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Abstract: Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) are auxiliary
factors involved in protein synthesis related to aminoacyl-tRNA synthetases (ARSs). AIMPs, which
are well known as nonenzymatic factors, include AIMP1/p43, AIMP2/p38, and AIMP3/p18.
The canonical functions of AIMPs include not only protein synthesis via multisynthetase complexes
but also maintenance of the structural stability of these complexes. Several recent studies have
demonstrated nontypical (noncanonical) functions of AIMPs, such as roles in apoptosis, inflammatory
processes, DNA repair, and so on. However, these noncanonical functions of AIMPs have not been
studied in peripheral nerves related to motor and sensory functions. Peripheral nerves include two
types of structures: peripheral axons and Schwann cells. The myelin sheath formed by Schwann
cells produces saltatory conduction, and these rapid electrical signals control motor and sensory
functioning in the service of survival in mammals. Schwann cells play roles not only in myelin sheath
formation but also as modulators of nerve degeneration and regeneration. Therefore, it is important
to identify the main functions of Schwann cells in peripheral nerves. Here, using immunofluorescence
technique, we demonstrated that AIMPs are essential morphological indicators of peripheral nerve
degeneration, and their actions are limited to peripheral nerves and not the dorsal root ganglion and
the ventral horn of the spinal cord.

Keywords: aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs); Schwann cells;
Wallerian degeneration; noncanonical functions; fluorescence-based analysis

1. Introduction

Aminoacyl-tRNA synthetases (ARSs) are enzymes involved in attaching appropriate amino
acids to the 3’-termini of tRNAs in translation [1]. There are 20 types of ARSs, which exist as
complexes with other ARSs or as free forms in living cells [2]. ARS-interacting multifunctional
proteins (AIMPs), which are cofactors that assist ARSs in protein synthesis, include p43 (AIMP1),
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p38 (AIMP2), and p18 (AIMP3). In the cytoplasm of mammalian cells, AIMPs form huge
multisynthetase complexes with nine ARSs (aspartyl-tRNA synthetase, glutamyl-tRNA synthetase,
prolyl-tRNA synthetase, isoleucyl-tRNA synthetase, lysyl-tRNA synthetase, leucyl-tRNA synthetase,
methionyl-tRNA synthetase, glutaminyl-tRNA synthetase, and arginyl-tRNA synthetase) and play
important roles in protein synthesis [3,4]. AIMPs are typically closely associated with ARSs and
provide structural stability to their complexes and assist in the enzymatic activation of ARSs for
protein synthesis [2,4,5]. Several recent studies have reported nontypical (noncanonical) functions of
AIMPs in living organisms. For example, AIMP1 was shown to affect the cell signaling associated
with inflammation, angiogenesis, apoptosis, and wound healing [6–8], and AIMP2 and AIMP3 were
shown to be related to the regulation of the cell cycle and tumor suppression [9,10]. However, these
noncanonical functions of AIMPs have not been studied in peripheral nerves, which are essential
structures for motor and sensory behaviors in mammals.

Schwann cells are components of the peripheral nerves with functions related to peripheral nerve
degeneration and regeneration as well as saltatory conduction for fast signal transduction from central
to peripheral organs. Therefore, dysfunctions in Schwann cell dynamics cause various problems
in peripheral organs innervated by peripheral nerves. In particular, mechanical nerve injury and
neurodegenerative processes related to aging and metabolic or exogenous toxicity are main causes of
peripheral neurodegeneration in mammals [11–14]. However, with the exception of the physiological
evaluation of peripheral neurodegenerative dysfunction, such as nerve conduction velocity, no effective
methods for morphological quantification of peripheral neurodegenerative dysfunction are available
in mammals.

In this study, we demonstrated that AIMPs are highly expressed in Schwann cells in injured
peripheral nerves and that their levels are decreased during the process of nerve regeneration.
Therefore, our results suggest that the noncanonical functions of AIMPs act as morphological
intracellular indicators of peripheral nerve degeneration.

2. Materials and Methods

2.1. Animals

The experimental procedures performed on male C57BL/6 mice (Orientbio, Seongnam, Korea)
were carried out in accordance with the approved guidelines from Kyung Hee University committee
on animal research [KHUASP(SE)-16-043-1]. Sciatic nerves of five-week-old mice were used in our
experiment. We anesthetized animals, made a small incision unilaterally to expose the sciatic nerve,
and crushed the sciatic nerve with flat forceps. At 3, 7, 14, 28 days after nerve crush, mice were
euthanized by CO2, and the sciatic nerves, dorsal root ganglion (DRG), and spinal cord were removed
for further experiments. From the injured sciatic nerve, only distal segments were collected.

2.2. Western Blot Analysis

Extracted sciatic nerves, DRGs and ventral horn of spinal cords were homogenized in
radioimmunoprecipitation assay buffer [RIPA; 25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% Triton
NP-40, 0.1% sodium dodecyl sulfate (SDS; Thermo, Waltham, MA, USA)] with protease inhibitor
mixture (Roche Molecular Biochemicals, Nutley, USA) and 1 mM Na3VO4. Western blot analyses
were performed following protein blotting guide (Bio-Rad, Hercules, CA USA). The following primary
antibodies were used: anti-AIMP1 (Neomics, Suwon, Korea), anti-AIMP2 (Proteintech, Chicago, IL,
USA), anti-AIMP3 (Neomics, Suwon, Korea), and β-actin (Sigma, St. Louis, MO, USA).

2.3. Tissue Preparation

Mouse tissue samples were fixed with 4% paraformaldehyde (4% PFA) in phosphate-buffered
saline (PBS) overnight at 4◦C. For cryosection, samples were cryoprotected in 30% sucrose in PBS for
2 days at 4◦C. Dehydrated sciatic nerves and DRGs were embedded in optimal cutting temperature
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(OCT) compound and transverse sections (16 µm thickness) were prepared by using vibratome in
cryostat (Leica, Wetzlar, Germany). To prepare teased nerve slides, the fixed sciatic nerves were teased
into single nerve fibers under a stereomicroscope. The prepared tissue section and teased nerve fibers
were dried and kept at −80◦C until use.

2.4. Immunofluorescence

Prepared samples were post-fixed with 4% PFA. After one washing with PBS and another
washing with PBS including 0.3% Triton X-100 (PBS-T), followed by being blocked in blocking
solution (5% bovine serum albumin and 5% fetal bovine serum in PBS-T) at room temperature
(RT), samples were incubated with primary antibodies diluted in blocking solution overnight at
4 ◦C. The following primary antibodies were used: anti-AIMP1, anti-AIMP2, anti-AIMP3, anti-NeuN
(Santa Cruz Biotechnology, CA, USA), anti-Neurofilament (NF) H&M (Millipore, Bedford, MA, USA),
anti-p75 neurotrophin receptor (NTR), and anti-S100β (Sigma, St. Louis, MO, USA). Samples then
were washed three times with PBS and then incubated with Alexa Fluor 488- and 594-conjugated
secondary antibodies (Invitrogen, Carlsbad, CA, USA) in blocking solution for 2 hours at RT, washed
three times with PBS, and mounted with cover glass.

2.5. Polymerase Chain Reaction (PCR)

Total RNA was isolated from mouse sciatic nerves using Tri Reagent (MRC, Cincinnati,
OH, USA), and first-strand cDNA was obtained with SuperScript Reverse transcriptase
(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s protocol. Real-time
quantitative PCR (qPCR) was performed with SYBR green master mix (Takara, Kusatsu,
Japan). Primers for qPCR are: AIMP1 (FW: 5’-TTTCTCTGCCGATTCTGGGGA-3’, RV:
3’-CCTGCTGCTTGAGATATTCGAT-5’), AIMP2 (FW: 5’-CGTGCAGGAAACATCCGA-3’, RV:
3’-GTTACGTCCAAGTCTGCATCT–5’), AIMP3 (FW: 5’-GACTGAAGCCGGGGAATAAGT-3’, RV:
3’-TAGACTCGGGCCATTGTTTGT–5’) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(FW: 5’–TGCACCACCAACTGCTTAGC-3’, 3’-GGCATGGACTGTGGTCATGA–5’). Semi-PCR was
performed using G-Taq polymerase (Cosmogenetech, Seoul, Korea). Primers for semi-PCR are: AIMP1
(FW: 5’-AAAAGGAGAAGCAGCAGTCG-3’, RV: 5’-TCTGGTGAACTGGCACACAT-3’), AIMP2
(FW: 5’-AGTTGAAGGCAGCAGTCGAT-3’, RV: 5’-GACAAGATTCTCGGGCACAT-3’), AIMP3 (FW:
5’-ATCGCCACCCATCTAGTCAA-3’, RV: 5’-GACAAAACCAGCGAGACACA-3’), GAPDH (FW:
5’-CTACATGGTCTACATGTTCCAGTATG-3’, RV: 5’-AGTTGTCATGGATGACCTTGG-3’).

2.6. Statistical Analysis

Statistical analysis was performed by using SPSS 21.0 software (IBM, Chicago, IL, USA). P-values
are from Student’s two-tailed test, and results were expressed as mean and standard error. p < 0.05
was considered as statistically significant.

3. Results

3.1. AIMPs Are Highly Expressed in Dysfunctional Peripheral Nerves and Decreased in Recovered Peripheral
Nerves

We used the in vivo sciatic crush model, which induces peripheral nerve degeneration and
regeneration, to induce peripheral nerve dysfunction. During sciatic nerve degeneration, motor and
sensory functions were diminished because all axons were degraded and disconnected from their
target organs. The functions recovered during nerve regeneration because peripheral nerves have
regenerative capacity. We performed qPCR analysis using primers for AIMP1–3 to determine whether
AIMPs show alterations in their mRNA expression during nerve degeneration and regeneration.
During nerve degeneration (from three days to one week), AIMP1–3 showed high levels of expression
compared with controls (uninjured sciatic nerve) (Figure 1a). In contrast, AIMP1–3 expression levels
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were markedly decreased during nerve regeneration (from two to four weeks) (Figure 1a). To visually
confirm qPCR results and evaluate the specificity of the primers, we performed semi-PCR analysis,
which also showed that AIMP1–3 mRNA expression levels were markedly increased during nerve
degeneration and suddenly decreased during nerve regeneration (Figure 1b and Figure S1).
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Figure 1. mRNA expression patterns of aminoacyl-tRNA synthetase-interacting multifunctional
proteins (AIMPs) under normal and abnormal conditions of peripheral nerves. (a) Real-time
quantitative PCR (qPCR) results showed mRNA expressions of AIMPs in sciatic nerves. Relative
mRNA expressions of AIMPs were calculated by fold change; 1 was expression level of control sample
(Con, not injured nerves). Fold changes of postinjury samples (3 days, 1 week, 2 weeks, 4 weeks) were
derived by mRNA expression level of each sample divided by that of Con (n = 3, * p < 0.05, ** p < 0.01,
*** p < 0.001, ns; p > 0.05). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as loading
control. (b) Semi-PCR results showed mRNA expressions of AIMPs in sciatic nerve.

Next, to determine the patterns of AIMP protein expression, we performed Western blotting
analysis using antibodies to AIMP1–3. Similar to the patterns of AIMP mRNA expression levels,
AIMP1–3 showed elevated expression at the protein level during nerve degeneration with marked
decreases during nerve regeneration (Figure 2a). Quantification of AIMP expression by Western
blotting also indicated marked increases in AIMP expression during nerve degeneration (Figure 2b).
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Figure 2. Protein expression patterns of AIMPs under normal and abnormal conditions of peripheral
nerves. (a) Western blot analysis showed protein expression patterns of AIMPs in sciatic nerves. (b)
Relative intensities of protein expressions of AIMPs were calculated by fold change; 1 was expression
level of Con. Fold changes of postinjury samples (3 days, 1 week, 2 weeks, 4 weeks) were derived by
protein expression level of each sample divided by that of Con (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001,
ns; p > 0.05). β-actin was used as loading control.

To visualize the patterns of AIMP expression during nerve degeneration and regeneration, we
performed immunostaining using the same antibodies used in Western blotting. Immunostaining also
showed that AIMP1–3 was highly expressed during nerve degeneration, and the levels of expression
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decreased during nerve regeneration, which was similar to the results of the Western blotting analysis
(Figure 3a). Quantification of the immunostaining intensities indicated that the peak timing of AIMP1–3
expression was one week after sciatic nerve crush injury (Figure 3b). Taken together, these results
indicated that AIMPs are highly expressed during nerve degeneration and that their increases likely
represent peripheral nerve dysfunction morphologically.
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Figure 3. Morphological expression patterns of AIMPs under normal and abnormal conditions of
peripheral nerves. (a) Immunostaining showed colocalization of AIMPs (red) with S100 (green,
Schwann cell marker) in teased sciatic nerves. Expressions of AIMPs were maximized at 1 week
and gradually decreased from 1 week after injury. Scale bar = 100 µm. (b) Relative intensities of
AIMPs were calculated by strength of each AIMP signal; relative intensity of 1 week was 100. Relative
intensities of postinjury samples (Con, 3 days, 2 weeks, 4 weeks) were derived by strength of signal of
each sample divided by that of 1 week (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001, ns; p > 0.05).
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3.2. Increases in AIMP Expression Accrue in Schwann Cells of Dysfunctional Peripheral Nerves

Peripheral nerves contain two types of structures: peripheral axons and Schwann cells. To identify
the cell types related to AIMP expression under conditions of peripheral neurodegenerative process,
we performed immunostaining for AIMPs, S100 (a Schwann cell marker), and NF (an axon marker).
In the control and injured sciatic nerves (three days after crush injury), AIMP1–3 was highly
expressed in the injured nerves and strongly overlapped with positive signals for S100 but not
NF (Figure 4a–c). Quantitative evaluation also indicated that AIMP1–3 was coexpressed with S100
but not NF (Figure 4d,e). Aside from peripheral axons, to identify whether AIMPs affect injured
neuronal cell bodies of peripheral nerves, we evaluated the patterns of AIMP1–3 expression in the
DRG. Immunostaining analysis indicated that AIMP1–3 was continuously expressed along with NeuN
(a marker for neuronal cell bodies) regardless of condition (i.e., control or injury) (Figure 5a). These
AIMP-positive signals did not overlap with S100, a marker of satellite cells, which are glial cells in
the DRG (Figure 5b). Western blotting analysis also showed identical AIMP1–3 expression in both the
control and injured sides of the DRG (Figure 5c) and the ventral horn of the spinal cord (Figure S2a).
Quantitative data indicated that there were no differences in AIMP1–3 expression in the DRG and
spinal cord between the control and injured sides (Figure 5d and Figure S2b).
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Figure 4. AIMPs are increased in Schwann cells under dysfunctional condition of peripheral nerves.
(a–c) Immunostaining showed colocalization of AIMP1-3 (red) with S100 (green), not neurofilament (NF;
green, axonal marker) after injury. Scale bar = 50 µm. (d,e) Cell counts were derived by S100/AIMPs
double-positive cells or NF/AIMPs double-positive cells at Con or 3 days postinjury (n = 3, * p < 0.05,
** p < 0.01, *** p < 0.001, ns; p > 0.05).
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Figure 5. Alteration of AIMPs expression is limited to Schwann cells under dysfunctional condition
of peripheral nerves. (a) Immunostaining showed colocalization of AIMPs (red) with NeuN (green,
neuronal marker) in dorsal root ganglia (DRGs). Scale bar = 100 µm. (b) Immunostaining showed
colocalization of AIMPs (red) with S100 (green, satellite cell marker) in DRG. Scale bar = 50 µm.
(c) Western blot analysis showed expression patterns of AIMPs in DRGs with or without nerve injury.
β-actin was used as loading control. (d) Relative intensities of immunostaining of AIMPs were
calculated by fold change of the injured DRG compared to that of Con; Con was 100 (n = 3, ns; p > 0.05).

Interestingly, AIMPs likely show expression patterns similar to p75NTR as a marker of
trans-dedifferentiation. In immunofluorescence analysis with antibodies of AIMPs and p75NTR,
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signals of AIMPs overlapped with p75NTR profiles and the time of expression of AIMPs coincided
with that of p75NTR (Figure 6a,b). Thus, AIMPs may be used as an effective marker for
trans-dedifferentiation. Taken together, these results indicate that Schwann cells highly express
AIMP1–3 during peripheral nerve degeneration. Additionally, the AIMP1–3 expression patterns were
not altered regardless of the position of the peripheral neurons (axon and cell body).
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Figure 6. Alteration of AIMPs expressions is similar to p75 neurotrophin receptor (NTR) as a marker of
Schwann cell trans-dedifferentiation. (a) Immunostaining showed colocalization of AIMPs (red) with
p75NTR (green) in sciatic nerve fibers. Scale bar = 100 µm. (b) Relative intensities of immunostaining of
AIMPs and p75NTR were calculated by fold change of the degenerating and regenerating nerve fibers
compared to that of samples at 1 wk after nerve injury, time-course-dependently (n = 3, p < 0.001).

4. Discussion

4.1. AIMPs Act as Morphological Indicators of Dysfunctional Peripheral Nerves in Vivo

There are two types of peripheral nerves: cranial nerves projecting from the brain and spinal
nerves projecting from the spinal cord. Peripheral nerves are organized much like power cables
that distribute electricity from power transmission plants to appliances in the home, such as
refrigerators and washing machines. That is, all organs in the body receive electrical signals from
the brain via peripheral nerves to regulate their functions. As conditions that lead to peripheral
nerve dysfunction are responsible for many severe disorders in mammals, including chronic pain,
quadriplegia, numbness, dysphasia, and so on [15–17], it is important to identify morphological
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indicators capable of reflecting the functional condition of peripheral nerves. However, no such
effective morphological indicators have been reported to date.

The results of the present study suggest that AIMPs are effective indicators for identifying
dysfunctional peripheral nerves morphologically. We used the sciatic nerve crush model to investigate
the functional state of peripheral nerves morphologically. After nerve crush injury, axons and myelin
undergo degradation and disappear, resulting in disconnection between the central nervous system and
peripheral organs, and this nerve degeneration represents peripheral nerve dysfunction. According
to this model, after peripheral nerve degeneration, axons and myelin are regenerated, and their
connections are recovered; this nerve regeneration represents the functional state of peripheral
nerves. That is, without requiring complicated physiological measurements, the functional state
of peripheral nerves can be evaluated by morphological assessments alone. However, an effective
indicator for detecting dysfunctional peripheral nerves in Mammalia is still absolutely needed. In the
present study, AIMPs were more highly expressed in injured sciatic nerves than in control (no injury)
during peripheral nerve degeneration (dysfunctional state, samples from three days and one week)
(Figures 1–3 and Figure S1). During nerve regeneration, the disconnected nerves recovered and the
levels of AIMP expression were decreased (Figures 1–3 and Figure S1). These AIMP expression patterns
may represent the normal and abnormal conditions of peripheral nerves, respectively.

These observations raise questions regarding those noncanonical functions of AIMPs in
dysfunctional peripheral nerves that may serve as good indicators. First, AIMP1 stimulates
macrophages to induce proinflammatory cytokines via p38 mitogen-activated protein kinases (p38
MAPK), extracellular signal-regulated kinases (ERK), and nuclear factor kappa B (NF-кB) cell signaling
pathways [6,7]. During peripheral nerve degeneration, the degraded myelin sheath debris is removed
by macrophages and Schwann cells [13]. Thus, increased AIMP1 in injured peripheral nerves may
activate macrophages, which would then engulf myelin debris. Second, TGF-β-induced AIMP2
translocates into the nucleus and then binds to far-upstream element-binding protein (FUSE-binding
protein, FBP) to facilitate proteolysis through ubiquitination [18]. AIMP3 is also related to the
ubiquitination of lamin A via Siah1, E3 ubiquitin ligase [19]. In Schwann cells, the ubiquitin–proteasome
system is involved in myelin degradation during peripheral nerve degeneration [20,21]. Thus,
ubiquitination-related AIMP2 and AIMP3 may activate the ubiquitin–proteasome system and affect
the process of myelin debris clearance in Schwann cells during demyelination. Taken together,
the alterations of AIMP expression through their noncanonical actions may act as morphological
indicators of peripheral nerve dysfunction.

4.2. AIMPs Indicate the Trans-Dedifferentiation of in Vivo Schwann Cells in Dysfunctional Peripheral Nerves

During peripheral nerve degeneration, Schwann cells alter their characteristics to become suitable
for nerve regeneration, which is a state of functional recovery. For example, Schwann cells suppress
the production of myelin-related protein [22] and enhance the expression of transcription factors
to activate myelin degradation, such as c-jun, Sox-2, and notch [23], during nerve degeneration.
Additionally, injured Schwann cells activate adherent molecules, neurotrophic factor receptors, and
the MAPK signaling pathway [23]. Therefore, the molecularly, morphologically, and functionally
altered Schwann cells during peripheral nerve degeneration are called trans-dedifferentiated Schwann
cells [24]. Therefore, it is possible that the trans-dedifferentiation of Schwann cells is representative of
dysfunctional conditions of peripheral nerves.

The present study indicated that in dysfunctional peripheral nerves, alteration of AIMPs
expression occurred in Schwann cells but not in peripheral axons or the neuronal cell body
(Figures 4 and 5 and Figure S2). These results indicated that AIMPs could show their noncanonical
functions only in Schwann cells but not peripheral neurons. In degenerating peripheral neurons,
AIMPs likely show only the canonical functions for protein synthesis (Figure 5 and Figure S2).
If peripheral neurons have noncanonical functions, AIMP1–3 would exhibit higher expression in the
injured neuronal cell bodies than in normal neuronal cell bodies (Figure 5a,b). AIMPs may represent
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the trans-dedifferentiation of Schwann cells, as AIMPs show Schwann-cell-specific activation in injured
peripheral nerves (Figure 4), and the period of AIMP expression coincides with that of Schwann cell
trans-dedifferentiation during nerve degeneration and regeneration (Figure 6) [13,25,26]. Additionally,
AIMP1 is known to activate p38 MAPK and ERK signaling pathways as well as proinflammatory
signals [6,7]. As p38 MAPK, ERK, and c-jun activation are the main phenotypes of Schwann cell
trans-dedifferentiation [27–29], activation of the MAPK pathway through AIMP1 is likely one of the
noncanonical functions of AIMPs for the trans-dedifferentiation of Schwann cells. Taken together, these
observations suggest that functions of AIMPs in dysfunctional peripheral nerves may be involved
in trans-dedifferentiation of Schwann cells. However, further evaluation is needed to strengthen the
noncanonical functions of AIMPs on the trans-dedifferentiation of Schwann cells.

5. Conclusions

AIMPs have several noncanonical functions in addition to their typical roles in protein
synthesis. Their noncanonical functions strongly affect dysfunctional peripheral nerves, especially
trans-dedifferentiating Schwann cells. For example, peripheral degenerative disorders in diabetic
neuropathy, Charcot–Marie–Tooth disease, and Guillain–Barré syndrome in humans cause dysesthesia,
speech impairment, vision changes, erectile dysfunction, and urinary incontinence via peripheral nerve
dysfunction [12,30–33]. Therefore, it is important to investigate the roles of AIMPs as morphological
indicators of dysfunctional peripheral nerves to study the molecular physiology of animal behavior or
to diagnose human peripheral neurodegenerative diseases in their early stages.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/7/1064/s1,
Figure S1: Relative intensities of mRNA expressions of aminoacyl-tRNA synthetase-interacting multifunctional
proteins (AIMPs) using semi-PCR analysis were calculated by fold change. Fold changes of postinjury samples
(3 days, 1 week, 2 weeks, 4 weeks) were derived by mRNA expression level of each sample divided by that of
control (non-injured nerves) (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001, ns; p > 0.05). Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as loading control; Figure S2: After peripheral nerve injury, there was no
significant change of AIMPs expression in ventral horn of spinal cord. (a) 3 days after sciatic nerve injury, protein
extracts (10 µg) from the ventral horn of spinal cord were evaluated by western blot. (b) Quantification of relative
intensity of AIMPs protein levels. Protein expression was relatively measured in the ventral horn compared with
samples at 3 days after nerve injury.
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