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Abstract: As a new approach to passive noise control in low frequency domain, the targeted energy
transfer (TET) technique has been applied to the 3D fields of acoustics. The nonlinear membrane
absorber based on the TET can reduce the low frequency noise inside the 3D acoustic cavity. The TET
phenomenon inside the 3D acoustic cavity has firstly investigated by a two degrees-of-freedom (DOF)
system, which is comprised by an acoustic mode and a nonlinear membrane without the pre-stress.
In order to control the low frequency broadband noise inside 3D acoustic cavity and consider the
influence of the pre-stress for the TET, a general model of the system with several acoustic modes
of 3D acoustic cavity and one nonlinear membrane is built and studied in this paper. By using the
harmonic balance method and the numerical method, the nonlinear normal modes and the forced
responses are analyzed. Meanwhile, the influence of the pre-stress of the nonlinear membrane for
the TET is investigated. The desired working zones of the nonlinear membrane absorber for the
broadband noise are investigated. It can be helpful to design the nonlinear membrane according the
dimension of 3D acoustic cavity to control the low frequency broadband noise.

Keywords: nonlinear membrane absorber; targeted energy transfer; 3D acoustic cavity; low frequency
broadband noise; pre-stress

1. Introduction

Many techniques, which include active noise control method [1] and vibration damping
materials [2], are used to control noise inside a 3D enclosed cavity. The computer aided engineering
(CAE) methods are applied to easily treat with interior acoustic problems, such as finite element method
(FEM), boundary element method (BEM), and extended methods based on above CAE methods [3–5].
Recently, acoustic metamaterials are studied by the researchers to control sound waves, where a lot of
progress has been made [6,7]. Meanwhile, there are many challenges in the practical implementation
of acoustic metamaterials [8].

Since the concept of targeted energy transfer (TET) was proposed by Vakakis and Gendelman [9,10]
in 2001, many studies have been made in view of application in the field of mechanical
vibrations [11–15] by a purely nonlinear absorber called as nonlinear energy sink (NES). Meanwhile, in
acoustic field, the TET phenomenon was firstly demonstrated inside one tube (1D acoustic system)
by a nonlinear membrane NES [16]. The TET between the membrane and the tube for both free and
forced oscillations was investigated [17,18]. Moreover, a loudspeaker working outside its linear regime
was demonstrated that it could also be an efficient NES [19]. In these studies [16–18], the nonlinear
membrane NES was used to reduce one acoustic mode of the tube standing for the linear system.
Cote et al. [20] analyzed the TET phenomenon between the nonlinear membrane NES and two acoustic
modes of the tube and observed the membrane could reduce the two resonance peaks, simultaneously.
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In view of extending the application of the membrane NES in acoustic field, an acoustic cavity (3D
acoustic system) was considered and the TET phenomenon was observed inside the acoustic cavity by
the nonlinear membrane NES without considering the pre-stress of the membrane [21–23]. By analyzing
the nonlinear normal modes (NNM) and the periodic forced responses of a two degrees-of-freedom
(DOF) system comprised of one acoustic mode of cavity and a nonlinear membrane NES, the desired
working zone for the membrane NES was defined and the two thresholds of the zone were also
determined analytically and semi-analytically, respectively [21]. Based on these analytical results, the
parametric analysis of the membrane was studied to reveal that the radius of the membrane affected
mainly the desired working zone [22]. To extending the results obtained by the 2DOFs, the 3DOFs
system with two nonlinear membranes and one acoustic mode was also investigated [23,24]. Two
nonlinear membranes could enlarge the desired working zone of the NES.

In this paper, in order to control the low frequency broadband noise (20–200 Hz) inside 3D acoustic
cavity and consider the influence of the pre-stress for the TET, a general model of the system with
several acoustic modes of 3D acoustic cavity and one nonlinear membrane is firstly built. The influence
of the pre-stress of the membrane for the TET is investigated. A multi-DOFs system comprised
by a nonlinear membrane absorber and two acoustic modes or multi-acoustic modes are studied.
The forced responses of the system are analyzed. The desired working zone and the value of the
plateau for low frequency broadband noise of the nonlinear membrane absorber are investigated.
Numerical simulations are finally preformed to validate the TET phenomenon of the system and the
analytical results.

2. Description of the System

2.1. The Acoustic Cavity and the Membrane

The schema of the system in this paper is shown in Figure 1, which is comprised of an acoustic
medium inside a parallelepiped cavity and a thin viscoelastic membrane that is mounted on one wall
of the cavity. The dimensions of the acoustic cavity are Lx, Ly and Lz and the position of the membrane
is marked as (xm, ym, zm) (xm = Lx).
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Figure 1. Schema of the acoustic cavity mounted a membrane.

In order to build a general model, the modes of 3D acoustic cavity between the frequency band
20–200 Hz and one nonlinear membrane are, respectively, considered as the linear system with
multi-DOFs and the NES. We assume that six walls of the acoustic cavity shown in Figure 1 are rigid.
Thus, the mode shape of the cavity Plmn is defined as following:

Plmn = cos (
lπx
Lx

) cos (
mπy

Ly
) cos (

nπz
Lz

) (1)

In this paper, we assume that the modes between the frequency band 20–200 Hz of the cavity
are separated in frequency, and we focus on the interaction between the modes of the cavity and the
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membrane with the pre-stress. Here, in order to consider several modes of the acoustic cavity, we
use the marks Pi and pi to respectively represent each mode shape and its corresponding acoustic
pressure (i = 1, 2, 3, . . . , N). Thus, the acoustic pressure inside the acoustic cavity is represented in the
following form:

pr(x, y, z, t) =
N

∑
i=1

(Pi(x, y, z)pi(t)) (2)

For the membrane, in this paper, one DOF model based on the membrane in Reference [17] is
taken into account. In References [21–23], the membrane was mounted on one wall of the cavity and
analyzed for the TET without the pre-stress. Here, the influence of the pre-stress of the membrane for
the TET is analyzed, where the term of linear stiffness is used to present the pre-stress. We assume if
the size of the membrane on the wall is small by comparing to the size of the acoustic cavity and the
several low frequency modes are considered, the acoustic pressure in contact with the membrane is
uniform and defined to equal to the value at the center of the membrane. Thus, the equation of the
membrane is as follows:

mm
..
q + k1

(
f1

f0

)2
q + k1η

.
q + k3

(
q3 + 2ηq2 .

q
)
=

sm

2

N

∑
i=1

(Pi(xm, ym, zm)pi(t)), (3)

where,
mm = ρmhsm

3 , k1 = 1.0154π5

36
Eh3

(1−υ2)R2 , f0 = 1
2π

√
1.0154π4

12
Eh2

(1−υ2)ρmR4 ,

k3 = 8πEh
3(1−υ2)R2 , sm = πR2 (4)

q(t) is the transversal displacement of the membrane center (direction Ox in Figure 1) and pi(t) is the
acoustic pressure amplitude inside the cavity. The coefficients k1 and k3 are the linear and nonlinear
stiffness, respectively. f1 and f0 are, respectively, the first resonance frequency of the membrane with
and without the pre-stress. R, h, E, ν, η, and ρm are the radius, the thickness, Young’s modulus,
Poisson’s ratio, the viscous parameter, and the density of the membrane, respectively.

2.2. Coupling Between Several Acoustic Modes and a Nonlinear Membrane

The membrane is mounted on the wall of the cavity by the clamped boundary condition. Thus,
the equations that govern the acoustic pressure inside the acoustic cavity are as follows:

1
c2

0

∂2 pr
∂t2 − ∆pr = f

(
x f , y f , z f , t

)
in Ω,

∂pr
∂n = 0 on ∂Ω1,

ρa
∂2w
∂t2 = − ∂pr

∂n on ∂Ωm (∂Ω = ∂Ω1 + ∂Ωm),

(5)

where f
(

x f , y f , z f , t
)

is the source of force inside the cavity and
(

x f , y f , z f

)
is the position of the

source. Ω, ∂Ω and ∂Ωm are the internal volume of the cavity, the surface of the cavity and the surface
of the membrane, respectively. ∂Ω1 is the surface of the cavity without the surface of the membrane.
ρa and c0 are the density of the air and the sound velocity, respectively.

The system is performed a Rayleigh–Ritz reduction by using the mode shape Pi as a single shape
function for pr and for the test function δpr(x, y, z, t) = ∑N

i=1 Pi(x, y, z)δpi(t) [22,23]:

∫
Ω

(
1
c2

0

∂2 pr
∂t2 δpr − ∆prδpr

)
dΩ =

∫
Ω

(
f
(

x f , y f , z f , t
)

δpr

)
dΩ

⇒
∫

Ω
1
c2

0

∂2 pr
∂t2 δprdΩ +

∫
Ω

→
gradpr·

→
gradδprdΩ−

∫
∂Ωm

∂pr
∂n δprdΩ =

∫
Ω f
(

x f , y f , z f , t
)

δprdΩ
(6)
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Then, the following equations are obtained:

ma1
..
p1 + ka1 p1 +

ρ2
ac2

0sm
2 P1(xm, ym, zm)

..
q = ε1 f (t),

. . . ,

mai
..
pi + kai pi +

ρ2
ac2

0sm
2 Pi(xm, ym, zm)

..
q = εi f (t),

. . . ,

maN
..
pN + kaN pN +

ρ2
ac2

0sm
2 PN(xm, ym, zm)

..
q = εN f (t),

(7)

where,

V = LxLyLz, mai =
ρaV
δi

, kai =
ρaVω2

i
δi

, εi = ρac2
0Pi

(
x f , y f , z f

)
(8)

δi and ωi equal to (2− δl0)(2− δm0)(2− δn0) and πc0

√
(l/Lx)

2 +
(
m/Ly

)2
+ (n/Lz)

2, respectively.
For δl0, δm0, δn0,

l = 0, δl0 = 1; l 6= 0, δl0 = 0; m = 0, δm0 = 1; m 6= 0, δm0 = 0; n = 0, δn0 = 1; n 6= 0, δn0 = 0; (9)

Finally, the general model of the system with several acoustic modes of 3D acoustic cavity and one
nonlinear membrane is obtained by dividing the corresponding mass of each equation of Equations (3)
and (7), replacing the pressure amplitude by the displacement amplitude ui (pi(t) = ρac0ωiui(t)) and
introducing a coefficient λi for the acoustic damping:

..
u1 + µ1

.
u1 + ω2

1u1 + φ1
..
q = α1 f (t),

. . . ,
..
ui + µi

.
ui + ω2

i ui + φi
..
q = αi f (t),

. . . ,
..
uN + µN

.
uN + ω2

NuN + φN
..
q = αN f (t),

..
q + k1

mm

(
f1
f0

)2
q + µm1

.
q + µm2q2 .

q + βq3 −
N
∑

i=1
γiui = 0,

(10)

where,
µi =

λi
mai

, φi =
smρac0
2maiωi

Pi(xm, ym, zm), µm1 = k1η
mm

, µm2 = 2k3η
mm

, β = k3
mm

,
αi =

εi
maiρac0ωi

, γi =
smρac0ωi

2mm
Pi(xm, ym, zm)

(11)

For the parameters, we choose the dimensions of the cavity are Lx = 1 m, Ly = 2.2 m, Lz = 1.6
m. The position of the membrane is xm = Lx, ym = Ly/6, zm = Lz/6 and the position of the source
of forcing is x f = Lx/3, y f = Ly/3, z f = Lz/3. The values of the membrane and air parameters are:
R = 0.04 m, h = 0.00039 m, η = 0.000062 s−1, E = 1.48 MPa, υ = 0.49, ρm = 980 kg m−3, ρa = 1.3 kg
m−3, and c0 = 350 m s−1. And they are fixed along the paper. The units of p(t), f (t), Frequency and
time are Pa, m/s2, Hz and s, respectively and the unit of the amplitude of u(t) and q(t) is m.

3. Influence of the Pre-Stress of the Membrane for the TET

In Reference [21], the TET phenomenon of the system with one mode of the acoustic cavity and
one membrane without the pre-stress was observed according to the strongly modulated response
(SMR) [25,26]. And the desired working zone for the membrane NES as the forcing level interval was
defined based on the first destabilization of the resonance peak and the appearance of an additional
branch of periodic regimes. In order to analyze the influence of the pre-stress of the membrane for the
TET, a system comprised by the first mode of the acoustic cavity and one membrane with the pre-stress
is considered in the following form:

..
u + µ

.
u + ω2

010u + φ
..
q = F(t),

..
q + ω2

mq + µm1
.
q + µm2q2 .

q + βq3 − γu = 0,
(12)
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where,

ω010 =
πc0

Ly
, F(t) =

ε1 f (t)
maρac0ω010

, ωm =

√
k1

mm

(
f1

f0

)2
(13)

Here, ωm represents the term of the pre-stress of the membrane. For different pre-stress, the
different f1 values are taken into account based on the test results in Reference [17]. However, f0 is a
constant for the membrane without the pre-stress. In this paper, the FEA method is used to calculate
the value of f0 to validate the formulae of f0. The FE model of the membrane is built and the first
mode of the membrane is obtained, as shown in Figure 2. We can see that the values obtained by FEA
and the theoretical formulae are same as f0 = 5.08 Hz.
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Figure 2. The membrane. (a): the finite element model and (b): the first mode with f0 = 5.08 Hz.

The term of ω2
mq is just added in the system (12) with the pre-stress of the membrane compared

with the system without the pre-stress of the membrane in Reference [21]. Here, by using the harmonic
balance method (HBM) with a single harmonic term, the periodic forced responses of the system
are investigated. In Equation (12), the nonlinear terms are q2 .

q and q3. Thus, in order to get the easy
calculation, we set

.
q(0) = 0 and take the force F(t) and the displacements u(t) and q(t) as follows:

F(t) = F1ccos(ωt) + F1ssin(ωt),
u(t) = u1ccos(ωt) + u1ssin(ωt),q(t) = q1ccos(ωt)

(14)

By substituting the solutions in Equation (14) into Equation (12) and neglecting the higher
harmonic in 3ω, the following algebraic equations are obtained:(

ω2
010 −ω2)u1c + µωu1s − φω2q1c = F1c,(

ω2
010 −ω2)u1s − µωu1c = F1s,

3
4 βq3

1c + ω2
mq1c −ω2q1c − γu1c = 0,

− 1
4 µm2ωq3

1c − µm1ωq1c − γu1s = 0,
F1 = F1c + F1s,
u1 = u1c + u1s

(15)

For Equation (15), there are eight unknown parameters. We take the amplitude of the membrane
q1c and the angular frequency of the force ω as the master parameters. Thus, the response surfaces
are obtained with the pre-stress of the membrane ( f1 = 30 Hz), as shown in Figure 3. In Figure 3,
the dashed lines represent the responses without the pre-stress of the membrane, which are the same
results in Reference [21]. The solid lines represent the responses with the pre-stress of the membrane.
We can see that according to the form of the responses, the TET phenomenon can occur for the
system with the membrane with the pre-stress. And the membrane with the pre-stress can reduce the
amplitude of the acoustic displacement, which is the plateau of the amplitude of u1.



Materials 2019, 12, 1138 6 of 16

Materials 2019, 12, x FOR PEER REVIEW 6 of 16 

 

−
1

4
𝜇𝑚2𝜔𝑞1𝑐

3 − 𝜇𝑚1𝜔𝑞1𝑐 − 𝛾𝑢1𝑠 = 0, 

𝐹1 = 𝐹1𝑐 + 𝐹1𝑠, 
𝑢1 = 𝑢1𝑐 + 𝑢1𝑠 

For Equation (15), there are eight unknown parameters. We take the amplitude of the membrane 

𝑞1𝑐 and the angular frequency of the force 𝜔 as the master parameters. Thus, the response surfaces 

are obtained with the pre-stress of the membrane (𝑓1 = 30⁡𝐻𝑧), as shown in Figure 3. In Figure 3, the 

dashed lines represent the responses without the pre-stress of the membrane, which are the same 

results in Reference [21]. The solid lines represent the responses with the pre-stress of the membrane. 

We can see that according to the form of the responses, the TET phenomenon can occur for the system 

with the membrane with the pre-stress. And the membrane with the pre-stress can reduce the 

amplitude of the acoustic displacement, which is the plateau of the amplitude of 𝑢1. 

  
(a) (b) 

Figure 3. The periodic forced responses of the system for 𝐹1 = [0.01: 0.6: 2]. (a) 𝑢(𝑡) and 

(b) 𝑞(𝑡). The dashed lines represent the responses without the pre-stress of the membrane. 

The solid lines represent the responses with the pre-stress of the membrane (𝑓1 = 30⁡𝐻𝑧). 

In Reference [21], the desired working zone for the membrane NES without the pre-stress as the 

forcing level interval was defined based on the first destabilization of the resonance peak and the 

appearance of an additional branch of periodic regimes. The analytical formula of the two thresholds 

𝐹𝑏 and 𝐹𝑒 are defined. In order to analyze the influence of the pre-stress of the membrane for the TET 

of the system, three configurations for the pre-stress of the membrane are chosen, which are 𝑓1 = 30⁡𝐻𝑧, 

𝑓1 = 50⁡𝐻𝑧 and 𝑓1 = 65⁡𝐻𝑧, respectively. 

Figures 4 and 5 show the desired working zone for the membrane NES and the plateau of the 

amplitude 𝑢1 for the acoustic displacement with three different pre-stress, which are represented by 

𝑓1 = 30⁡𝐻𝑧, 𝑓1 = 50⁡𝐻𝑧, and 𝑓1 = 65⁡𝐻𝑧. 𝐹𝑒1, 𝐹𝑒2, and 𝐹𝑒3 represent the ending thresholds for 𝑓1 =

30⁡𝐻𝑧 , 𝑓1 = 50⁡𝐻𝑧 , and 𝑓1 = 65⁡𝐻𝑧 , respectively. 𝑃𝑙𝑎𝑡𝑒𝑎𝑢1 , 𝑃𝑙𝑎𝑡𝑒𝑎𝑢2 , ⁡𝑃𝑙𝑎𝑡𝑒𝑎𝑢3 , and 𝑃𝑙𝑎𝑡𝑒𝑎𝑢4 

represent the plateau of the amplitude of for the acoustic displacement for no pre-stress, 𝑓1 = 30⁡𝐻𝑧, 

𝑓1 = 50⁡𝐻𝑧, and 𝑓1 = 65⁡𝐻𝑧, respectively. By comparing with no pre-stress of the membrane, which 

is represented by the green and solid lines, the higher of the first resonance frequency 𝑓1 , the 

narrower desired working zone for the membrane NES. And the beginning threshold 𝐹𝑏 is nearly 

unchanged, while the ending threshold 𝐹𝑒 decreases with the increase of the resonance frequency 𝑓1. 

But, with the higher pre-stress, we also can obtain the lower value for the plateau of the amplitude of 

𝑢1  (the value of the response suppression) and the larger bandwidth of frequency for the noise 

suppression.  

Figure 3. The periodic forced responses of the system for F1 = [0.01 : 0.6 : 2]. (a) u(t) and (b) q(t). The
dashed lines represent the responses without the pre-stress of the membrane. The solid lines represent
the responses with the pre-stress of the membrane ( f1 = 30 Hz).

In Reference [21], the desired working zone for the membrane NES without the pre-stress as the
forcing level interval was defined based on the first destabilization of the resonance peak and the
appearance of an additional branch of periodic regimes. The analytical formula of the two thresholds
Fb and Fe are defined. In order to analyze the influence of the pre-stress of the membrane for the TET of
the system, three configurations for the pre-stress of the membrane are chosen, which are f1 = 30 Hz,
f1 = 50 Hz and f1 = 65 Hz, respectively.

Figures 4 and 5 show the desired working zone for the membrane NES and the plateau of the
amplitude u1 for the acoustic displacement with three different pre-stress, which are represented
by f1 = 30 Hz, f1 = 50 Hz, and f1 = 65 Hz. Fe1, Fe2, and Fe3 represent the ending thresholds for
f1 = 30 Hz, f1 = 50 Hz, and f1 = 65 Hz, respectively. Plateau1, Plateau2, Plateau3, and Plateau4
represent the plateau of the amplitude of for the acoustic displacement for no pre-stress, f1 = 30 Hz,
f1 = 50 Hz, and f1 = 65 Hz, respectively. By comparing with no pre-stress of the membrane, which is
represented by the green and solid lines, the higher of the first resonance frequency f1, the narrower
desired working zone for the membrane NES. And the beginning threshold Fb is nearly unchanged,
while the ending threshold Fe decreases with the increase of the resonance frequency f1. But, with the
higher pre-stress, we also can obtain the lower value for the plateau of the amplitude of u1 (the value
of the response suppression) and the larger bandwidth of frequency for the noise suppression.Materials 2019, 12, x FOR PEER REVIEW 7 of 16 
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Figure 4. The desired working zone for the membrane nonlinear energy sink (NES) with three different
pre-stress. The green and solid lines represent no the pre-stress. The blue and solid lines are for
f1 = 30 Hz. The blue and dotted lines are for f1 = 50 Hz. The blue and dashed lines are for f1 = 65 Hz.
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Figure 5. The plateau of the amplitude u1 for the acoustic displacement. The forced response is under
the forcing levels F1 = [0.01 : 0.6 : 2]. The blue lines represent no the pre-stress, marked by ‘Plateau1’.
The green lines are for f1 = 30 Hz, marked by ‘Plateau2’. The red lines are for f1 = 50 Hz, marked by
‘Plateau3’. The black lines are for f1 = 65 Hz, marked by ‘Plateau4’.

The numerical simulations of the system (12) are performed by using the 4th and 5th order
Runge–Kutta method to validate the TET phenomenon of the system with the pre-stress of the
membrane. Here, we only take an example f1 = 30 Hz to analyze the numerical results. Figure 6
shows the time series for the displacements u(t) and q(t) with the forcing level F1 = 1.2 and the
excitation frequency 79.9 Hz. We can see that the responses of the system show the SMR. Thus, the
TET phenomenon occurs for the system with the pre-stress of the membrane. Meanwhile, the value
of the plateau for f1 = 30 Hz in Figure 6a by the dashed and black line show a good correspondence
with the value of the plateau in Figure 5 by ‘Plateau2’.
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Figure 6. The time series for the displacement u(t) and q(t) with the forcing level F1 = 1.2 and the
excitation frequency 79.9 Hz. (a) u(t) and (b) q(t). The dashed and black line represents the plateau of
the amplitude of u1.

4. Two Modes with One Membrane

Before analyzing the TET phenomenon of the system with several modes of the acoustic cavity
and one membrane, a system with two modes of the acoustic cavity and one membrane is firstly
studied to find the relation between different modes of the cavity and the membrane and whether the
membrane can work for different modes. Based on Equation (7), the system with two modes P1 = P010

and P2 = P001 of the acoustic cavity (and also the static mode P0 = P000) and one membrane can be
represented without considering the influence of pre-stress of the membrane. Here, because of the
static mode P0 = P000, the pressure amplitude could not be replaced by the displacement amplitude
(pi(t) = ρac0ωiui(t)). Thus, the system reads in the following form:

..
p0 + λ0

.
p0 + φ∗0

..
q = α∗0 f (t),

..
p1 + λ1

.
p1 + ω2

1 p1 + φ∗1
..
q = α∗1 f (t),

..
p2 + λ2

.
p2 + ω2

2 p2 + φ∗2
..
q = α∗2 f (t),

..
q + µm1

.
q + µm2q2 .

q + βq3 − γ∗0 p0 − γ∗1 p1 − γ∗2 p2 = 0

(16)
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where,
λi = µimai, φ∗i =

smρ2
ac2

0
2mai

Pi(xm, ym, zm), α∗i = εi
mai

,
ω1 = πc0

Ly
, ω2 = πc0

Lz
, γ∗i = sm

2mm
Pi(xm, ym, zm)

(17)

4.1. Nonlinear Normal Modes

In order to analyze the NNMs of the system (16), we remove the force and all the damping in the
system, the system becomes:

..
p0 + φ∗0

..
q = 0,

..
p1 + ω2

1 p1 + φ∗1
..
q = 0,

..
p2 + ω2

2 p2 + φ∗2
..
q = 0,

..
q + βq3 − γ∗0 p0 − γ∗1 p1 − γ∗2 p2 = 0

(18)

By using HBM with a single term, the motion of the system (18) are as follows:

p0(t) = p0ccos(ωt),
p1(t) = p1ccos(ωt),
p2(t) = p2ccos(ωt),
q(t) = q1ccos(ωt)

(19)

Then, Equation (19) is introduced into the system (18) and the following three algebraic equations
are obtained by neglecting the higher harmonics in 3ω and expressing p0c = −φ∗0 q1c:(

ω2
1 −ω2)p1c − φ∗1 ω2q1c = 0,(

ω2
2 −ω2)p2c − φ∗2 ω2q1c = 0,

φ∗0 γ∗0 q1c − γ∗1 p1c − γ∗2 p2c −ω2q1c +
3
4 βq3

1c = 0
(20)

Here, the absolute values of the amplitude p1c, p2c and q1c are represented, as shown in Figure 7.
Figures 8 and 9 are the zoom of p1(t) and p2(t), respectively. We can see that in Figure 8, the amplitude
of p1(t) around the first resonant of the cavity (here, it’s the natural angular frequency ω1 of the cavity)
is much higher than that around the second resonant frequency of the cavity (here, it is the natural
angular frequency ω2 of the cavity). While in Figure 9, the amplitude of p2(t) around the angular
frequency ω2 is much higher than that around the angular frequency ω1. Therefore, for p1(t) and p2(t),
there are the high amplitudes around only one resonant frequency and around its natural angular
frequency ω1 and ω2, respectively. Meanwhile, there is the weak coupling between the oscillators p1(t)
and p2(t). For q(t) in Figure 7c, we can see observe that q(t) has the large amplitudes around the two
natural angular frequencies.
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4.2. Forced Responses

The solutions to periodic forcing of the system (16) are analyzed by using the same setting and
method with the system (12), which are shown in Figures 10–13. Here, we set f (t) = F1ccos(ωt) +
F1ssin(ωt) and F1 = F1c + F1s. The gradual color stands for the level of forcing F1, where the blue curve
indicates a low level of forcing F1 and the red one indicates a high level of forcing F1.
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Figure 10. (a) Responses of p0(t) for F1 = [0.01 : 2 : 20.01]. (b,c) are the zooms of (a) around two
resonant frequencies of the cavity.
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resonant frequencies of the cavity.

For p0(t), p1(t) and p2(t), we can see that when the membrane works in the desired zone for
the TET phenomenon, and they vibrate only around its natural angular frequency 0, ω1 and ω2,
respectively. Around its natural angular frequency, the amplitude of the responses is also much higher
than that around the other resonant frequency. Therefore, there is also weak coupling between the
responses of p0(t), p1(t), and p2(t). In Figure 13, we can see that there are always the large amplitudes
of the responses around the resonant frequencies for q(t). The membrane can work for two resonant
angular frequency ω1 and ω2 of the cavity. Because of the weak coupling between the NNMs and the
forced responses of the system (16), it is useful to analyze the NNMs and the forced responses of the
system with each mode (P1 = P010 and P2 = P001 in the system of (16)) and the membrane.

The forced responses of the system (16) are compared with that of the system with each mode
(P1 = P010) and the membrane, as shown in Figure 14. We can observe that around the resonant
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frequency (for the system with the mode P010 in ω1), the responses of the system with one mode are
the same as those of the system with the two modes. Therefore, for looking for the forced responses of
the system (16), we can firstly separate it to two new systems composed of each mode of the cavity
coupled by the membrane. Then, the responses of the two new systems with two DOFs could be
easily analyzed.Materials 2019, 12, x FOR PEER REVIEW 12 of 16 
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Figure 14. Responses of p1(t) and q(t) of the system for F1 = 2.01 in blue curves and F1 = 3.01 in green
curves. Dashed curves stand for the responses of the system with the two modes P010 and P001 coupled
by the membrane. Solid curves stand for the responses of the system only with the mode P010 coupled
by the membrane. (a) p1(t) and (b) q(t).

4.3. Numerical Simulations

The numerical simulations of the system (16) are also performed by using the 4th and 5th order
Runge–Kutta method to study the TET phenomenon of the system and also to validate the analytical
results. We will here choose the level of forcing F1 = 2.01. Based on the range of frequency of the
TET phenomenon, the frequency of excitation is chosen for the range [79.2 Hz, 80.2 Hz]. The maximal
amplitudes of p1(t) obtained by numerical integration around the first resonant angular frequency ω1

are plotted together with the analytical responses of the system shown in Figure 15. The numerical
results are marked with red circles. We can see that the numerical responses of p1(t) show a good
agreement with the analytical results. In Figure 16, the time series of the system for the forcing
F1 = 2.01 and the frequency of excitation 79.7 Hz is shown to investigate the responses. We can see
that for p1(t) and q(t), there are the SMR and the TET phenomenon of the system occurs. And for
p2(t), the amplitudes of the responses are much smaller than that of p1(t). Therefore, the numerical
simulations are in line with the analytical predictions.
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Figure 15. Numerical and analytical responses of p1(t) for the level of forcing F1 = 2.01. Red curves
with circle stand for numerical results. Blue curves stand for analytical results.
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Figure 16. The time series for the system with the level of forcing F1 = 2.01 and the frequency of
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5. Several Modes with One Membrane

5.1. The Modes of 3D Acoustic Cavity

The natural frequencies between the frequency range 20–200 Hz of the cavity are represented

according to the frequency equation flmn = c0
2

√
(l/Lx)

2 +
(
m/Ly

)2
+ (n/Lz)

2, as follows in Table 1.

Table 1. The natural frequencies between 20–200 Hz of the cavity.

l m n Hz

0 1 0 79.8
0 0 1 109.38
0 1 1 135.28
0 2 0 159.08
1 0 0 175
1 1 0 192.15
0 2 1 193.03

Finally, in order to control the low frequency broadband noise (20–200 Hz) inside the cavity, the
system comprised by seven DOFs linear oscillators and the membrane is built based on Equation (10).

5.2. The Thresholds of the Desired Working Zone

For the acoustic damping of the modes, we set all damping coefficients µi = 0.014, which are
weak for the modes of the cavity. The periodic forced responses of the system with seven modes
coupled by the membrane can be obtained by analyzing the system with each mode coupled by the
membrane. For a two DOFs system with one acoustic mode and the membrane, the forced responses
of the system can be easily obtained by using the HBM with one term.

According to the results in Reference [21], we studied the extrema of the curves for the responses
u(t) versus ω under the level of forcing F1. The desired working zone of the membrane was determined
by analyzing the zone with three extrema. Then, by using the HBM method, the analytical expression
of the threshold Fb for the beginning of the zone was obtained:

Fb = F1 =

√
(λωp1s)

2 +
((

ω2
010 −ω2)p1s − λωp1c

)2
(21)

And the analytical expression for the value of the plateau is also obtained:

p1 =
1
γ

√(
3
4

βq1c
3 −ω2q1c

)2
+

(
1
4

µm2ωq1c
3 + µm2ωq1c

)2
(22)

where, ω, p1c, p1s, q1c represent the solutions of the limit point.
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About the threshold Fe for the ending of the zone, a formula of the level of forcing F1 depending
only on ω (ω < ω010 for the mode P010) is obtained:

q1c =

√
4

3β

(
ω2 − γφω2

ω2−ω2
010

)
, p1c =

1
γ

( 3
4 βq3

1c −ω2q1c
)
,

p1s = − 1
γ

(
1
4 µm2ωq3

1c + µm1ωq1c

)
,

F1 =
√((

ω2
010 −ω2

)
p1c + λωp1s − φω2q1c

)2
+
((

ω2
010 −ω2

)
p1s − λωp1c

)2

(23)

Based on Equations (21)–(23), we can get the two thresholds Fb and Fe and the amplitude of the
plateau of the system composed of each mode coupled by the membrane, as shown in Figure 17. We
can observe that the system with each acoustic mode has different thresholds Fb and Fe, namely that the
membrane NES has the different desired working zone for the range of chosen frequencies. Therefore,
the membrane could reduce the resonance peaks in the frequency range 20–200 Hz and control the low
frequency broadband noise (20–200 Hz) inside 3D acoustic cavity. For a given 3D acoustic cavity, we
can design the membrane by using the parametric results of the membrane to enhance the robustness
and the effective TET range.
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Figure 17. The two thresholds Fb and Fe and the plateau of the system composed of each mode coupled
by the membrane. (a) the threshold Fb, (b) the threshold Fe, (c) the desired working zone and (d) the
amplitude of the plateau.

6. Discussion and Conclusions

In order to control the low frequency broadband noise (20–200 Hz) inside 3D acoustic cavity and
consider the influence of the pre-stress for the TET, a general model of the system with several acoustic
modes of 3D acoustic cavity and one nonlinear membrane is built. The analytical formula of the first
resonance frequency for the membrane without the pre-stress is validated by the FEA method. For
the results of the influence of the pre-stress of the membrane NES, if the membrane has the higher
pre-stress (represented by the first resonance frequency with the pre-stress f1), the narrower desired
working zone for the membrane NES is obtained with no change for the beginning threshold Fb and
decrease for the ending threshold Fe. However, the lower value of the plateau of the amplitude of
u1 and the larger bandwidth of frequency for the noise suppression could be got. The results for the
membrane with the pre-stress are validated by the numerical simulations.
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A three DOFs system comprised by the membrane and two acoustic modes is then studied to
demonstrate the membrane could work for the two acoustic modes. We can separate the two modes of
the cavity to couple the membrane for looking for the solutions of the system according to the analytical
results. Moreover, the numerical simulations are performed to validate the analytical predictions
and the TET phenomenon. Finally, the multi-DOFs system with seven modes and the membrane is
analyzed to get the desired working zone and the value of the plateau of the nonlinear membrane
absorber for low frequency broadband noise. It will be helpful to design the nonlinear membrane NES
according the dimension of a given 3D acoustic cavity to reduce the low frequency noise. It provides
us a new treatment to control passively the low frequency broadband noise.

In this paper, for 3D acoustic cavity, the irregular acoustic cavity and the acoustic damping modes
are not considered. For the nonlinear membrane, the membrane is not considered to be mounted on
the flexible plate. Because these will cause a coupling between the acoustic cavity modes and also
affect the forced responses inside 3D acoustic cavity. In future, different above conditions will be
analyzed for the practical applications of the membrane. And the analytical and numerical results of
the system will be also validated by the experimental methods. For other applications of the nonlinear
membrane, the acoustic metamaterials based on the membrane will be taken in account and the sound
energy harvesting based on TET by using the designed structures including the nonlinear membrane
will be investigated. It may provide novel applications for the membrane and the secondary energy
utilization of noise inside 3D acoustic cavity.
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