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Abstract: The long-term monitoring of electrocardiogram (ECG) is critical for the accurate diagnosis
and tracking of cardiovascular diseases (CVDs). However, the commercial Ag/AgCl electrode is
not suitable for long-term monitoring due to skin allergies and signal degradation, caused by the
conductive gel drying over time. In this paper, a flexible gel-free electrode, composed of a multi-wall
carbon nanotube (MWCNT) and polydimethylsiloxane (PDMS), is proposed for long-term wearable
ECG monitoring. To achieve uniform dispersion of MWCNTs in viscous PDMS, we developed a
novel parallel solvent-assisted ultrasonic dispersion method, wherein the organic solvent n–Hexane
served as a dispersion to avoid MWCNT aggregates. The properties of the MWCNT/PDMS electrode
were assessed through structural characterization, contact impedance tests, ECG measurements, and
biocompatibility tests. When the MWCNT weight fraction reached 5.5 wt%, the skin-electrode contact
impedance of the MWCNT/PDMS electrode was lower than that of the Ag/AgCl electrode below 100
Hz. In daily ECG monitoring, the MWCNT/PDMS electrodes showed superior performance against
motion artifact compared to the Ag/AgCl electrode. After seven days of wearing the MWCNT/PDMS
electrode, ECG signals did not degrade and no side effects, such as skin redness and swelling, were
observed. Thus, this electrode could enable long-term ECG monitoring in wearable healthcare systems.
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1. Introduction

Cardiovascular diseases (CVDs), as reported by the World Health Statistics 2017, issued by the
World Health Organization (WHO), are the greatest threats to human health [1]. At present, the
accurate diagnosis and development track of CVDs are mainly based on electrocardiogram (ECG)
measurement which records the electrical potential differences on body surfaces during each cardiac
cycle. The most commonly used electrode for electrophysiological signal acquisition is the silver/silver
chloride (Ag/AgCl) electrode with conductive paste. With the fast development of wearable medical
devices for health monitoring, ECG measurement has evolved from one-time hospital examination
to long-term home care. In this situation, the conventional Ag/AgCl electrode is not suitable for
long-term monitoring due to skin allergies and signal degradation, caused by the conductive gel
drying over time [2]. To resolve these problems, gel-free electrodes have been intensively investigated.

So far, all dry surface electrodes can be categorized into three types: capacitive electrodes,
penetrating electrodes, and surface electrodes. A capacitive electrode is based on the capacitive
coupling principle to collect ECG signals [3]. It does not come into direct contact with skin and is
normally isolated with clothing, air, or other insulating material. Walter Reed Army Institute of
Research carried out ECG measurement on soldiers by integrating capacitive electrodes on a chest
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strap [4]. Furthermore, ECG signals have been acquired through the “Aachen Smart Chair” [5], a
bathtub [6], or wireless sensor networks [7,8]. However, with capacitive electrodes, the ECG signal
is more sensitive to circuit noise and is severely influenced by motion artifacts. The penetrating
electrodes, which have sharp micro-structured surfaces, obtain ECG signals by piercing into the
insulating stratum corneum that consists of dead cells. Micrometer-sharp silicon structures, such as
microneedle array [9–12], barbed microtips [13], and micromachined spikes [14] have been designed
to achieve lower skin-electrode contact impedance compared to the commercial wet electrode.
Although penetrating electrodes effectively reduce motion artifact and contact impedance, this kind
of dry electrode cannot be used for long-term ECG recording due to bad properties in mechanical
stability and wearing comfort. The surface electrode is formed by flexible polymer and conductive
nanomaterial. The nanocomposite electrodes reveal good performance in wearability and motion
artifact resistance due to their excellent conformability to skin. Metallic nanomaterials [15], such
as silver nanoparticles [16], silver nanowire [17,18], and nickel powder [19] have been employed as
conductive filler. However, the high contact impedance of metallic nanocomposite limits its practical
use for accurate ECG recording.

In this paper, we present a multi-wall carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)
composite electrode which is a great candidate for long-term wearable ECG monitoring with great
robustness. PDMS has been widely applied in biomedical sensors [20–22] for its mechanical flexibility,
biocompatibility, and amenability of molding. In addition, MWCNT is the most appropriate and
attractive filler for a polymer-based electrode, because it has high respect ratio, high conductivity,
and is easily tangled with each other to form the 3-D conductive network within the polymer
matrix [23]. Thus, the MWCNT/PDMS electrode, which combines excellent properties of these
two attractive materials, can be a promising candidate in long-term ECG monitoring. Here, we propose
a parallel solvent-assisted ultrasonic dispersion method to address the problem of MWCNT aggregates.
The Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy were used to characterize
the structure of the MWCNT/PDMS composite. To determine the optimal MWCNT concentration
of the conductive composite, its electrical property was evaluated through a contact impedance
experiment. The ECG signal was measured under resting and walking using MWCNT/PDMS
electrodes with different concentrations. To investigate the performance of MWCNT/PDMS electrodes
in long-term service, the ECG signals of different MWCNT concentrations were recorded on 0, 2, 5,
7 days since wearing electrodes, and the cytotoxicity and skin compatibility tests were designed to
examine the biocompatibility of MWCNT/PDMS electrodes.

2. Materials and Methods

2.1. MWCNT/PDMS Composite Preparation

During the preparation of the conductive nanocomposite, MWCNTs are easy to form aggregates
because of the strong van der Waals interaction. To achieve uniform dispersion of MWCNTs in viscous
PDMS, a parallel solvent-assisted ultrasonic dispersion method (Figure 1) was developed. The procedure
is as follows. Firstly, MWCNTs (ID: 3–5 nm, OD: 8–15 nm, length: 50 µm, purity > 95%, Aladdin
Bio-Chem Technology Co., LTD., Shanghai, China) were dispersed in n-Hexane ( Analytical Reagent,
97%, Aladdin Bio-Chem Technology Co., LTD., Shanghai, China) at 0.5 wt% through tip sonication
(Power: 360 W, JY92–IIN, Scientz Biotechnology Co., LTD., Ningbo, China) for 90 min (Figure 1a,b).
Simultaneously, PDMS (Sylgard184, Dow Corning Company, Midland, MI, USA) was dispersed in
n-Hexane at 20 wt% through a bath sonicator (Power: 120 W, Yunyi Technology Co., Ltd., Shenzhen,
China) for 30 min (Figure 1c,d). Subsequently, the MWCNTs dispersion was added into the PDMS
dispersion and processed continuously in the bath sonicator for 5 hours (Figure 1e). Then the mixture
was placed in a water bath at 75 ◦C under magnetic stirring until the n-Hexane was totally volatilized
(Figure 1f). Eventually, the curing agent (mass ratio to PDMS 1:10) was added into the mixture made
from MWCNT/PDMS and then magnetically stirred at room temperature for 5 min (Figure 1g,h).
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Figure 1. Preparation process flow of the multi-wall carbon nanotube 
(MWCNT)/polydimethylsiloxane (PDMS) composite. (a) MWCNTs and n-Hexane were mixed in a 
mass ratio of 1:200. (b) MWCNTs were dispersed in n-Hexane through tip sonication. (c): PDMS and 
n-Hexane were mixed in a mass ratio of 1:5. (d) PDMS was dispersed in n-Hexane through a bath 
sonicator. (e) The MWCNTs dispersion was added into the PDMS dispersion and processed 
continuously in the bath sonicator. (f) The mixture was placed in a water bath at 75 °C under magnetic 
stirring until the n-Hexane was totally volatilized. (g) The curing agent (mass ratio to PDMS 1:10) was 
added into the mixture made from MWCNT/PDMS and then magnetically stirred. (h) The 
homogeneous MWCNT/PDMS composite was ready for molding. 

2.2. Fabrication of the MWCNT/PDMS Electrode 

Figure 2a–f shows a schematic diagram of the fabrication process of the MWCNT/PDMS 
electrode. The fabricated MWCNT/PDMS electrode (top) and the commercial Ag/AgCl electrode 
(bottom) (Huaxi Medical Equipment Co., Ltd., Xinxiang, China) are illustrated in Figure 2g. As is 
shown, a metal snap (material: Copper, surface treatment: Nickel plating, diameter: 10 mm), which 
could be straightforwardly connected to the conventional ECG cable with a clip, was placed on a 
Teflon substrate with a diameter of 50 mm (Figure 2a). Following this, the uniform mixture of the 
PDMS precursor and crosslinking agent was poured and cured in a vacuum oven (Bluepard 
Instruments Co., Ltd., Shanghai, China) at 80 °C (Figure 2b). After 1 hour, the PDMS master mold 
was detached from the petri dish (Figure 2c), and the Teflon was carefully removed from the PDMS 
mold (Figure 2d). Subsequently, the prepared homogeneous mixture of MWCNTs and PDMS was 
poured into the PDMS mold and thermally cured in a vacuum oven at 70 °C for 3 hours (Figure 2e). 
Finally, a flexible dry MWCNT/PDMS electrode was detached from the PDMS mold (Figure 2f).  

 

Figure 2. Fabrication process of the MWCNT/PDMS electrode. (a) A circular Teflon substrate and a 
metal snap were placed on petri dish. (b) The uniform mixture of the PDMS precursor and 
crosslinking agent was poured and cured in a vacuum oven. (c) The PDMS master mold was detached 

Figure 1. Preparation process flow of the multi-wall carbon nanotube (MWCNT)/polydimethylsiloxane
(PDMS) composite. (a) MWCNTs and n-Hexane were mixed in a mass ratio of 1:200. (b) MWCNTs were
dispersed in n-Hexane through tip sonication. (c) PDMS and n-Hexane were mixed in a mass ratio of 1:5.
(d) PDMS was dispersed in n-Hexane through a bath sonicator. (e) The MWCNTs dispersion was added
into the PDMS dispersion and processed continuously in the bath sonicator. (f) The mixture was placed
in a water bath at 75 ◦C under magnetic stirring until the n-Hexane was totally volatilized. (g) The
curing agent (mass ratio to PDMS 1:10) was added into the mixture made from MWCNT/PDMS and
then magnetically stirred. (h) The homogeneous MWCNT/PDMS composite was ready for molding.

2.2. Fabrication of the MWCNT/PDMS Electrode

Figure 2a–f shows a schematic diagram of the fabrication process of the MWCNT/PDMS electrode.
The fabricated MWCNT/PDMS electrode (top) and the commercial Ag/AgCl electrode (bottom)
(Huaxi Medical Equipment Co., Ltd., Xinxiang, China) are illustrated in Figure 2g. As is shown, a
metal snap (material: Copper, surface treatment: Nickel plating, diameter: 10 mm), which could
be straightforwardly connected to the conventional ECG cable with a clip, was placed on a Teflon
substrate with a diameter of 50 mm (Figure 2a). Following this, the uniform mixture of the PDMS
precursor and crosslinking agent was poured and cured in a vacuum oven (Bluepard Instruments Co.,
Ltd., Shanghai, China) at 80 ◦C (Figure 2b). After 1 hour, the PDMS master mold was detached from
the petri dish (Figure 2c), and the Teflon was carefully removed from the PDMS mold (Figure 2d).
Subsequently, the prepared homogeneous mixture of MWCNTs and PDMS was poured into the PDMS
mold and thermally cured in a vacuum oven at 70 ◦C for 3 hours (Figure 2e). Finally, a flexible dry
MWCNT/PDMS electrode was detached from the PDMS mold (Figure 2f).
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Figure 2. Fabrication process of the MWCNT/PDMS electrode. (a) A circular Teflon substrate and a
metal snap were placed on petri dish. (b) The uniform mixture of the PDMS precursor and crosslinking
agent was poured and cured in a vacuum oven. (c) The PDMS master mold was detached from the
petri dish. (d) The Teflon was removed from the PDMS mold. (e) The prepared homogeneous mixture
of MWCNTs and PDMS was poured into the PDMS mold and thermally cured in a vacuum oven.
(f) A flexible dry MWCNT/PDMS electrode was detached from the PDMS mold. (g) The fabricated
MWCNT/PDMS electrode (top) and the commercial Ag/AgCl electrode (bottom).
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In order to investigate the influence of MWCNT concentration on the contact impedance of
the nanocomposite electrode, a series of electrodes with different weight fracture of MWCNT were
fabricated to determine the optimal composition proportion.

3. Results and Discussion

3.1. Structural Characterization

The FT-IR and Raman spectroscopy were used to characterize the structure of the MWCNT/PDMS
composite (MWCNT concentration: 4 wt%).

The FT-IR spectra of the MWCNT/PDMS composite were recorded by a FT-IR spectrometer
(Thermo Scientific Nicolet iS 50, Thermo Fisher Scientific Co., Ltd., Waltham, MA, USA) within the
range of 500–4000−1. The test sample was mixed with KBr pellets (MWCNT/PDMS composite to
KBr, 1:150). The distinctive peaks of the FT-IR spectra for the MWCNT/PDMS composite are digitally
labeled in Figure 3.
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Figure 3. FT-IR spectra of the MWCNT/PDMS composite (MWCNT concentration 4 wt%).

The absorption band at 2961 cm−1 is corresponding to C–H stretching of CH3. The peak at
1411 cm−1 is considered as the C=C bending vibration of carbon nanotubes [24]. The Si–CH3 bands
are observed at 1256 cm−1 and in 680–850 cm−1 regions [25], which illustrates the existence of the
polysiloxane group in PDMS. The wide absorption band at 1008 cm−1 is associated to symmetrical
Si–O–Si stretching. And the peak at 910 cm−1 is attributed to the asymmetrical Si–O–Si stretching in
the composite [26], which indicates the success of the synthesis of the MWCNT/PDMS composite.

In order to further prove the synthesis of the MWCNT/PDMS composite, the Raman experiments
were performed using a Raman spectrometer (LabRAM HR800, HORIBA Jobin Yvon Co., Ltd., Paris,
France) with a 532 nm excitation wavelength. Each Raman spectrum of samples was obtained by 5 s
exposures over three accumulations.

Figure 4 illustrates the Raman spectra of the PDMS, MWCNT, and MWCNT/PDMS composite
sheet. In the case of the PDMS sheet, the prominent Raman bands belong to Si–O–Si (490 cm−1),
Si–C symmetric stretching (615 cm−1 and 710 cm−1), CH3 symmetric stretching (2899 cm−1), and
CH3 asymmetric stretching (2958 cm−1) [27]. In the Raman spectra of MWCNT, the disorder band (D
band) at 1335 cm−1, the graphite band (G band) at 1587 cm−1, and the second order of the D band (2D
band) at 2670 cm−1 are clearly observed [28]. The intensity ratio of D and G bands (ID/IG) is generally
regarded as an indicator of defects on MWCNTs [29]. The calculated ID/IG values from Raman spectra
increase from 1.24 to 1.54 for the MWCNT and the MWCNT/PDMS respectively, which shows that the
defects on MWCNT’s increase is owing to the sonication process during composite preparation. As is
shown, the major Raman bands of the MWCNT/PDMS composite are exactly corresponding to the
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typical Raman bands of both PDMS and MWCNT, which manifests that the composite is synthesized
by PDMS and MWCNT.Materials 2019, 12, x FOR PEER REVIEW 5 of 12 
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3.2. Skin-Electrode Contact Impedance Measurement

The contact impedance between skin and electrode is a significant indicator to evaluate the
electrical property of the ECG electrode. It could be easily influenced by skin moisture, pressure, and
electrode size [30,31]. For reproducible results, the measurement conditions were set as follows: (1)
MWCNT/PDMS electrodes were placed at the same locations on the forearm with a center distance
of 10 cm, (2) there was no external force applied to electrodes, (3) sweat and dust on the skin was
wiped off with an alcohol prep pad before each measurement, (4) the diameter and thickness of the
MWCNT/PDMS electrodes were 50 mm and 500 µm according to the proposed fabrication process.
With a LCR meter (TH2828S, Tonghui Electronics Co., Ltd., Changzhou, China), seven group tests
were carried out on a healthy male volunteer aged 24 years old. The composition of MWCNT in PDMS
varied from 1 wt% to 8 wt%, and the commercial Ag/AgCl electrode (diameter 50 mm) was used as a
control experiment. We recorded the skin-electrode contact impedance according to frequency ranges
of 20 Hz–1 kHz and plotted the logarithmic curve in Figure 5.
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According to Figure 5, the skin-electrode contact impedance decreases as the concentration
of MWCNT increases. When the MWCNT ratio reaches 5 wt%, the contact impedance of the
composite electrode is lower than that of the commercial wet electrode. Moreover, the electrodes with
a concentration ratio between 5.5 wt% and 8 wt% show little difference in contact impedance below
100 Hz, indicating that MWCNT ratio gradually becomes saturated within this range.

3.3. Short-Term ECG Measurement

The ECG signals (Figures S1–S5) of five subjects were recorded using an ECG workstation (SE-1200
Express, Edan Instruments, Inc., Shenzhen, China). With the help of 3M type, MWCNT/PDMS
electrodes and commercial Ag/AgCl electrodes (control experiment) were placed on lead V5.
Three electrodes for each MWCNT concentration were tested to verify the stability of the electrode
system. For reproducible results, the skin test area of the five subjects were cleaned by alcohol prep
pads prior to each measurement. With the Wilson’s central terminal as a reference potential, the typical
ECGs of a male volunteer under resting and walking state are shown in Figure 6.Materials 2019, 12, x FOR PEER REVIEW 7 of 12 
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Figure 6. Electrocardiogram (ECG) signals of a male volunteer (age: 23) under resting and walking
state for various MWCNT concentrations.

The ECG of the 1 wt% MWCNT/PDMS electrode presents the lowest signal amplitude and
the largest motion artifact. The important features of the ECG, such as P waves and T waves, are
barely observed at 1 wt% concentration. Although the signal amplitude obtained by the 2 wt%
MWCNT/PDMS electrode is still lower than that obtained by the Ag/AgCl electrode, the sensitivity
to motion artifact is effectively reduced, and the T waves are clearly detected. As the weight fraction of
MWCNT increases, the amplitude of the ECG signal gets higher. The signal amplitudes with MWCNT
concentration from 4 wt%–8 wt% show no critical differences, which is consistent with the previous
conclusion from the contact impedance test. The MWCNT/PDMS electrodes with concentration above
4 wt% provide comparable signal quality to the wet electrode under resting. The P, QRS, and T waves
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are clearly observed. Additionally, the Ag/AgCl electrode involves greater noise and baseline drift
under walking, which demonstrates that the MWCNT/PDMS electrodes exhibit superior performance
against the motion artifact compared to the Ag/AgCl electrode under motion.

To investigate the variability in result for use of MWCNT/PDMS electrodes, the ECG signals
of five subjects (three male and two female; age: 18–38) were measured under resting state using 4
wt% MWCNT/PDMS electrodes and Ag/AgCl electrodes. As shown in Figure 7, the ECG signal
amplitude varies from person to person, which stems from the discrepancy in the skin-electrode contact
impedance of different subjects. On the other hand, for each subject, the ECG signals obtained by
MWCNT/PDMS electrodes are comparable to that obtained by commercial Ag/AgCl electrodes, which
interprets that the MWCNT/PDMS electrodes could be applied to various users in ECG monitoring.
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3.4. Long-Term ECG Measurement

In order to examine the MWCNT/PDMS electrode performance for long-term use, the ECG
signals were recorded on 0, 2, 5, 7 days since wearing electrodes. Three electrodes for each type
were tested to ensure the reliability of the results. In resting state, the comparison of long-term
ECG detection using commercial Ag/AgCl electrodes and MWCNT/PDMS electrodes (MWCNT
concentration: 4 wt%, 5.5 wt%, 7 wt%, 8 wt%) is shown in Figure 8.

For the Ag/AgCl electrode, the reduction of ECG signal amplitude is evident after two days and
the P waves, which is an important gist in cardiovascular disease diagnosis, are totally submerged
in noise due to dehydration of the conductive gel over time. In addition, Figure 8f reveals that there
has been a steep decrease for the R-wave average amplitude of ECG signals obtained by Ag/AgCl
electrodes. In contrast, no significant changes in ECG signals obtained by MWCNT/PDMS electrodes
are observed from day 0 to day 7. The signal amplitude slightly increases with time, which is caused
by the accumulation of skin secretions, reducing the skin-electrode contact impedance. As discussed
above, the MWCNT/PDMS electrodes do not degrade and show excellent characteristics in long-term
ECG monitoring.
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3.5. Cytotoxicity and Skin Compatibility Tests

To test the cytotoxicity of the composite electrode, the immortal human keratinocyte line HaCaT
cells were cultured on six types of MWCNT/PDMS composite sheets (MWCNT concentration: 1 wt%,
2.5 wt%, 4 wt%, 5.5 wt%, 7 wt%, 8 wt%) for seven days. The size of these MWCNT/PDMS sheets is
1 cm × 1 cm × 0.05 cm. The HaCaT cells were washed and detached using the phosphate buffered
saline (Corning Inc., Corning, NY, USA) and Tryp-LE Express buffer (Invitrogen Corporation, Carlsbad,
CA, USA), respectively. After counting with a hemocytometer, 1 × 104 HaCaT cells were seeded on
the surface of each MWCNT/PDMS sheet and cultured for seven days in Dulbecco’s modified Eagle
medium (DMEM, Corning Inc., Corning, NY, USA) containing 10% fetal bovine serum and 100 µg/mL
penicillin/streptomycin (Gibco Company, Waltham, MA, USA), in humidified 5% CO2 atmosphere at
37 ◦C. The viability of HaCaT cells was evaluated using a Live/Dead Assay Kit (Invitrogen). As shown
in Figure 9, the live cells and the dead cells are respectively stained green and red. Most cells are alive
and proliferate uniformly on the surface of MWCNT/PDMS sheets. The viability of HaCaT cells on all
MWCNT/PDMS sheets surpasses 90%, demonstrating that the MWCNT/PDMS composite electrodes
are nontoxic to cells.
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and (f) 8 wt% MWCNT/PDMS composite sheets.

We also carried out the skin compatibility test, wherein the commercial electrode and the
MWCNT/PDMS composite sheet were attached to the same location of the forearm for seven days
with an adhesive bandage. Figure 10 presents the results of skin reaction. Long-term use of the wet
electrode caused severe side effects, such as skin redness and swelling, whereas the skin was found
normal and no skin irritation was observed with the nanocomposite sheet. The result verifies that the
MWCNT/PDMS electrode has good compatibility with skin in long-term service.
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(b) for 7 days.

4. Conclusions

In this work, we fabricated a flexible dry electrode consisting of PDMS and MWCNT in a
simple and efficient manner for long-term ECG monitoring. A parallel solvent-assisted ultrasonic
dispersion method was adopted to achieve a homogeneous MWCNT/PDMS composite. The dry
electrode was drop-casted in a master mold with a metal snap inside, which could be straightforwardly
connected to a conventional ECG machine. The properties of the MWCNT/PDMS electrode were
assessed through structural characterization, a contact impedance test, an ECG measurement, and
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biocompatibility tests. The success of the synthesis of the MWCNT/PDMS composite was approved
by the FT-IR and Raman spectroscopy. When the weight fraction of MWCNT reached 5.5 wt%, the
contact impedance of the dry electrode was lower than that of the Ag/AgCl electrode below 100 Hz.
Moreover, the ECG signals obtained by the proposed dry electrode showed better performance under
motion compared to the Ag/AgCl electrode. The cytotoxicity and skin compatibility test indicated that
the nanocomposite electrode was nontoxic to cells and did not cause noticeable skin irritation, such
as redness or swelling. In contrast to commercial wet electrodes, no significant degradation of ECG
signal quality was observed after seven days of use. Additionally, dry electrodes in the market are
mostly made by hard metal materials, introducing motion artifacts and high contact impedance due
to the unconformability with wrinkled skin. However, the MWCNT/PDMS electrode is flexible and
conformal with skin, showing superior performance against the motion artifact. The aforementioned
results demonstrate that the MWCNT/PDMS electrode can overcome the limitations of commercial
wet electrodes and dry electrodes due to its robust performance and skin biocompatibility. We expect
the proposed MWCNT/PDMS electrodes will be used in wearable healthcare systems and contribute
a lot to long-term ECG monitoring.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/6/971/s1,
Figure S1: ECG signals of a male volunteer (age: 38) under resting and walking state for various MWCNT
concentrations, Figure S2: ECG signals of a female volunteer (age: 31) under resting and walking state for various
MWCNT concentrations, Figure S3: ECG signals of a male volunteer (age: 24) under resting and walking state for
various MWCNT concentrations, Figure S4: ECG signals of a male volunteer (age: 23) under resting and walking
state for various MWCNT concentrations, Figure S5: ECG signals of a male volunteer (age: 18) under resting and
walking state for various MWCNT concentrations.
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