the cell sizes was a result of the structure’s geometrical
optimization and the technological capabilities of the device. It was determined that the smallest
diameter of a circle described on a hexagonal cell possibly obtained by the LENS technique is 3 mm
(Figure 2). The other three cells are 4, 5, and 6 mm in diameter. The assumed dimensions of the obtained
structures were approximately 40 × 40 × 10 mm, and the wall thickness should be approximately
0.7 ± 0.1 mm. The value of the relative density obtained for the specimens is presented in Table 1.

Table 1. Relative density of the developed honeycomb structures.

Specimen Honeycomb_3 Honeycomb_4 Honeycomb_5 Honeycomb_6

No. 1 No. 2 No. 3 No. 4
Unit cell size (mm) 3 4 5 6

Relative density (−) 0.36 0.31 0.3 0.23



Materials 2019, 12, 1225 5 of 20
Materials 2017, 10, x FOR PEER REVIEW  5 of 20 

 

 
Figure 2. Four variants with of thin-walled honeycomb structures differing in the size of the cells 

(No. 1 - No. 4, dimensions in mm). 

Table 1. Relative density of the developed honeycomb structures. 

Specimen Honeycomb_3 Honeycomb_4 Honeycomb_5 Honeycomb_6 
 No. 1 No. 2 No. 3 No. 4 

Unit cell size (mm) 3 4 5 6 
Relative density (−)  0.36   0.31 0.3 0.23 

For manufacturing the above-presented structures, a commercial Ti6Al4V powder was used. 
The powder was produced by an argon atomization method and was delivered by TLS Technik 
GmbH & Co. The size of the powder particles ranges from 45–105 µm with a spherical shape. The 
morphology and microstructure of the powders are given in Figure 3. It has been confirmed that the 
particles have a spherical shape and mostly smooth surface with microsatellites. In the cross-section, 
some pores with micrometer size were observed inside the particles. 

   

Figure 3. The morphology (a) and microstructure (b) of the Ti6Al4V powder used for manufacturing 
of honeycomb structures by the laser engineered net shaping (LENSTM) technique. 

The honeycomb structures were built using the laser engineered net shaping (LENSTM) technique 
on a Ti6Al4V substrate that was previously skimmed with acetone and sandblasted. The process was 
conducted in an argon atmosphere, and the oxygen content in the working chamber was 
approximately 2 ppm. The parameters of the manufacturing process were selected experimentally, 
and they are presented in Table 2. 
  

Figure 2. Four variants with of thin-walled honeycomb structures differing in the size of the cells
(No. 1–No. 4, dimensions in mm).

For manufacturing the above-presented structures, a commercial Ti6Al4V powder was used.
The powder was produced by an argon atomization method and was delivered by TLS Technik GmbH
& Co. The size of the powder particles ranges from 45–105 µm with a spherical shape. The morphology
and microstructure of the powders are given in Figure 3. It has been confirmed that the particles have
a spherical shape and mostly smooth surface with microsatellites. In the cross-section, some pores
with micrometer size were observed inside the particles.
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Figure 3. The morphology (a) and microstructure (b) of the Ti6Al4V powder used for manufacturing
of honeycomb structures by the laser engineered net shaping (LENSTM) technique.

The honeycomb structures were built using the laser engineered net shaping (LENSTM) technique
on a Ti6Al4V substrate that was previously skimmed with acetone and sandblasted. The process was
conducted in an argon atmosphere, and the oxygen content in the working chamber was approximately
2 ppm. The parameters of the manufacturing process were selected experimentally, and they are
presented in Table 2.

Table 2. Basic parameters used for manufacturing honeycomb structures by the LENS technique.

Laser Power
(W)

Powder Feedrate
(rpm)

Layer Thickness
[mm]

Powder
(material)

Substrate
(material)

180 9.8 0.3 Ti6Al4V Ti6Al4V
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The obtained thin-walled structures presented in Figure 4 were examined in terms of their
geometrical and microstructural properties.
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Figure 4. Four variants of Ti6Al4V thin-walled honeycomb structures with different the cell size
(No. 1–No. 4) manufactured by the laser engineered net shaping (LENSTM) technique.

3. Results and Discussion

3.1. Geometrical Assessment

The geometrical quality of the manufactured structure specimens was evaluated based on the
data gathered with the application of computer tomography Metrology XTH 225 (Nikon, Leuven,
Belgium) and photographs made with the use of optical microscopy (VHX-6000, Keyence International
NV/SA, Mechelen, Belgium). The results of the measurements are presented in Figure 5, and they
were partially presented in [56]. The obtained wall thickness of specimens differ in comparison to the
values assumed during the preparation of the 3D CAD model. It is caused mainly due to the adopted
regime of the structure manufacturing process. The wall thickness was defined as a single route of the
working head.
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Figure 5. Geometrical evaluation of structure specimens: (a) with the application of optical microscopy,
(b) based on a 3D model reconstructed from Computed Tomography (CT) data [56].

The honeycomb structures were subjected to heat treatment just after manufacturing, which
was performed at 1050 ◦C for 2 h. The process was undertaken in a Nabertherm R80/b750/12-B170
tubular furnace (Nabertherm GmbH, Lilienthal, Germany) with a low vacuum. The furnace chamber
was purged with argon before the heating processes started. The specimens were heated and cooled
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down with the furnace. The choice of heat treatment parameters was determined by the analysis of
literature [58,59].

The influence of the adopted heat treatment process on structure geometrical quality was
evaluated based on the analysis of CT data collected before and after the process. Based on the
comparison of the obtained results, spatial maps of the geometrical deviation for all specimens were
defined (Figures 6–9).
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Based on the presented figures, it could be stated that the additional applied heat treatment
process strongly influenced the stress relief process. The lowest value of the elementary unit cell
size and the highest value of the relative density of specimen No. 1 indicated the highest surface
dimensional deviation (Figure 6). It was mainly caused by the poor heat dissipation process, which also
affected the structure of the material. Implementation of a larger value of unit cell size enabled better
geometrical quality. Additionally, due to the lower value of relative density, the thermal conditions of
heat dissipation were better and caused the lowest deviation of structure dimensions (Figures 7 and 9).

Application of a modular contact profilometer enabled the determination of the surface roughness
of the specimens, which are presented in Table 3. On the basis of the presented results, it could be
stated that the roughness of the samples after the sandblasting process is lower than those before
sandblasting. This is the effect of the smoothing surface of the honeycomb structures, which remove the
unmelted powder particles adhesively bonded with them. Independent of the cell size, all sandblasted
samples are characterized by a statistically comparable level of roughness (Table 3).
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Table 3. Results of the roughness tests of samples manufactured by the LENS technique without
heat treatment.

Sandblasting Honeycomb Structure Ra (µm) St. dev. Rz (µm) St. dev.

Before

No. 4 28.66 2.62 170.59 14.83
No. 3 29.19 1.89 173.97 15.56
No. 2 27.89 1.98 163.71 17.48
No. 1 28.26 1.32 166.45 16.78

After

No. 4 22.19 2.74 133.76 7.29
No. 3 24.52 1.77 140.58 10.42
No. 2 21.34 2.59 127.77 15.77
No. 1 22.99 0.70 143.95 13.43

3.2. Evaluation of the Microstructure and Mechanical Properties of Ti6Al4V

The next stage of the investigations was related to the evaluation of the microstructure of the
Ti6Al4V material. For this purpose, the surface of metallographic samples cut from honeycomb
components with or without heat treatment (1050 ◦C/2 h) was prepared by grinding, polishing and
etching with Kroll’s reagent. The microstructure of the samples was examined by a FEI Quanta
3D (FEI company, Hillsboro, USA) scanning electron microscope (SEM) equipped with energy
dispersive spectroscopy (EDS). Based on compared SEM photographs presented in Figure 10, it is
possible to state that the structure revealed in the sample without annealing consists only of the
martensitic phase, which is a Ti-based solid solution (non-equilibrium phase). This phase is formed in
titanium alloys during very fast cooling from the temperature area above the transformation α→β

temperature. Such conditions of high supercooling occur during the LENS building process. Whereas
the microstructure of sample manufactured by LENS technique and heat treated consists of two phases
α + β, which were described and confirmed in a previous work [56].
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Figure 10. The SEM micrographs of honeycomb components microstructure before (a) and after (b) heat
treatment (1050 ◦C/2 h).

The mechanical properties of additively manufactured Ti6Al4V materials were determined during
a uniaxial tensile test under quasi-static loading conditions. The typical dog bone specimens with a
thickness of 0.7 ± 0.1 mm were manufactured with the same technological parameters as the structure
specimens. Tensile tests were performed on a MTS Criterion C45 testing machine (MTS Systems
Corporation, Eden Prairie, USA), which gives a strain rate of the magnitude 1.7 × 10 s−1. The entire
process was monitored and recorded using TW-Elite software (ver. 2.3.1, MTS Systems Corporation,
Eden Prairie, USA). Figure 11 presents the results obtained for the origin (NHT) and modified (HT)
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specimens during the heat treatment process. The characteristic mechanical properties of the Ti6Al4V
material are presented in Table 4.
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Figure 11. An example of stretching curves for samples cut from the Ti6Al4V thin walls obtained using
the LENS technique without (NHT) and with (HT) additional heat treatment process [56].

Table 4. Strength parameters determined in a tensile test for samples cut from Ti6Al4V thin walls
obtained by the LENS technique (before and after the heat treatment process).

Specimen Sample R 0.2 (MPa) Rm (MPa) A (%) E (GPa)

NHT 988 1110 3.7 110
HT 705 794 5.6 108

3.3. Compression Tests under Quasi-Static Loading Conditions

The mechanical response of regular cellular structures with honeycomb topology was determined
during experimental uniaxial compression tests performed under quasi-static and dynamic loading
conditions. In both cases, the study structures were placed in an in-plane direction. The obtained
results are presented below.

The first stage of the investigations was conducted with the use of an MTS Criterion C45 universal
tensile test machine and TW-Elite software, which recorded the history of the deformation process.
The specimens were placed in the in-plane direction and compressed with 1 mm/s velocity. On the
basis of the conducted tests, plots of the deformation force and deformation energy were defined
(Figures 12–15). From these plots, it was possible to define the relationship between the structure’s
relative density when referring to the energy absorption capacity (Figure 16).

Analyzing the history of the deformation force plots, it could be stated that specimens No. 1
(honeycomb_3) (Figure 12) and No. 2 (honeycomb_4) (Figure 13) demonstrate a high value of the
maximum deformation force due to the high geometrical stiffness of the structures of the specimens.
The slope of the first part of the historical plots connected with the local buckling effect is similar and
caused due to the mechanical properties of the applied Ti6Al4V material and the friction between the
surfaces of the specimen and the grip of the testing machine. Depending on the applied elementary
unit cell size, the maximum value of the respective deformation force is different. Structures with the
lowest unit cell size and highest relative density indicated the highest value of the deformation force.
After the buckling effects, a failure mechanism was very quickly achieved. It was mainly caused by
the shearing and cracking of the structure walls. The higher value of a unit cell size is represented by
specimen No. 3 (honeycomb_5) (Figure 14) and specimen No. 4 (honeycomb_6) (Figure 15), which
affects the lower geometrical stiffness of the structures. The maximum value of the deformation force
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is relatively lower in comparison to specimens No. 1 and No. 2. Moreover, the buckling effect and
loss of structural stability appeared later, which caused a delay in the failure mechanism. The plot
of the force deformation is milder in this case. The number of the local maximum deformation force
is lowest and average (Figure 15). Additionally, the chart presented in Figure 16 demonstrates the
relationship between the deformation energy of the specimen referring to the deformation. It could
be observed that the higher geometrical stiffness of the specimen caused an increasing maximum
value of the deformation energy and caused the reduction of the specimen shortening. Application
of topology with a higher value of unit cell size (with lower value of relative density) shows that
the maximum value of deformation energy is significantly lower, but the range of the specimen
shortening is relatively higher. The value of the deformation energy obtained for the same shortening
of all structure specimens (the value of shortening was 20 mm) is presented in Table 5. Based on the
presented results, it could be seen that the deformation energy depends on the value of the relative
density. Nevertheless, this relationship is not linear, which means that it could also be dependent
on the friction process between collaborating elements and the geometrical quality of the additively
manufactured structure specimens. Due to having the lowest value of unit cell size, specimen No. 1
was rougher, and the dimensional deviations were higher in comparison to the other specimens.
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Table 5. The comparison of maximum values of absorbed energy referring to honeycomb
structure specimens.

No. 1 No. 2 No. 3 No. 4

Relative density (−) 0.36 0.31 0.3 0.23
Max. value of absorbed energy (J) 322 215 130 120

3.4. Compression Tests under Dynamic Loading Conditions

The dynamic tests were the other stage of investigations conducted on the mechanical response of
additively manufactured Ti6Al4V regular cellular structures with honeycomb topology under dynamic
loading conditions. They were carried out with the use of the universal column impact test machine
Instron Dynatup 9250 HV with an additional system of data acquisition and a high-speed camera.
Adopted initial loading conditions were defined based on the mass of the impactor and its initial
velocity. The following initial boundary conditions were used for the tests: impactor mass was 8 kg,
and its velocity was 20 m/s. On the basis of the conducted compression tests, the results presented in
Figures 17–20 were obtained. Analyzing the presented deformation energy plots, it could be stated
that the maximum value of the absorbed energy is related to the relative density of the structure of
the specimens. The structure of specimen No. 1, with the smallest elementary unit cell size, indicates
a higher value of relative density and geometrical stiffness. These features caused the value of the
absorbed energy to be significantly higher in comparison to other specimens. Additionally, due to
the considerably greater number of cells in the structural arrays, the number of the local maximum
deformation force arrived with more frequency. The adopted dynamic initial boundary conditions
caused the mechanism of the structural densification to appear for testing cases.
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Figure 20. The results of dynamic tests obtained for honeycomb specimen No. 4 (1–5 stages of
deformation during dynamic compression test).

Comparing the maximum values of the deformation plots in the first stage of the deformation
process before the buckling effect, it is possible to observe that the values are relatively higher for
quasi-static loading conditions, and they are also contingent on the relative density. The highest value
of the deformation force was achieved for specimen No. 1, and the lowest value was achieved for
specimen No. 4. Presented in Figure 18 are the results obtained for specimen No. 2, which indicate a
negative value of the deformation force after being the first maximum. This phenomenon suggests
that after the densification of the first row of structure cells, the rapture damage mechanism caused a
spring-back effect of the impactor mass. This evidence was observed in specimens No. 2 and No. 4.
The main reason to justify this situation is the presence of local material defects such as microcracks
or pores. The presence of the maximum local deformation force could be related to the number of
elementary cell rows in the structure. Specimens with the lowest unit cell size demonstrate a more
variable plot of deformation force history, which is contrary to a specimen with a larger value of unit
cell size. Moreover, the process of structural densification is smoother because the damaged rows of
the array do not affect the force deformation history, as in the case of specimens No. 1 or No. 2.

Considering the dynamic character of the interaction between the specimen and the impactor, it
could be observed that the structures with the highest value of the relative density are stiffer and the
range of deformation is lower, even when the same impact loading conditions were applied.

The other aspect worth discussing is the deformation rate sensitivity. Comparing the quasi-static
and dynamic results, it can be observed that specimens No. 1 and No. 2 demonstrate a high
deformation rate sensitivity. Due to the high mass of the structure, the values of the deformation
energy are significantly higher in comparison to the results of the quasi-static tests. The low values
of relative density and the lowest structural stiffness caused specimens No. 3 and No. 4 to be less
and almost insensitive to deformation rate effects. The comparison between the results is presented
in Figure 21 and in Table 6. The results obtained in the quasi-static compression tests are marked by
dotted lines, and those for the dynamic tests are defined by continuous lines.
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Figure 21. The comparison of deformation energy plots between dynamic and quasi-static results
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Table 6. The comparison of the maximum values of absorbed energy referring to honeycomb
structure specimens.

No. 1 No. 2 No. 3 No. 4

Relative density (−) 0.36 0.31 0.3 0.23
Max. value of absorbed energy in quasi-static (J) 322 215 130 120

Max. value of absorbed energy in dynamic (J) 395 260 158 122
Average increase of absorbed energy 22.6% 20.1% 21.5% 1.6%

Figure 22 presents the deformation rate sensitivity of honeycomb specimens versus the various
values of relative density. Based on the obtained data, the value of the deformation energy depends
on the relative density which is very important from the application point of view. It determines the
mass of object and also the effects on its geometrical stiffness. Application of structures with the higher
value of relative density causes increasing value of the impact force in the initial stage of structure
deformation. Moreover, afterwards the process of structure deformation is more rapid and more
destructive due to arriving of the damage mechanism (cracking). Structures with the lower value of the
relative density indicate a more smooth deformation history plot. This feature is mostly caused due to
buckling and bending mechanisms which preceded the cracking mechanism. Considering the dynamic
response of the structure specimen it could be stated that it strongly depends on the value of relative
density. Higher values of relative density (specimen No. 1 and No. 2) cause the increasing value of
the deformation energy. This phenomenon is generally caused due to the higher mass of specimens
and results from inertia effects. Application of lower values of the relative density (Specimen No. 3
and No. 4) allows a reduction in the mass of the object and enables minimization of the effects of
impact force in the initial stage of the deformation process. Considering the possibility of honeycomb
structures application as a proposal dedicated to energy absorption solutions it is recommended to
use the specimens with the lower value of relative density merged with other diverse solid materials.
This proposal could be used in civilian (automotive, railway) as well as military (passive protective
systems) applications.
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Figure 22. The influence of relative density on structural deformation process under static and dynamic
loading conditions.

4. Conclusions

The main aim of this investigation was to analyze the mechanical response of additively
manufactured regular cellular structures with a honeycomb topology manufactured additively from
a Ti6Al4V titanium alloy with the use of a Laser Engineering Net Shaping system under static and
dynamic loading conditions. Based on obtained experimental results following conlcusions are listed:

1. Geometrical assumptions were adopted during the specimen design process that considered the
technological possibilities of the used additive manufacturing system. Moreover, the specimens
were designed as cuboid elements with similar dimensions and wall thicknesses.

2. Based on the additional heat treatment process that was conducted, it was revealed that the
applied Ti6Al4V titanium alloy materials require a heat treatment process in order to improve
the mechanical properties of the material (increase of ductility) and stress relief annealing. As a
result, the higher range of Ti6Al4V titanium alloy plastic deformation allowed for increasing
the structure specimen’s energy absorption capacity. Furthermore, it enabled reduction of the
destructive effect of material brittle damage, which is essential referring to safety issues.

3. Uniaxial tests of structural specimens were performed under both static and dynamic loading
conditions, which allowed for the evaluation of the specimens’ energy absorption capacity and
the sensitivity of the developed specimens on the strain rate. Based on the obtained results,
it could be stated that an increasing value of relative density causes a growing sensitivity of the
structure for strain rate effects.
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