Supporting Information

Enhancing thermal oxidation stability of silver nanowire transparent electrodes by using a cesium carbonate-incorporated overcoating layer

Yong-Chan Jeong 1,2, Jiyoon Nam 3, Jongbok Kim 2,*, Sungjin Jo 3,*, Chang Su Kim 1,*

¹Advanced Functional Thin Films Department, Korea Institute of Material Science (KIMS), Changwon 51508, Korea

²Department of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea

³School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

* Correspondence: jbkim@kumoh.ac.kr; Tel.: +82-54-478-7748, sungjin@knu.ac.kr; Tel.: +82-53-950-8971, cskim1025@kims.re.kr; Tel. :+82-55-280-3696

Figure S1. Schematic illustration of the steps involved in fabricating the overcoating layer.

Figure S2. Optical transmission spectra of the PES substrate, pristine Ag NWs, Ag NWs covered with the pristine overcoating layer, and Ag NWs covered with the Cs₂CO₃-incorporated overcoating layer. Inset shows the magnified optical transmission spectra of the samples from 80% to 90% transmittance.

Table 1. Comparison of our experimental results with previous reports.

Reference	Overcoating material	Deposition method	Ambient stability test
Lee et al. [1]	Graphene	Transfer printing	70 °C, 70% RH, 8 days
Hwang et al. [2]	Al ₂ O ₃	ALD	380 °C, 100 min
Chen et al. [3]	PEDOT:PSS	Spin coating	Air, 108 h
Chen et al. [4]	ZnO	ALD	300 °C, 6 h
Ahn et al. [5]	Reduced graphene oxide	Dip coating 70 °C, 70% RH, 8 da	
This work	Cs2CO3 incorporated layer	Spin coating	85 °C, 85% RH, 55 days

	Transmittance (%)	Sheet resistance (ohm/□)	Haze
Pristine Ag NW	87.29	66	0.83
Pristine overcoating layer	89.90	66	0.77
Cs ₂ CO ₃ 0.05 wt% overcoating layer	89.95	61	0.88
Cs ₂ CO ₃ 0.1 wt% overcoating layer	89.79	64	0.82
Cs ₂ CO ₃ 1 wt% overcoating layer	89.58	63	5.12

Table S2. Optical transmittance, sheet resistance, and haze values of the samples.

References

- Lee, D.; Lee, H.; Ahn, Y.; Jeong, Y.; Lee, D.; Lee, Y. Highly stable and flexible silver nanowire– graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. *Nanoscale* 2013, 5, 7750-7755.
- [2] Hwang, B.; An, Y.; Lee, H.; Lee, E.; Becker, S.; Kim, Y.; Kim, H. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al₂O₃: Thermal, Ambient, and Mechanical Stabilities. *Sci. Rep.* 2017, 7, 41336.
- [3] Chen, S.; Song, L.; Tao, Z.; Shao, X.; Huang, Y.; Cui, Q.; Guo, X. Neutral-pH PEDOT: PSS as overcoating layer for stable silver nanowire flexible transparent conductive films. *Org. Electron.* 2014, 15, 3654-3659.
- [4] Chen, D.; Liang, J.; Liu, C.; Saldanha, G.; Zhao, F.; Tong, K.; Liu, J.; Pei,Q. Thermally stable silver nanowire–polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. *Adv. Funct. Mater.* 2015, 25, 7512-7520.
- [5] Ahn, Y.; Jeong, Y.; Lee, Y. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide. ACS Appl. Mater. Inter. 2012, 4, 6410-6414.