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Abstract: It is hypothesized that the orientation of tool maneuvering in the milling process defines
the quality of machining. In that respect, here, the influence of different path strategies of the tool
in face milling is investigated, and subsequently, the best strategy is identified following systematic
optimization. The surface roughness, material removal rate and cutting time are considered as
key responses, whereas the cutting speed, feed rate and depth of cut were considered as inputs
(quantitative factors) beside the tool path strategy (qualitative factor) for the material Al 2024 with a
torus end mill. The experimental plan, i.e., 27 runs were determined by using the Taguchi design
approach. In addition, the analysis of variance is conducted to statistically identify the effects of
parameters. The optimal values of process parameters have been evaluated based on Taguchi-grey
relational analysis, and the reliability of this analysis has been verified with the confirmation test. It
was found that the tool path strategy has a significant influence on the end outcomes of face milling.
As such, the surface topography respective to different cutter path strategies and the optimal cutting
strategy is discussed in detail.

Keywords: face milling; surface roughness; grey relation analysis; tool path strategy; multi-
objective optimization

1. Introduction

Due to the importance of the finishing stage in the manufacturing processes, the face milling
process is the solution that can be used to achieve good surface quality and high accuracy in a short
period of time. To achieve the high quality for the desired parts, studying the tool path strategies
is inevitable too. The most common cutter path strategies in the milling process are zig, zig-zag,
and contour, which can be created with the help of a computer-aided manufacturing system (CAM).
Furthermore, the tool path generation is the prime issue in the different stages of NC machining that
determines not only the quality of the desired shapes but also the performance of the manufacturing
process [1,2]. Consequently, the optimization of tool path would contribute to improving the sufficiency
of the milling process [3].
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The application and selection of tool path types and directions are crucial issues in the milling
of the die and aerospace industries. Moreover, the intact selection may lead to reduce the machining
time and enhance the surface quality of the milling parts, hence leading to higher productivity and
lower product costs. Toh [1] addressed a comprehensive review of the three most common cutting
path strategies, i.e., offset, zig, zig-zag. The analytical study, effect of tool angle at the entrance and exit,
and the inclined milling effects were evaluated with respect to the three previous tool path strategies.
The better surface quality and optimum tool life were found with the inclination angle of 15◦. Monreal
and Rodriguez [2] studied the effect of tool path strategy on the cyclic time in the high-speed milling
process. Based on experimental observation, the mechanical model is constructed to evaluate the cyclic
time for a raster path strategy. Rangarajan and Dornfeld [3] showed that the features of part orientation
and tool path in face milling operation with 10%–20% saving in cyclic time by using the feed rate
profile. Lazoglu et al. [4] introduced a new approach to generate the optimum tool path strategy for
free-form surfaces. The optimization process was based on the determination of the tool path with
minimum machining force which should not exceed the maximum limit. Kim et al. [5] proposed an
algorithm to optimize the contour tool path while considering the cutting force and vibration. The
optimization was performed for two-dimensional parts with a flat end mill tool. The material removal
rate and cutting forces were kept constant to prevent the vibration in the milling area. Ramos et al. [6]
studied the influence of three tool path strategies called radial, raster and 3D offset on the surface
roughness, texture and dimensional deviations of the free-form surface. They revealed that the milling
time was not significantly different for the used strategies. However, the last strategy showed the best
surface finish, uniform texture and dimensional performance, which confirmed the dependency of this
strategy in free form surface machining. Quinsat and Sabourin [7] developed a methodology to select
the optimal tool path strategy with a guarantee of high-level surface quality. This methodology based
on the directional beams, which represented the feed directions to ensure the maximum performance
for the strategy chosen.

Recently, due to increasing demand for manufacturing the complex parts with a large scale, the
robotic milling system is used to perform this function. In this trend, many works have been achieved
to improve the surface roughness and geometrical deviations, taking into consideration the optimum
selection of cutter path strategies which confirmed the significance of the tool path not limited to
the CNC milling process but also to the robotic system. Unnikrishna et al. [8] studied the tool path
strategies of Al6005A alloy in the milling process of the 6-axis robotic system. The optimization has
been performed using the Taguchi-Grey relational method. Tunc and Stoddart [9] addressed the tool
path patterns in robotic milling. In this study, the zig tool path in two different feed directions and
contour tool path are considered.

Conventionally, the optimization of process parameters is based on the trial-and-error method—it
needs more time and cost. Hence, the optimization technique, which is able to predict the quality and
quantity of machining characteristics, is required. Balajia et al. [10] optimized drilling parameters of
Ti-6Al-4V on surface roughness, flank wear and drill vibration using response surface methodology.
Similarly, the study performed by Mia et al. [11] used the Taguchi based GRA methodology to obtain the
optimum turning parameters of AISI 4140 that gave the best surface roughness for the machined parts.

Taguchi based grey relation analysis has been adopted to predict surface roughness due to the
versatility of this technique in different industrial processes. Asiltürk and Akkuş [12] have carried out
the CNC turning experiment using the Taguchi method in order to minimize the surface roughness.
The Taguchi method for finding out the optimal value of surface roughness under an optimum cutting
condition in turning SCM 440 alloy steel was applied by Thamizhmanii and Sulaiman [13]. Recently,
multi-objective optimization was used to enhance the surface roughness and energy consumption in
the face milling process. The results revealed that the reduction in the energy consumption was about
20.7% when using nano fluid assisted milling [14]. Ranganathan and Senthilvelan [15] investigated the
optimization of cutting parameters of stainless steel (Type 316) in hot turning using Taguchi based
GRA. Pawade and Joshi [16] studied the optimization of turning parameters of Inconel 718. The
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Taguchi grey relational approach is used to determine the optimum process parameters that produced
the minimum cutting force and surface roughness.

Researchers have worked on milling processes to improve the performances from multivarious
dimensions such as the tool wear, surface quality and the cutting forces. Twardowski et al. [17] studied
the effect of tool wear and tool life in the high speed milling process. They used coated carbide and
cubic boron nitride cutting tools and they observed that, for cutting speeds over than 500m/min
the cutting tool with edges of boron nitride must be used in the milling process. Krolczyk et al. [18]
determined the surface topography of the coated carbide tool in the turning process. They found the
predominant failure mechanism and the main reason behind the reduction of tool life was the flank
wear of the carbide tool.

Response surface methodology, Grey relation analysis, and Taguchi methodologies were
commonly adopted in the milling process to predict the surface roughness, material removal rate
and machining time. The obtained results confirmed the sufficiency of these techniques to predict
machinability characteristics. Grey relation analysis has been adopted to optimize cutting parameters,
namely milling type, spindle speed, feed per tooth, radial depth of cut, and axial depth of cut in the
high-speed milling process. Based on the results of the analysis, a proper evaluation for material
removal rate and tool life has been achieved corresponding to milling type, spindle speed, and feed
per tooth with 79% desirability, reported by Lu et al. [19]. Different cooling conditions assisted
milling processes have been conducted to optimize quality characteristics using a response surface
approach [20]. Kuram and Ozcelik [21] conducted an experimental study to find the desirable cutting
parameters in micro-milling of Aluminum 7075 using a ball end tool. The optimization process
for tool wear, cutting force and surface roughness has been performed using Taguchi based Grey
relation analysis. The results indicated that the minimum values of tool wear, cutting force, and
surface roughness were mostly affected by spindle speed, followed by feed per tooth and depth of
cut. Rajeswari and Amirthagadeswaran [22] developed a model to predict the surface roughness,
tool wear, cutting force and MRR using response surface methodology and grey relation analysis in
end milling of aluminum composites. The experimental results revealed that the weight proportion
of SiC and cutting speed are the most important parameters that influenced the machinability of
material composites. Wojciechowski et al. [23] proposed a new method to improve the efficiency of the
machined surfaces in the end milling process. They minimized the cutting force and increased the
surface quality during the optimization process of the machining parameters.

Face milling under the semi-finishing stage was conducted in order to evaluate the surface
roughness and cutting power using different lubricant conditions. Zhang and Chen [24] optimized the
surface roughness in the face milling operation based on the Taguchi method. The results indicated that
the depth of cut has the minimum effect on surfaces roughness compared to cutting speed and feed rate
while the tool wear is statistically affected. Hashmi et al. [25] studied the single objective optimization
of surface roughness using response surface methodology. The predicted model suggested that the
depth of cut is the most critical parameter that affects the surface roughness in the machining process.
Recently, Felhő and Kundrák [26] examined 2D and 3D roughness parameters of the machined surfaces
with constant depth of cut in the face milling process. They analyzed the topography of the surface
with considering the increasing of the feed per tooth and axial run-out of the inserts. The results
indicated that the use of single insert face milling leads to worsen the surface with increasing the
feed per tooth and the decrease in surface roughness about 1.44–7.71 times when the four-insert
face milling considered. In addition to the most common machining parameters, Tseng et al. [27]
predicted the effect of the cutting fluid, nose radius and cutting forces upon the surface roughness in
end milling. The prediction process was included in two approaches. Firstly, the analysis of variance
was implemented to determine the significant of the process parameters and the interactions of the
parameters was neglected due to the impossibility of achieving them in practice. Secondly, fuzzy
logic was implemented to predict the surface roughness with an accuracy of 95% compared with the
experimental results. The effect of feed rate variation and insert runout errors on the surface roughness
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and geometric accuracy evaluated by Baek et al. [28] during the face milling process. Moreover,
they developed a model for surface roughness and controlled the roughness of the machined surface
by optimization of feed rate with a max material removal rate using the bisection method. The
results pointed out that the relation between the surface roughness and the feed rate resulting from the
runouts was nonlinear and to get the predicted roughness, the insert runout errors should be determine
beforehand. In dry face milling process of selaimia et al. [29], modeling and optimization processes
were achieved using a response surface methodology and desirability function. The modeling was
performed with considering surface roughness, cutting power, cutting force, specific cutting force and
metal removal rate. The results showed that the surface roughness is only influenced by feed per tooth
while the material removal rate is influenced by both of feed per tooth and axial depth of cut. To assess
the surface roughness of the surfaces sculptured by face milling, a general mathematical model was
developed by Miko and Nowakowski [30] with considering tool geometry, undeformed chip thickness,
tool vibrations, tool runout and tool wear. They reported that the feed rate has a significant influence
on the surface roughness with small cutting tool and this significance becomes greater with a decrease
in the relative displacement and deformed chip thickness as well.

From the previous studies, it is appreciable that the optimization of the tool path is still a critical
key in different milling processes so that more studies should be implemented to achieve a better
quality for the manufactured parts to meet the industrial requirements. The objective of this paper is
to improve the surface quality in the face milling process with the use of torus end mill. This article
focused on the optimization of the three most common tool path strategies taking into consideration
the machining time and material removal rate. The optimization process was performed based on a
grey relation technique with different process parameters; hence, the optimum tool path was found
based on the conditions used in this study. The optimization procedure is explained in detail in the
following sections.

2. Experimental Procedures

In the present work, C-TEK CNC milling machine (Taichung, Taiwan) of model KM80D as shown
in Figure 1 is used to perform the experiments of face milling with spindle speed 6000 rpm. The table
of the CNC machine can move along x, y, z directions with a stroke length of 800 mm × 500 mm
× 500 mm, respectively.
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2.1. Material and Milling Tool

Aluminum alloy (AL2024-T4), prepared as a rectangular block with a dimension of 40 mm ×
30 mm× 30 mm, was used in a face milling operation. The chemical composition of the specimens was
measured using X-MET5100 (Oxford Instruments, Abingdon, Oxfordshire, UK) and listed in Table 1.
The tensile test was carried out according to ASTM B209 standard [31]. The mechanical properties are
presented in Table 2. The cutting tool used in this study was Torus-end mill tool HSS (Jun-Yi, Taiwan)
with 6 mm diameter, 20 mm flute length, 75 mm overall length, 10 mm shank diameter, two flutes,
2 mm corner radius, 30◦ helix angle and 1mm width of cut (see Figure 1b). To minimize the effect of the
tool wear, new tools were used for the face milling of different sets of the tool path. The experimental
set-up and the objective of the current study are shown in Figure 2.

Table 1. The chemical composition of Al2024-T4 alloy.

Elements Si Fe Cu Mn Mg Pb Zn Ni Al

Composition (wt.%) 0.34 0.35 5.03 0.83 0.75 0.07 0.14 0.01 92.48

Table 2. Mechanical properties of Al2024-T4 alloy.

Tensile Strength (MPa) Yield Strength (MPa) Elongation (%) Modulus of Elasticity (GPa)

469 324 20% 73.1
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2.2. Design of Experiments with Tool Path Strategies

Three quantitative input factors, i.e., cutting speed, feed per tooth, and depth of cut, and one
qualitative factor, i.e., tool path strategy are adopted as input parameters, to measure the surface
roughness (Ra), material removal rate (MRR) and cutting time (CT) as output parameters. The selection
of input factors was performed by taking into consideration the limitation of the process parameters
of the machine used in this study and the values adopted in the literature. The three levels of input
factors are shown in Table 3.

Table 3. Factors and levels of the milling process.

Quantify Input Factors and Qualify
Levels

1 2 3

Cutting speed (m/min) vc 30 50 70
Feed per tooth (mm/tooth) f 0.02 0.04 0.06

Depth of cut (mm) ap 0.2 0.4 0.6
Tool path strategy TP Zig Zig-zag Contour

Three strategies of tool path (i.e., zig, zig-zag, and contour) were generated using NX 10 software.
The representation of these strategies with the machined workpiece is depicted in Figure 3. In order to
reduce the experimentation cost, time and effort, the Taguchi method was adopted to deal with these
problems. In this paper, a number of experiments (total of 27 runs) are designed based on Taguchi
design which is performed in Design Expert 10. Taguchi array with the output responses is shown
in Table 4.
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2.3. Measurement of Surface Roughness

The average surface roughness parameter Ra of all the machined surfaces is measured by using a
profilometer Surftest SJ-410 (Mitutoyo, Tokyo, Japan). Before starting the measurement, the tester was
calibrated using the reference specimen. In the present study, 27 values of Ra were measured from
workpiece surfaces at three equally divided regions, and then, the average of these values was recorded.
During the roughness measurements, the tracing velocity, the sampling length, Straightness/traverse
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length, measuring range/resolution and cut off length were fixed at 1 mm/s, 2.5 mm, (0.3 µm/25 mm),
(80 µm/0.001 µm) and 0.25 mm, respectively. It is worth mentioning that the surface roughness
measurements were recorded in perpendicular to the cutting direction.

Table 4. Experimental results.

Sl. No
Orthogonal Array Measured Performance

vc (m/min) f (mm/tooth) ap (mm) TP Ra (µm) MRR(mm3/min) CT (min)

1 30 0.02 0.2 zig 0.12 12.8 52
2 30 0.04 0.4 zig 0.17 50.8 26
3 30 0.06 0.6 zig 0.2 114.6 17
4 50 0.02 0.2 zig 0.11 21.2 31
5 50 0.04 0.4 zig 0.16 84.8 15
6 50 0.06 0.6 zig 0.19 190.8 10
7 70 0.02 0.2 zig 0.1 29.6 22
8 70 0.04 0.4 zig 0.15 118.8 11
9 70 0.06 0.6 zig 0.17 267 8
10 30 0.02 0.4 zig-zag 0.15 25.6 20
11 30 0.04 0.6 zig-zag 0.19 76.2 10
12 30 0.06 0.2 zig-zag 0.2 38.2 7
13 50 0.02 0.4 zig-zag 0.14 42.4 12
14 50 0.04 0.6 zig-zag 0.17 127.2 6
15 50 0.06 0.2 zig-zag 0.18 63.6 4
16 70 0.02 0.4 zig-zag 0.13 59.2 8
17 70 0.04 0.6 zig-zag 0.16 178.2 4
18 70 0.06 0.2 zig-zag 0.17 89 3
19 30 0.02 0.6 contour 0.14 38.4 20
20 30 0.04 0.2 contour 0.15 25.4 10
21 30 0.06 0.4 contour 0.18 76.4 7
22 50 0.02 0.6 contour 0.13 63.6 12
23 50 0.04 0.2 contour 0.14 42.4 6
24 50 0.06 0.4 contour 0.17 127.2 4
25 70 0.02 0.6 contour 0.12 88.8 9
26 70 0.04 0.2 contour 0.13 59.4 4
27 70 0.06 0.4 contour 0.16 178 3

2.4. Material Removal Rate

The material removal rate (MRR) for the face milling operation has been calculated for each run
by Equation (1) [32].

MRR = vf × ae × ap (1)

where, ae is the width of cut (mm), ap is the depth of cut (mm), and vf is the feed rate (mm/min).

3. Grey-Relation Analysis

To overcome the disadvantage of the Taguchi method which has the inability to solve a
multi-response optimization problem, the Taguchi method with grey relation analysis (GRA) is
combined to convert the multi-objective optimization into a single objective problem. The procedure
required for the GRA analysis is delineated as follows:

After performing the experiments, the data are normalized from 0 to 1 [33]. To achieve the best
surface quality with minimum time, and maximum material removal rate “the-higher-the-better” and
“the-lower-the-better” conditions are chosen respectively as follows in Equations (2) and (3).

xi(k) =
maxyi(k)− yi(k)

maxyi(k)−minyi(k)
(2)

xi(k) =
yi(k)−minyi(k)

maxyi(k)−minyi(k)
(3)
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where xi(k) is the response after linear normalization, yi(k) is the experimental response, min yi(k) is the
smallest value of yi(k) and max yi(k) is the largest value of yi(k).

The following step is used for calculating the grey relation coefficient, which represents the
relevance between the ideal and actual experimental results after the normalization process; the
Equation (4) can be used

ξi(k) =
∆min + φ∆max

∆0i(k) + φ∆max
(4)

where ∆0i(k) represents the absolute value of the deviation between y0(k),and yi(k), ∆min and ∆max

are the smallest and largest values of ∆0i(k) respectively. φ is the distinguishing coefficient. The
value of φ is defined as φ ∈ [0,1].The different values of the φ give different values of grey relation
coefficients; however, the rank order of GRC, is, always the same [34]. In this study, the value of φ is
considered as 0.5.

The last step is calculating the average value of GRC (i.e., GRG (Υi)) which is defined as
in Equation (5).

γi =
n

∑
k=1

wkξi(k) (5)

where wk indicates the weight of the kth experimental response. In the current study, the weights for
surface roughness, material removal rate, and cutting time are 0.3626, 0.2928, and 0.3446 respectively
which are calculated using the entropy method [35], as shown in Table 5. The max value of GRG
indicates that the process parameters at that value are close to the optimum one [36]. In Table 5, the
max value of GRG is corresponding to trail No. 9, which refers to A3B3C3D1 as the best combination
of input factors.

Table 5. Calculated grey relational coefficient with different weights and GRG.

Run No.
GRC

GRG Rank
Ra MRR CT

1 0.7143 0.3333 0.3333 0.4715 26
2 0.4167 0.3702 0.5158 0.4372 27
3 0.3333 0.4547 0.6364 0.4733 25
4 0.8333 0.3408 0.4667 0.5628 16
5 0.4545 0.4109 0.6712 0.5164 21
6 0.3571 0.6252 0.7778 0.5806 14
7 1.0000 0.3487 0.5632 0.6588 5
8 0.5000 0.4617 0.7538 0.5762 15
9 0.4167 1.0000 0.8305 0.7301 1
10 0.5000 0.3449 0.5904 0.4857 24
11 0.3571 0.3998 0.7778 0.5146 22
12 0.3333 0.3571 0.8596 0.5216 20
13 0.5556 0.3614 0.7313 0.5593 17
14 0.4167 0.4762 0.8909 0.5975 11
15 0.3846 0.3846 0.9608 0.5831 13
16 0.6250 0.3795 0.8305 0.6239 7
17 0.4545 0.5887 0.9608 0.6683 4
18 0.4167 0.4166 1.0000 0.6176 9
19 0.5556 0.3573 0.5904 0.5095 23
20 0.5000 0.3447 0.7778 0.5502 19
21 0.3846 0.4001 0.8596 0.5528 18
22 0.6250 0.3846 0.7313 0.5912 12
23 0.5556 0.3614 0.8909 0.6142 10
24 0.4167 0.4762 0.9608 0.6216 8
25 0.7143 0.4163 0.8033 0.6577 6
26 0.6250 0.3797 0.9608 0.6689 3
27 0.4545 0.5882 1.0000 0.6816 2
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4. RSM and Optimization

4.1. Response Surface Regression

Response surface methodology (RSM) represents a good approach that can be used to determine
the optimum performance of the experimental response that is influenced by several factors. In this
study, a second order polynomial equation is used and represented by Equation (6) [37].

y = b0 +
k

∑
i=1

biXi+
k

∑
i=1

biiX2
i +

k

∑
i≺j

bijXiXj (6)

where y is rth response (in the current study: Ra, MRR and CT), X is input factor (in the current study:
vc, f and ap) and b regression coefficient, respectively. On the other hand, the regression coefficients
have been estimated by MINITAB 18 software.

The type of the tool path is a qualitative factor, and it cannot be treated as quantifying factor.
Consequently, a regression model must be made for each strategy of the tool path. A regression
model for surface roughness, material removal rate and cutting time regarding tool path strategies are
depicted as equations in Table 6.

Table 6. Regression models for experimental response.

Response Path Model

Ra

Zig
0.0609− (0.000472× vc) + (2.875× f ) +

(
0.1576× ap

)
+ (−

(
11.11× f 2)−(

0.0694× ap
2)− (0.00417× vc × f )−

(
0.000208× vc × ap

)
−

(
1.111× f × ap

)
Zig-zag

0.0739− (0.000556× vc) + (2.875× f ) +
(
0.1576× ap

)
−

(
11.11× f 2)−(

0.0694× ap
2)− (0.00417× vc × f )−

(
0.000208× vc × ap

)
−

(
1.111× f × ap

)
Contour

0.0467− (0.000389× vc) + (2.875× f ) +
(
0.1576× ap

)
−

(
11.11× f 2)− (0.0694

×ap
2)− (0.00417× vc × f )−

(
0.000208× vc × ap

)
−

(
1.111× f × ap

)
MRR

Zig 70.8− (1.417× vc)− (2125× f )−
(
211.7× ap

)
+ (42.50× vc × f )+(

4.233× vc × ap
)
+

(
5300× f × ap

)
Zig-zag 92− (1.840× vc)− (2125× f )−

(
211.7× ap

)
+ (42.50× vc × f )+(

4.233× vc × ap
)
+

(
5300× f × ap

)
Contour 92.2− (1.840× vc)− (2125× f )−

(
211.7× ap

)
+ (42.50× vc × f )+(

4.233× vc × ap
)
+

(
5300× f × ap

)
CT

Zig
115.8− (1.436× vc)− (1550× f )−

(
63.2× ap

)
+

(
0.00569× vc

2)+ (
9028× f 2)

+
(
31.9× ap

2)+ (7.50× vc × f ) +
(
0.292× vc × ap

)
+

(
278× f × ap

)
Zig-zag

90.5− (1.169× vc)− (1550× f )−
(
63.2× ap

)
+

(
0.00569× vc

2)+ (
9028× f 2)

+
(
31.9× ap

2)+ (7.50× vc × f ) +
(
0.292× vc × ap

)
+

(
278× f × ap

)
Contour

90.2− (1.161× vc)− (1550× f )−
(
63.2× ap

)
+

(
0.00569× vc

2)+(
9028× f 2)+ (

31.9× ap
2)+(7.50× vc × f )+

(
0.292× vc × ap

)
+
(
278× f × ap

)
4.2. Evaluation of Optimum Experimental Run

The average value of GRG has been computed with respect to the different levels of machining
parameters as shown in Table 7. The maximum value of GRG indicates the best performance. From
Table 7, the largest value of GRG at level 3 for cutting speed followed by tool path, whereas the
minimum value for depth of cut at the same level. The difference between the max and min of each
factor at different levels has been calculated. The max difference showed that the cutting speed has the
most significant influence on GRG while the feed rate has the least influence.

4.3. Contribution of Milling Parameters

To determine the contribution for each input factors on the output performance, the analysis of
variance (ANOVA) has been conducted on the grey relational grade to achieve this goal. Table 8 lists
the results obtained from this analysis.
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Table 7. Average values of GRG at different levels of machining parameters.

Identification Cutting Speed Feed Rate Depth of Cut Tool Path

Level 1 0.50183 0.56893 0.5832 0.55631
Level 2 0.58074 0.57151 0.56164 0.57462
Level 3 0.65367 0.59581 0.59141 0.60531

Difference 0.15184 0.02688 0.02976 0.04899
Rank 1 4 3 2

Optimised factor 70 0.06 0.6 Contour

Table 8. ANOVA with GRG.

Source DF Adj SS Adj MS F-Value p-Value P%

vc 2 0.103812 0.051906 58.87 0.000 74.72
f 2 0.003961 0.001980 2.25 0.135 2.85

ap 2 0.004254 0.002127 2.41 0.118 3.06
Path 2 0.011031 0.005515 6.26 0.009 7.94
Error 18 0.015871 0.000882 – – –
Total 26 0.138927 – – – –

R-Sq: 88.58%

The ANOVA results refer to the most significant factor (i.e., v_c) with contribution 74.72% followed
by tool path strategy, whereas the feed per tooth has the least effect on the multi-objective response
(see Table 8). This finding is in agreement with reference [8], in which the significance of feed is about
0.95 which considered the smallest effect in the analysis.

4.4. Experimental Verification of Optimum Levels of Input Parameters

It is necessary to confirm and evaluate the performance of the predicted models with respect
to the optimum machining parameters, which are calculated based on GRG analysis. Therefore, the
predicted GRG was computed first by using the following expression [38].

Gp = Gm +
k

∑
i=1

(Gi − Gm) (7)

where Gp, Gm, and Gi are the predicted value of GRG, the total average value of GRG, and the mean
value of GRG at best level of input factors.

After that, the experimental test has been conducted at the levels of predicted GRG. Table 9
presents the experimental confirmation results of optimum process factors.

Table 9. Confirmation results for the response.

Initial Cutting
Conditions

Optimal Milling Conditions

Predicted Results Experimental Results

Levels A3B3C3D1 A3B3C3D3 A3B3C3D3

Surface roughness (µm) 0.17 – 0.14
MRR(mm3/min) 267 – 267

Milling time, CT(min) 8 – 7.8
GRG 0.7301 0.7099 0.7824

The % improvement in GRG = 7.162

According to the Equation (7), the predicted value of GRG has been calculated as shown in Table 9,
and the estimated value of GRG from the experimental confirmation test was 0.7824, which indicates
an improvement about 7.162% from the predicted one.
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5. Discussion

From the past section, the prediction and experimental observations confirmed that the third level
of input parameters provided the optimum performance, which confirmed the adequacy of this study.
However, these findings should be addressed in detail to provide a better understanding of the milling
process and characteristic performance. In this section, the analysis of responses (i.e., Ra, MRR, and
CT) has been studied based on ANOVA method by considering the interaction and mean effect plots,
which provide more information about the interaction of different process parameters on the response
in addition to the effect of each input factor separately.

5.1. Surface Topography for Face Milling Process

The obtained surface topography is shown in Figure 4a–c for zig, zig-zag, and contour tool path
strategies, respectively. Here, CD refers to the cutting direction while TD refers to the transverse cutting
direction. Surface topography was conducted using non-contact 3D surface profilometer (SNEOX)
with magnification ×1000 for face milling process of Al2024. In Figure 4a–c the topography under
different conditions for different cutting path strategies was performed with SENSOFAR. Regarding
the zig and zig-zag topography (Figure 4a,b), the one generated by the contour strategy (Figure 4c)
shows some clear differences. In the contour strategy, the cutting direction does not clearly index. The
peaks are not obvious compared with the surfaces generated under other cutting strategies. Moreover,
the pattern of the contour path is more uniform, and the reasons behind these observations were
studied extensively by reference [6].

5.2. Analysis of Surface Roughness

To study the influence of different factors with each other on the surface roughness, the interaction
plot which is divided into subplots has been implemented as shown in Figure 5a. The interaction
effects of process parameters are obvious except subplots 1,2, and 3.

The effect of feed per tooth, depth of cut and tool path (TP) are the same for cutting speed of
30, 50 and 70 m/min (see Figure 5a, subplot 3), however, the effect of other factors stay invariant.
It means face milling of zig-zag tool path for three levels of cutting speed results in higher surface
roughness. The surface degradation in the case of the zig-zag tool path refers to keeping the chip
formation between the milling tool and the machined surface, which leads to an increase the surface
roughness [8].

Both the cutting speed and feed per tooth have a similar effect when other parameters are kept
constant. It means that different levels of cutting speed have the same behavior even the level of
feed per tooth is changed. Moreover, the surface roughness increases with an increasing feed per
tooth for three levels of cutting speed. In addition, the same behavior is observed for depth of the
cut and cutting speed. Therefore, parameter combinations that can alter the surface roughness with
identical tendency are f -vc, ap-vc, and TP-vc, while other parameter series have mutual influences and
act inversely to each other when other factors are considered unchanged.

The main influence of input parameters on surface roughness is illustrated in Figure 5b; it is
observed that the surface roughness increases about 0.04 µm when the feed per tooth and depth of cut
increase, while a cutting speed of 70 m/min provides lower surface roughness compared to 30 m/min.

The same effect has been noticed in the work of reference [8] for Al6005A for 6-axis robotic
machining regarding the cutting speed and feed; however, the relationship between surface roughness
and cutting speed has inversely trended as reported by reference [39]. In micro milling [40] of
composite materials, the increment of cutting speed decreased the surface roughness, and this result is
in agreement with Figure 5a. The reason behind the improvement of surface roughness with increasing
cutting speed is that the increase of the heat between the cutting tool and the machined surface softened
the machining area. In addition, the reduction of built-up-edge (BUE) with increasing cutting speed
also contributed [41,42]. In this study, the surface roughness decreases with an increasing cutting speed



Materials 2019, 12, 1013 12 of 19

and a decreasing feed per tooth and depth of cut. In fact, the increase of feed per tooth led to increase
the vibration of the tool hence reduced the quality of the machined surfaces [43]. Similar behavior is
observed in the work of reference [21] for micro-milling of Al7075. Furthermore, the implementation
of the face milling process with the contour tool path causes the surface roughness to decrease. Hence,
it can be concluded that a higher level of feed per tooth and depth of cut and also a lower level of
cutting speed with a medium level of tool path results in a higher surface roughness.
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5.3. Analysis of Material Removal Rate

In this section, an interaction plot for the material removal rate is presented in Figure 6a. The
effects of the tool path (TP) strategy (zig-zag and contour) are the same for cutting speed of 30, 50,
and 70 m/min. Also, the effect of both tool paths is not modified by the cutting speed (see Figure 6a,
subplot 3). It means that the same trend for TP-vc while the other factors are kept constant and the
behavior of contour and zig-zag tool path do not affect the MRR even by changing the cutting speed.
On the other hand, the subplots 5 and 6 (i.e., TP-f and TP-ap) have interactions and, they affect each
other inversely. For example, the tool path and feed per tooth have interactions while other factors
are unchanged. In contrast, the subplots (1, 2, 3 and 4) have the same trend regarding MRR when the
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other parameters kept constant. Figure 6b demonstrates the main effect of every factor on the material
removal rate after face the milling process. When the cutting speed, feed per tooth, and depth of cut
increase, MRR increases as well. However, for the medium and highest levels of tool path (i.e., zig,
zig-zag, and contour), the MRR is still unchanged. Similar ascendant impact of cutting speed, feed
per tooth, and depth of cut on MRR are observed in reference [15]. As a result, the maximum value of
MRR can be acquired when the input parameters (i.e., vc, f, ap and TP) reach their highest level.
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5.4. Analysis of Machining Time

The interaction effects of different levels of machining parameters on the machining time are
shown in Figure 7a. The subplots (4 and 6) have different interactions; however, the other parameter
sets (see Figure 7a, subplot 1, 2, 3, and 5) have the same behavior when the other factors are considered
unchanged. For instance, the effect of both medium and high level of the path is the same for three
levels of cutting speed and feed per tooth. In addition, the effect of the aforementioned path is not
altered by cutting speed and feed per tooth (see Figure 7a, subplot 3 and 5). As a result of TP- vc and
TP-f have an identical effect when the other factors are kept constant; hence, the changing path type
(i.e., zig-zag and contour) does not affect the machining time regardless of the changes of vc and ap.
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Figure 7b presents the main effect of process parameters on the milling time, the lowest level of
each factor (i.e., cutting speed, feed per tooth, and depth of cut) produce the minimum value of milling
time except the tool path, for the zig path the time increased rapidly while it is kept constant for the
zig-zag and contour paths [44].

5.5. Grey Relational Grade

To evaluate the interaction of process parameters in detail, the GRG analysis was used as shown
in Figure 8a. The subplots 1,2 and 3 had the same trend when the other factors considered constant.
Moreover, there is clear interaction in subplots 4, 5 and 6 which affect each other in different ways.
From subplot 3 it can be seen that the effect of second and third levels of tool path is approximately
the same under three levels of cutting speed, hence the effect of these two levels of tool path doesn’t
change with cutting speed, while in the subplot 5 the trend of different levels of tool path is the same
under the first and third levels of feed per tooth. Consequently, the medium and maximum levels of
the tool path in TP-vc and TP-f have a similar effect when the other factors are kept unchanged; hence,
the changing path type (i.e., zig-zag and contour) does not affect the GRG regardless of the changes of
vc and ap.
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Because the GRA can only evaluate the optimum combination from the designed plan, the average
grey relational analysis is used to find the significant level of each input factor while considering
the different levels of the process parameters in the current study. From Table 7 and Figure 8b, the
effect of three levels of milling parameters on GRG was estimated. The highest value of GRG refers to
the optimum level of process parameters as portrayed in Figure 8b. The optimum setting of process
parameters for maximizing the multi-response characteristics was a cutting speed of 70 m/min (level 3),
feed per tooth of 0.06 mm/tooth (level 3), depth of cut of 0.6 mm (level 3) and contour strategy (level 3)
for tool path.

From the above analysis, it can be concluded that the contour tool path can be adopted in the face
milling parts in synchronism with the observations of reference [44], which confirmed the ability of
this strategy not only to improve the surface roughness but also to reduce the energy demand and
machining time.
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6. Conclusions

In this study, multi-objective optimization has been conducted for face milling process of Al-2024.
The influences of different cutting parameters are investigated which include the cutting speed, feed
per tooth, depth of cut, and tool path strategy. A series of experiments have been carried out to achieve
a good surface quality in less machining time. The summary of the current study is drawn as follows:

From the ANOVA analysis, the cutting speed has been found as the main influencing factor on
the response with 74.72% contribution. Following cutting speed, the tool path strategy exerted 7.94%
contribution, and then the depth-of-cut exhibited 3.06% contribution, and lastly, the feed per tooth has
2.85% influences.

• The best machining performance was obtained at a cutting speed of 70 m/min, feed per tooth
of 0.06 mm, and depth of cut of 0.6 mm when the cutting was conducted in a contour tool path
strategy. The optimum combination was validated with the confirmation test that has ensured the
optimum performance of the responses.

• The milling time for the zig tool-path strategy rapidly increased for the machined parts compared
with the other tool-path strategies. On the other hand, the contour tool path strategy can be
considered as the best tool path strategy that provided the minimum surface roughness and
cutting time with more uniform surface topography.



Materials 2019, 12, 1013 17 of 19

• The contributions of the current study and prediction models can be considered as a guideline in
the face milling process, especially when good quality and a minimum milling time are required.

• It is worth mentioning that the results of this study are proper under the cutting conditions used;
any change in the machining tool or process conditions may affect the output performance.

• The current work is applicable in the metal processing industry to get good quality parts with the
least time, which will save energy and cost. For future work, the proposed work strategy will be
applied to free form surfaces of difficult to cut materials and best tool path will be determined.
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