

MDPI

Article Structural Effects of Magnetostrictive Materials on the Magnetoelectric Response of Particulate CZFO/NKNLS Composites

Moon Hyeok Choi, Kyujin Ko and Su Chul Yang *

Department of Chemical Engineering, Dong-A University, Busan 49315, Korea; ansurl4927@gmail.com (M.H.C.); rbwls0096@gmail.com (K.K.)

* Correspondence: scyang@dau.ac.kr

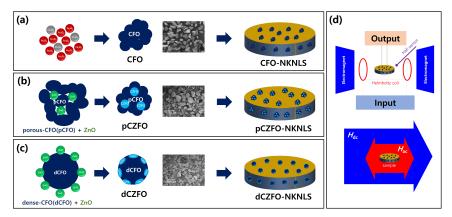
Received: 12 February 2019; Accepted: 28 March 2019; Published: 30 March 2019

Abstract: In this study, magnetostrictive powders of CoFe₂O₄ (CFO) and Zn-substituted CoFe₂O₄ (CZFO, Zn = 0.1, 0.2) were synthesized in order to decrease the optimal dc magnetic field ($H_{opt.}$), which is required to obtain a reliable magnetoelectric (ME) voltage in a 3-0 type particulate composite system. The CFO powders were prepared as a reference via a typical solid solution process. In particular, two types of heterogeneous CZFO powders were prepared via a stepwise solid solution process. Porous-CFO and dense-CFO powders were synthesized by calcination in a box furnace without and with pelletizing, respectively. Then, heterogeneous structures of pCZFO and dCZFO powders were prepared by Zn-substitution on calcined powders of porous-CFO and dense-CFO, respectively. Compared to the CFO powders, the heterogeneous pCZFO and dCZFO powders exhibited maximal magnetic susceptibilities (χ_{max}) at lower H_{dc} values below ± 50 Oe and ± 10 Oe, respectively. The Zn substitution effect on the H_{dc} shift was more dominant in dCZFO than in pCZFO. This might be because the Zn ion could not diffuse into the dense-CFO powder, resulting in a more heterogeneous structure inducing an effective exchange-spring effect. As a result, ME composites consisting of 0.948Na_{0.5}K_{0.5}NbO₃-0.052LiSbO₃ (NKNLS) with CFO, pCZFO, and dCZFO were found to exhibit $H_{opt.}$ = 966 Oe (NKNLS-CFO), $H_{opt.}$ = 689–828 Oe (NKNLS-pCZFO), and $H_{opt.}$ = 458–481 Oe (NKNLS-dCZFO), respectively. The low values of H_{opt} , below 500 Oe indicate that the structure of magnetostrictive materials should be considered in order to obtain a minimal H_{opt} for high feasibility of ME composites.

Keywords: structural effect; magnetostrictive powders; hysteretic magnetization; magnetoelectric voltage; optimal dc magnetic field; particulate composites; CZFO; NKNLS

1. Introduction

Since the year 2000, magnetoelectric (ME) response has been a topic of interest in the development of energy-harvesters, sensitive magnetic sensors, and magnetically driven memories, or magnetoelectric transducers [1–3]. The ME effect is a result of induced piezoelectric effect (electrical effect/mechanical) in a piezoelectric phase by strain transfer of the magnetostrictive effect (mechanical/magnetic) in a magnetostrictive phase [4–8].


$$ME effect = \frac{electric}{mechanical} \times \frac{mechanical}{magnetic}$$
(1)

However, reliable ME voltage from 3-0 type particulate composites can only be obtained under an optimal dc magnetic field ($H_{opt.}$) on the order of over several thousand Oersteds (Oe), which is a serious drawback limiting practical ME applications [9,10]. According to previous studies on particulate ME composites, a maximum ME voltage (α_{ME}) was obtained at high values of $H_{opt.}$ above 1000 Oe from various compositions of Pb(Zr_{0.52}Ti_{0.48})O₃-Ni_{0.8}Zn_{0.2}Fe₂O₄ ($\alpha_{ME} = 54.4 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} = 1000 \text{ Oe}$), BaTiO₃-Co_{0.6}Zn_{0.4}Fe_{1.7}Mn_{0.3}O₄ ($\alpha_{ME} = 73 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} > 2000 \text{ Oe}$), BaTiO₃-CoFe₂O₄ ($\alpha_{ME} = 17.04 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} > 15,000 \text{ Oe}$), Ba_{0.85}Ca_{0.15}Ti_{0.9}Zr_{0.1}O₃-CoFe₂O₄ ($\alpha_{ME} = 1.028 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} > 8000 \text{ Oe}$), and Na_{0.5}Bi_{0.5}TiO₃-CoFe₂O₄ ($\alpha_{ME} = 0.42 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} > 2500 \text{ Oe}$) [11–15]. Even though lower $H_{opt.}$ values of 500–1000 Oe were reported when investigating the size effect of magnetostrictive particles in BaTiO₃-NiFe_{1.98}O₄ ($\alpha_{ME} = -252 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} = 500-1000 \text{ Oe}$), the sintering temperature effect in Pb(Zr_{0.52}Ti_{0.48})O₃-NiCo_{0.02}Cu_{0.02}Mn_{0.1}Fe_{1.8}O₄ ($\alpha_{ME} = 63 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} = 600 \text{ Oe}$), and the piezoelectric phase effect in Pb(Zr_{0.52}Ti_{0.48})O₃-Ni_{1-x}Zn_xFe₂O₄ ($\alpha_{ME} = 190 \text{ mV/cm}\cdot\text{Oe}$ at $H_{opt.} = 800 \text{ Oe}$), there is still a need to decrease $H_{opt.}$ below 100 Oe for a high feasibility of particulate ME composite [16–18].

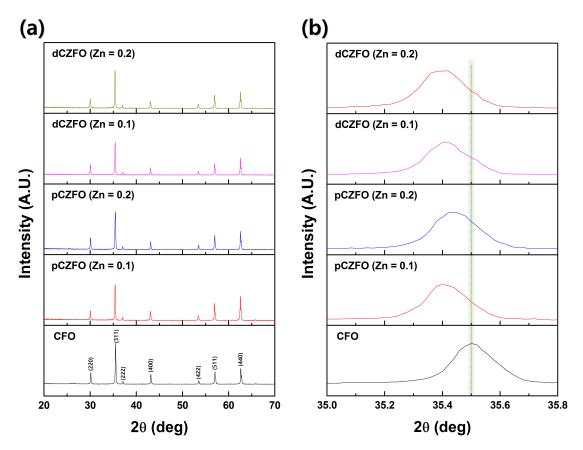
In this study, the structural effects of magnetostrictive materials on ME response was investigated in order to decrease $H_{opt.}$ values in a particulate ME composite system. In particular, magnetostrictive powders of CoFe₂O₄ (CFO), Zn-substituted porous-CFO (pCZFO) and Zn-substituted dense-CFO (dCZFO) were respectively prepared to explore structure-dependent hysteretic magnetizations. Then the $H_{opt.}$ shift in ME response was analyzed in particulate ME composites consisting of each magnetostrictive powder (CFO, pCZFO, and dCZFO) in a 0.948Na_{0.5}K_{0.5}NbO₃–0.052LiSbO₃ (NKNLS) piezoelectric matrix.

2. Experimental

Figure 1a–c shows a schematic diagram of the experimental procedure based on a solid-solution method to synthesize magnetostrictive powders of CFO, pCZFO, and dCZFO, respectively. As shown in Figure 1a, for preparation of CFO powders, Co₃O₄ (Sigma-Aldrich, Seoul, Korea, \geq 99.5%) and Fe₂O₃ (Sigma-Aldrich, Seoul, Korea, \geq 99.0%) powders were mixed by ball milling for 24 h. The well-mixed and fully dried powders were calcined at 1000 °C for 2 h. The calcined powders were ball-milled for 24 h and then sintered at 1200 °C for 2 h. After crushing and sieving of the sintered powders, CFO powders were selected with a particle size of 24–64 µm. As shown in Figure 1b,c, for preparation of pCZFO and dCZFO powders, Co₃O₄ (Sigma-Aldrich, Seoul, Korea, \geq 99.5%) and Fe₂O₃ (Sigma-Aldrich, Seoul, Korea, \geq 99.0%) powders were mixed by ball milling for 24 h. Then, the well-mixed and fully dried powders were calcined at 1000 °C for 2 h without and with pelletizing at 30 bar pressure, respectively. The calcined CFO powders exhibiting a porous structure (pCFO) and a dense structure (dCFO) were mixed with 0.1 and 0.2 molar ratio of ZnO powders (Sigma-Aldrich, Seoul, Korea, \geq 99.0%), respectively. Then the mixed powders were sintered at 1200 °C for 2 h. After crushing and sieving of the sintered powders, pCZFO and dCZFO powders were selected with particle size of 24–64 µm.

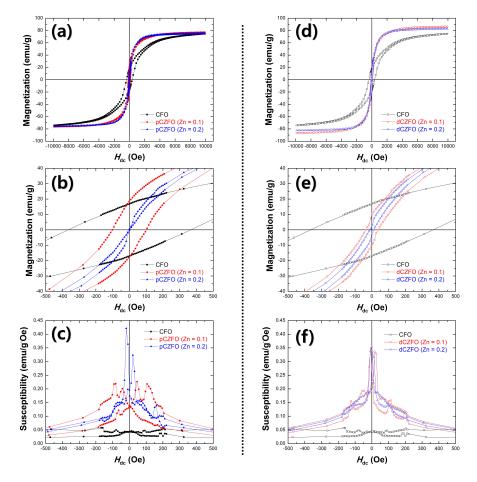
Figure 1. Schematic diagram of experimental procedure based on solid-solution synthesis for (a) $CoFe_2O_4$ (CFO), (b) Zn-substituted porous- $CoFe_2O_4$ (pCZFO), and (c) Zn-substituted dense- $CoFe_2O_4$ (dCZFO) powders. (d) Schematic diagram of magnetoelectric measurement set up.

ME composites were prepared with a 3-0 type particulate structure consisting of the magnetostrictive powders (CFO, pCZFO, and dCZFO, respectively) in a lead-free piezoelectric matrix of NKNLS. For preparation of NKNLS powders, K_2CO_3 (Sigma-Aldrich, Seoul, Korea, 99%), Na₂CO₃ (Sigma-Aldrich, Seoul, Korea, 99.5%), Li₂CO₃ (Sigma-Aldrich, Seoul, Korea, 99%), Nb₂O₅ (Sigma-Aldrich, Seoul, Korea, 99.9%), and Sb₂O₅ (Sigma-Aldrich, Seoul, Korea, 99%) powders were mixed by ball milling for 24 h. Then, the well-mixed and fully dried powders were calcined at 880 °C for 2 h. After sintering at 1050 °C for 2 h of CFO-NKNLS, pCZFO-NKNLS, and dCZFO-NKNLS pellets with a magnetostrictive/piezoelectric weight ratio of 0.1, disk-type ME composites were prepared with a thickness of 1 mm and a diameter of 13 mm. The ME composites were poled in silicone oil at room temperature by applying a dc field of 3 kV/mm for 30 min.


Crystal structures were investigated by X-ray diffraction (XRD; Miniflex600, RIGAKU, Tokyo, Japan) with CuK_{α} (λ = 1.5406 Å) radiation. The surface morphology was investigated by scanning electron microscopy (SEM; JEOL-6700F, Tokyo, Japan). Hysteretic magnetization curves were characterized by vibrating sample magnetometry (VSM; Model 7404, Lakeshore, CA, USA). Piezoelectric constants were measured by an APC YE 2730A d33 meter (APC Inc., Mackeyville, PA, USA). ME voltages were measured by applying an H_{ac} of 1 Oe at an off-resonance frequency, *f*, of 1 kHz using a lock-in amplifier (SR860, Stanford Research Systems Inc., Sunnyvale, CA, USA) [19,20]. As shown in Figure 1d, using the lock-in amplifier a calculated ac current was applied to a Helmholtz coil to induce an H_{ac} of 1 Oe with an off-resonance frequency of 1 kHz. Then, an H_{dc} of ±1000 Oe was applied to the ME samples using an electromagnet to obtain reliable ME voltages. Output ac voltage (V_{ac}) from the ME samples was measured by the lock-in amplifier.

3. Results and Discussion

Crystal structures of the magnetostrictive CFO, pCZFO (Zn = 0.1, Zn = 0.2), and dCZFO (Zn = 0.1, Zn = 0.2) powders were investigated from XRD patterns. As shown in Figure 2a, all magnetostrictive powders were found to exhibit XRD peaks of (220), (311), (222), (400), (422), (511), and (440) representing a spinel structure of AB₂O₄ (JCPDS card No. 22-1086) [21,22]. Even though no noticeable peak shift in the XRD patterns was observed over a wide 2 θ range after Zn substitution of 0.1 and 0.2 molar ratio on the porous-CFO and dense-CFO powders, a major shift of the (311) peak at 2θ = 35.5° towards a lower angle by Zn substitution was observed in the XRD patterns at a narrow 2θ range, as shown in Figure 2b. Bragg's Law can be used to calculate a lattice constant using the equation:


$$a^{2} = \lambda^{2} (h^{2} + k^{2} + l^{2})^{1/2} / 4 \sin^{2} \theta$$
⁽²⁾

where a is the lattice constant, λ is the wavelength of CuK_{α} radiation, and h, k, and l are the Miller indices. As the (311) peak shifts to a lower angle by Zn substitution, the lattice constant increases due to a decrease in the value of sin θ . With respect to the ionic radius, the pCZFO and dCZFO powders were found to exhibit an increased lattice constant compared to CFO powders because Zn²⁺ (0.82 Å) has a larger ionic radius than Co²⁺ (0.78 Å), which is replaced by Zn²⁺ [23–25].

Figure 2. XRD patterns of CFO, pCZFO (Zn = 0.1, 0.2) and dCZFO (Zn = 0.1, 0.2) powders; (**a**) wide range 20 of 20–70° and (**b**) narrow range 20 of 35.0–35.8°.

In terms of Zn substitution in the porous-CFO and dense-CFO powders, magnetic properties of saturation magnetization (M_s) , remanent magnetization (M_r) , coercive field (H_c) , and magnetic susceptibility ($\chi = dM/dH$) were investigated, as shown in Figure 3 and Table 1. Compared to the CFO powders, the pCZFO and dCZFO powders were found to exhibit enhanced M_s with decreased $H_{\rm c}$, as shown in Table 1. The enhanced values of $M_{\rm s}$ demonstrate that the addition of Zn²⁺ ions causes a migration of Fe³⁺ ions from a tetrahedral site to an octahedral site, which causes an increase of the total magnetic moment by reducing the net magnetic moment in the tetrahedral site. Furthermore, decreased values of H_c illustrate that grain growth by Zn substitution causes an increase of the domain wall number, resulting in large grain size, which requires less energy for spin rotation [26,27]. As shown in Figure 3b,e, stepped demagnetization behavior is shown by pCZFO with Zn = 0.2 and dCZFO with Zn = 0.1 and 0.2, which might be caused by the exchange-spring effect derived from the interplay of two uniquely characteristic phases [28–30]. From the result, it is noted that dCZFO possesses a sufficient exchange-spring effect based on high interaction between two magnetostrictive phases even though the Zn substitution of 0.1 is low in the dense-CFO powders. As shown in Figure 3c,f, the pCZFO and dCZFO powders were found to exhibit higher χ_{max} of 0.22–0.42 emu/g·Oe at lower values of H_{dc} below ±50 Oe, compared to χ_{max} of 0.05 emu/g·Oe at an H_{dc} below ±200 Oe from the CFO powders. In particular, the χ_{max} values of dCZFO were obtained at very low values of H_{dc} below ± 10 Oe, which are induced by prominent stepped demagnetization behavior.

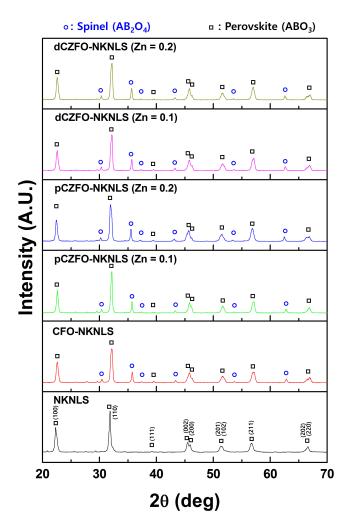
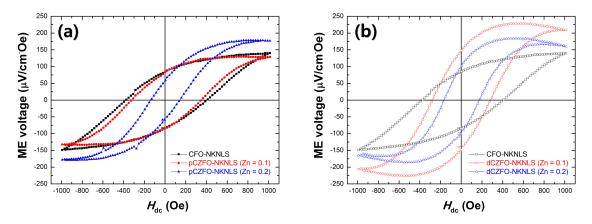

Figure 3. Hysteretic magnetization curves at (**a**,**d**) a wide H_{dc} range of ±10 kOe and (**b**,**e**) a narrow H_{dc} range of ±1 kOe, (**c**,**f**) magnetic susceptibilities (χ) of CFO, pCZFO (Zn = 0.1, 0.2) and dCZFO (Zn = 0.1, 0.2) powders.

Table 1. Magnetic properties of CoFe₂O₄ (CFO), Zn-substituted porous-CoFe₂O₄ (pCZFO) and Zn-substituted dense-CoFe₂O₄ (dCZFO) powders; saturation magnetization (M_s), remanent magnetization (M_r), coercive field (H_c), and magnetic susceptibility ($\chi = dM/dH$).

Magnetostrictive Powders	Zn Ratio	Saturation Magnetization	Remanant Magnetization	Coercive Field	Magnetic Susceptibility
		$M_{ m s}$ (emu/g)	$M_{ m r}$ (emu/g)	H _c (Oe)	χ _{max} (emu/g∙Oe)
CFO	Zn = 0	74.5 ± 0.75	16.8 ± 0.17	366.2 ± 3.66	0.05
pCZFO _	Zn = 0.1	77.1 ± 0.77	18.5 ± 0.19	101.6 ± 1.02	0.22
	Zn = 0.2	75.9 ± 0.76	0.5 ± 0.01	2.4 ± 0.02	0.42
dCZFO _	Zn = 0.1	86.3 ± 0.86	9.3 ± 0.09	36.2 ± 0.36	0.34
	Zn = 0.2	82.6 ± 0.83	2.3 ± 0.02	10.8 ± 0.11	0.35


To investigate structure-dependent ME responses, particulate ME composites were prepared with compositions of CFO-NKNLS, pCZFO-NKNLS (Zn = 0.1, 0.2), and dCZFO-NKNLS (Zn = 0.1, 0.2). From the XRD patterns, as shown in Figure 4, perovskite (ABO₃) and spinel (AB₂O₄) crystal structures were confirmed as piezoelectric and magnetostrictive phases, respectively. Even though sintering was conducted at 1050 °C for 2 h, all ME composites were found to exhibit stable crystal structures without any trace of secondary phase. In particular, a peak split at $2\theta = 45-46^{\circ}$ representing a tetragonal phase

was maintained during the high temperature sintering. Therefore, the ME composites were found to exhibit a piezoelectric charge constant (d_{33}) of 55–60 pC/N after sample poling.

Figure 4. XRD patterns of magnetoelectric (ME) particulate composites consisting of a piezoelectric phase of NKNLS and magnetostrictive phases of CFO, pCZFO (Zn = 0.1, 0.2) and dCZFO (Zn = 0.1, 0.2).

From the particulate composites of CFO-NKNLS, pCZFO-NKNLS (Zn = 0.1, 0.2), and dCZFO-NKNLS (Zn = 0.1, 0.2), ME voltage (α_{ME}) and H_{opt} . were investigated while applying H_{ac} = 1 Oe at f = 1 kHz by sweeping H_{dc} of ±1000 Oe, as shown in Figure 5 and Table 2. The CFO-NKNLS composites were found to exhibit a maximum α_{ME} = 140 µV/cm·Oe at H_{opt} . = 966 Oe. Even though a decreased H_{opt} . value of 689–828 Oe was obtained from pCZFO-NKNLS as shown in Figure 5a, there was not a sufficient H_{opt} . shift due to its weak behavior of stepped demagnetization. On the other hand, the dCZFO-NKNLS composites were found to exhibit remarkable H_{opt} . values of 458–481 Oe as shown in Figure 5b, which are lower H_{opt} . values than any reported particulate ME composites so far. As a result, the structural effect of magnetostrictive powders on H_{opt} . shift is clearly shown between the heterogeneous pCZFO and dCZFO powders. Although the obtained H_{opt} . value of 458 Oe from dCZFO-NKNLS is higher than 100 Oe, this study can serve to minimize a required H_{opt} . by complexation with previous studies for high feasibility of particulate ME composites.

Figure 5. ME voltage of particulate composites consisting of a piezoelectric phase of NKNLS and magnetostrictive phases of (a) CFO and pCZFO (Zn = 0.1, 0.2) and (b) CFO and dCZFO (Zn = 0.1, 0.2).

Table 2. Magnetoelectric (ME) responses of CFO-NKNLS, pCZFO-NKNLS, and dCZFO-NKNLS	
composites; optimal magnetic field ($H_{opt.}$) and ME voltage (α_{ME}).	

Magnetoelectric	Zn Ratio	Optimal Magnetic Field	Magnetoelectric Voltage
Composites	211 Kutio	H _{opt.} (Oe)	$\alpha_{\rm ME}$ (μ V/cm·Oe)
CFO-NKNLS	Zn = 0	966	140 ± 21.0
pCZFO-NKNLS	Zn = 0.1	689	130 ± 19.5
P CLI C THULLO	Zn = 0.2	828	179 ± 26.9
dCZFO-NKNLS	Zn = 0.1	481	228 ± 34.2
uczro-manej	Zn = 0.2	458	184 ± 27.6

4. Conclusions

In this study, magnetostrictive powders of CFO, pCZFO (Zn = 0.1, 0.2) and dCZFO (Zn = 0.1, 0.2) were prepared to produce low values of $H_{opt.}$, which is required to obtain a reliable ME voltage in a 3-0 type particulate composite system. Compared to the CFO powders ($\chi_{max} = 0.05 \text{ emu/g} \cdot \text{Oe}$ at H_{dc} below $\pm 200 \text{ Oe}$), the pCZFO and dCZFO powders were found to exhibit higher χ_{max} of 0.22–0.42 emu/g·Oe at lower H_{dc} values below ± 50 Oe and ± 10 Oe, respectively. The NKNLS-based ME composites consisting of CFO, pCZFO, dCZFO, respectively were found to exhibit $H_{opt.} = 966 \text{ Oe}$ (NKNLS-CFO), $H_{opt.} = 689-828 \text{ Oe}$ (NKNLS-pCZFO), and $H_{opt.} = 458-481 \text{ Oe}$ (NKNLS-dCZFO). The results illustrate that a low $H_{opt.}$ value of 458 Oe was obtained from the effective stepped demagnetization behavior of dCZFO (Zn = 0.2), which was induced by a structural effect in a heterogeneous magnetostrictive phase.

Author Contributions: Conceptualization, M.H.C. and S.C.Y.; methodology, M.H.C. and S.C.Y.; validation, M.H.C., K.K. and S.C.Y.; formal analysis, M.H.C.; investigation, M.H.C. and K.K.; resources, S.C.Y.; data curation, M.H.C. and K.K.; writing—original draft preparation, M.H.C.; writing—review and editing, S.C.Y.; visualization, M.H.C. and S.C.Y.; supervision, S.C.Y.; project administration, S.C.Y.; funding acquisition, S.C.Y.

Funding: This research was financially supported by the Dong-A University research fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Cheng, Y.; Peng, B.; Hu, Z.; Zhou, Z.; Liu, M. Recent development and status of magnetoelectric materials and devices. *Phys. Lett. A* **2018**, *382*, 3018–3025. [CrossRef]
- 2. Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. *Actuators* **2016**, *5*, 9. [CrossRef]
- 3. Ren, Y.; Ouyang, J.; Wang, W.; Wu, X.; Yang, X.; Zhang, Y.; Chen, S. Rotating Magnetoelectric Sensor for DC Magnetic Field Measurement. *IEEE Trans. Magn.* **2018**, *54*, 6001203.

- Yang, S.-C.; Ahn, C.-W.; Cho, K.-H.; Priya, S. Self-Bias Response of Lead-Free (1-x)[0.948 K_{0.5}Na_{0.5}NbO₃-0.052 LiSbO₃]-xNi_{0.8}Zn_{0.2}Fe₂O₄-Nickel Magnetoelectric Laminate Composites. *J. Am. Ceram.* Soc. 2011, 94, 3889–3899. [CrossRef]
- 5. Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. *Nature* **2006**, 442, 759–765. [CrossRef] [PubMed]
- 6. Wang, Y.; Li, J.; Viehland, D. Magnetoelectrics for magnetic sensor applications: Status, challenges and perspectives. *Mater. Today* **2014**, *17*, 269–275. [CrossRef]
- 7. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D-Appl. Phys. 2005, 38, R123–R152. [CrossRef]
- 8. Nan, C.W.; Bichurin, M.I.; Dong, S.X.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. *J. Appl. Phys.* **2008**, *103*, 1. [CrossRef]
- Li, T.; Ma, D.; Li, K.; Hu, Z. Self-biased magnetoelectric coupling effect in the layered La_{0.7}Sr_{0.3}MnO₃/BaTiO₃/La_{0.7}Sr_{0.3}MnO₃ multiferroic heterostructure. *J. Alloy. Compd.* 2018, 747, 558–562. [CrossRef]
- 10. An, F.; Zhong, G.; Zhu, Q.; Huang, Y.; Yang, Y.; Xie, S. Synthesis and mechanical properties characterization of multiferroic BiFeO₃-CoFe₂O₄ composite nanofibers. *Ceram. Int.* **2018**, *44*, 11617–11621. [CrossRef]
- 11. Islam, R.A.; Priya, S. Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr_{0.52}Ti_{0.48})O₃-Ni_{0.8}Zn_{0.2}Fe₂O₄ particulate composites. *J. Mater. Sci.* **2008**, *43*, 3560–3568. [CrossRef]
- 12. Gupta, A.; Chatterjee, R. Dielectric and magnetoelectric properties of BaTiO₃-Co_{0.6}Zn_{0.4}Fe_{1.7}Mn_{0.3}O₄ composite. *J. Eur. Ceram. Soc.* **2013**, *33*, 1017–1022. [CrossRef]
- 13. Nie, J.W.; Xu, G.Y.; Yang, Y.; Cheng, C.W. Strong magnetoelectric coupling in CoFe₂O₄-BaTiO₃ composites prepared by molten-salt synthesis method. *Mater. Chem. Phys.* **2009**, *115*, 400–403. [CrossRef]
- Negi, N.S.; Kumar, R.; Sharma, H.; Shah, J.; Kotnala, R.K. Structural, multiferroic, dielectric and magnetoelectric properties of (1-x) Ba_{0.85}Ca_{0.15}Ti_{0.90}Zr_{0.10}O₃-(x)CoFe₂O₄ lead-free composites. *J. Magn. Magn. Mater.* 2018, 456, 292–299. [CrossRef]
- Walther, T.; Straube, U.; Koferstein, R.; Ebbinghaus, S.G. Hysteretic magnetoelectric behavior of CoFe₂O₄-BaTiO₃ composites prepared by reductive sintering and reoxidation. *J. Mater. Chem. C* 2016, 4,4792–4799. [CrossRef]
- Sreenivasulu, G.; Babu, V.H.; Markandeyulu, G.; Murty, B.S. Magnetoelectric effect of (100-x)BaTiO₃-(x)NiFe_{1.98}O₄ (x = 20–80 wt %) particulate nanocomposites. *Appl. Phys. Lett.* 2009, 94, 112902. [CrossRef]
- 17. Ryu, J.; Carazo, A.V.; Uchino, K.; Kim, H.E. Piezoelectric and magnetoelectric properties of Lead Zirconate Titanate/Ni-Ferrite particulate composites. *J. Electroceram.* **2001**, *7*, 17–24. [CrossRef]
- 18. Islam, R.A.; Viehland, D.; Priya, S. Doping effect on magnetoelectric coefficient of Pb(Zr₀₅₂Ti_{0.48})O₃-Ni_(1-x)Zn_xFe₂O₄ particulate. *J. Mater. Sci.* **2008**, 43, 1497–1500. [CrossRef]
- 19. Yang, S.-C.; Kumar, A.; Petkov, V.; Priya, S. Room-temperature magnetoelectric coupling in single-phase BaTiO₃-BiFeO₃ system. *J. Appl. Phys.* **2013**, *113*, 144101. [CrossRef]
- Shovon, O.G.; Rahaman, M.D.; Tahsin, S.; Hossain, A.K.M.A. Synthesis and characterization of (100-x) Ba_{0.82}Sr_{0.03}Ca_{0.15}Zr_{0.10}Ti_{0.90}O₃ + (x) Mg_{0.25}Cu_{0.25}Zn_{0.5}Mn_{0.05}Fe_{1.95}O₄ composites with improved magnetoelectric voltage coefficient. *J. Alloy. Compd.* **2018**, 735, 291–311. [CrossRef]
- 21. Allaedini, G.; Tasirin, S.M.; Aminayi, P. Magnetic properties of cobalt ferrite synthesized by hydrothermal method. *Int. Nano Lett.* **2015**, *5*, 183–186. [CrossRef]
- 22. Ben Ali, M.; El Maalam, K.; El Moussaoui, H.; Mounkachi, O.; Hamedoun, M.; Masrour, R.; Hlil, E.K.; Benyoussef, A. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. *J. Magn. Magn. Mater.* **2016**, *398*, 20–25. [CrossRef]
- 23. Ansari, S.M.; Sinha, B.B.; Pai, K.R.; Bhat, S.K.; Ma, Y.-R.; Sen, D.; Kolekar, Y.D.; Ramana, C.V. Controlled surface/interface structure and spin enabled superior properties and biocompatibility of cobalt ferrite nanoparticles. *Appl. Surf. Sci.* 2018, 459, 788–801. [CrossRef]
- 24. Köseoğlu, Y.; Baykal, A.; Gözüak, F.; Kavas, H. Structural and magnetic properties of Co_xZn_{1-x}Fe₂O₄ nanocrystals synthesized by microwave method. *Polyhedron* **2009**, *28*, 2887–2892. [CrossRef]
- 25. Vaidyanathan, G.; Sendhilnathan, S. Characterization of Co1–xZnxFe₂O₄ nanoparticles synthesized by co-precipitation method. *Phys. B* **2008**, 403, 2157–2167. [CrossRef]
- 26. Anjum, S.; Khurram, R.; Bashir, F.; Nazli, H. Fabrication and Investigation of Structural, Magnetic and Dielectrical Properties of Zn Substituted Co-ferrites. *Mater. Today Proc.* **2015**, *2*, 5515–5521. [CrossRef]

- Praveena, K.; Sadhana, K.; Liu, H.-L.; Murthy, S.R. Effect of Zn substitution on structural, dielectric and magnetic properties of nanocrystalline Co_{1-x}Zn_xFe₂O₄ for potential high density recording media. *J. Mater. Sci.-Mater. Electron.* 2016, *27*, 12680–12690. [CrossRef]
- 28. Bill, A.; Braun, H.B. Magnetic properties of exchange springs. *J. Magn. Magn. Mater.* **2004**, 272–276, 1266–1267. [CrossRef]
- 29. Chithra, M.; Anumol, C.N.; Sahu, B.; Sahoo, S.C. Exchange spring like magnetic behavior in cobalt ferrite nanoparticles. *J. Magn. Magn. Mater.* **2016**, *401*, 1–8. [CrossRef]
- 30. Lavorato, G.; Winkler, E.; Rivas-Murias, B.; Rivadulla, F. Thickness dependence of exchange coupling in epitaxial Fe₃O₄/CoFe₂O₄soft/ard magnetic bilayers. *Phys. Rev. B* **2016**, *94*, 054405. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).