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Abstract: This work concerns the analysis of a thin-walled box made of ceramic and step-variable
functionally graded material (FGM) subjected to compression. The components of the box taken into
account were pure alumina and aluminium-alumina graded material. The problem was solved on
the basis of a finite element method and Koiter’s asymptotic theory using a semi-analytical method
(SAM). It analysed both the buckling state and the post-buckling state of the box. In addition, three
conditions were considered: The presence of alumina outside or inside of the box and a mixed case.
The obtained results were presented and discussed.

Keywords: finite element method; step-variable functionally graded materials; post-buckling state;
thin-walled structures

1. Introduction

Since the concept of functionally graded material (FGM) was first presented in 1984 by Japanese
researcher Niino, he and others dealt with the investigation of FGMs in the following years [1–3].
Nowadays, these types of materials are still treated as modern materials that, through varying different
properties throughout their thickness, can carry loads in hard conditions, especially in high-temperature
environment. The gradual changes in volume fraction of the components and non-homogenous
structure allow continuous graded macroscopic properties to be obtained. At present, there are
different techniques of producing FGMs—a gas-based method, liquid phase processes or solid phase
processes [4]—but none of them provides perfect material distribution as it was given theoretically.
Referring to the literature, one can find many papers devoted to the analysis of structures built of FGMs.
Many of them concern the mainly theoretical study of structure behaviour especially under thermal,
mechanical or mechanical-thermal loads. In a few works, analysis of FGM strength has been considered
for thick elements (e.g., discs). Relating to the subject of the present paper, works based essentially on
the study of stability are mentioned below. Bui et al. [5] investigated the plate subjected to a thermal
environment using a novel third-order shear deformation plate theory. The authors of [6,7] studied the
response of an alumina-steel plate under static or dynamic load on the basis of finite element method [6]
and classic theory for a thin plate applying the Bubnov-Galerkin method and a four-order Runge-Kutta
algorithm [7]. Trabelsi et al. [8] investigated the response of FGM shell structures (plates and cylindrical
shells separately) due to a thermal load by the use of a first-order shear deformation theory (FOSDT).
Reference [9] shows the study of a thick, simply supported FGM plate under bending on the grounds of
displacement potential function (DPF). The authors of [10] applied two new higher-order transverse
shear deformation theories (NHSDTs) to analyse the buckling and post-buckling states of an FGM plate.
Xu et al. [11] examined the buckling behaviour of a rectangular plate on the basis of classic plate theory
and the post-buckling state was verified by a means of ABAQUS software. The analysis of a plate
under mechanical and thermal loads was included in Reference [12]. The authors solved the problem
by using a nonlinear finite element method and a first-order shear plate theory. Liu, Ferreira, Xing
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and Neves [13] on the basis of a layer-wise shear deformation theory investigated the FGM sandwich
shells and laminated composite shell. The layer-wise theory proposed by the authors was based on an
expansion of Mindlin’s first-order shear deformation theory (FOSDT) in each layer. Mechab et al. [14]
presented analytical solutions of FGM plates on the basis of a four-variable refined theory. The authors
of [15] investigated the influence of the imperfection sign on the local and post-buckling equilibrium
path of an FGM plate on the basis of Koiter’s theory. The results received from a semi-analytical method
(SAM) were compared to those of a finite element method (FEM) score. Tung and Duc [16] studied
the behaviour of an FGM plate under in-plane compressive, thermal and combined loads based on
classic plate theory (CPT). Yang and Shen [17] also analysed an FGM plate under thermo-mechanical
loads regarding various boundary conditions. They used Reddy’s higher-order shear deformation
plate theory (HOSDPT). The researchers of [18–20] studied the buckling and post-buckling states
of FGM columns on the basis of classical laminate plate theory (CLPT). The analyses of stability of
composite plate structures regarding experimental and numerical results were widely carried out
in [21–24]. Pedersen [25] analysed on the basis of some structure the extension from the elasticity results
to nonlinearity case. Lellap and Majak [26] focused on the problem of optimal material orientation
using nonlinear elastic material. The same authors in [27] solved the problem of the minimization
of elastic energy density for nonlinear elastic solids. In Reference [28], the elastic stability of solid
structures was studied. This book is not limited to buckling or linear instability but also contains
the theory of nonlinear post-buckling behaviour and imperfection sensitivity. Monograph [29] was
concerned with the buckling and post-buckling behavior of thin plates and thin-walled structures with
a flat wall subjected to both static and dynamic loads. The book of Hui-Shen [30] was devoted to a
study of the geometrically nonlinear response of inhomogeneous isotropic or functionally graded plates
and shells. Iha et al. [31] conducted a critical review of reported studies in recent years for a range
of thermo-elastic and vibrations analyses of FGMs and structures. The authors of [32] focused on the
review of a mesh-less method in the analysis of composite materials for plate and shell structures.
Reddy [33] reported on the basis of the third-order shear deformation plate theory and examined
the through-thickness of functionally graded plates. Various methods of study relating to the static,
dynamic and stability behavior of FGM plates were collected in [34]. Liang et al. [35] used in their
analysis the Koiter–Newton approach to model the buckling of geometrically nonlinear structures.

The authors of the present paper focused on the study of an alumina-FGM (alumina-alumina-
aluminium) box with a finite number of layers. The box of 11 layers with step-variable gradation
across the wall was assumed to relate to a real FGM structure manufactured by different techniques.
In addition, an analysis was carried out to assess the behaviour of the structure when the layer of
ceramic is inside or outside of all walls, or when ceramic layers exist on two opposite walls inside
of the box and metal is on the two other walls. The initial imperfection in all cases was equal to 0.01
of wall thickness corresponding to first mode of buckling. Moreover, in this work the phenomenon
of post-critical equilibrium paths for the considered cases was deeply explained. Owing to the fact
that on the basis of literature, a similar analysis of step-variable gradation material in connection with
ceramic on such a box has not been conducted before, the results of the present study seem to be very
interesting especially as they separately consider two methods of calculation.

2. Problem Description

The object of investigation was a box subjected to a compression load (Figure 1). The length and
total thickness of the box amounted to a = b = c = 200 mm and tt = 2 mm, respectively. The thicknesses
of pure ceramic tc and tFGM were equal to 0.2 mm and 1.8 mm, respectively, where tt = tFGM + tc. The
entire thickness was comprised of FGM (Al-Al2O3 with 11 layers) and pure ceramics Al2O 3 (Figure 2).
The material properties of the analysed box were based on two basic materials, Al and Al2O 3, as given
in Table 1. Material properties for the remaining layers in the FGM (as in Figure 2) were determined
using the mixture law of two components.
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Figure 1. The functionally graded material (FGM) box with its dimensions and coordinate system: 

Ceramic inside (a: variant_1), ceramic outside (b: variant_2) and “mixed” case (c: variant_3). 

 

Figure 2. Material distribution across the box thickness. 

Table 1. Material properties of basic constituents. 

Components Young Modulus (GPa) Poisson’s Ratio (-) 

Al 70 0.33 

Al2O3 393 0.25 

2.1. Finite Element Model (FEM) 

Numerical simulation on the basis of the finite element method was performed in Ansys 18.2® 

software (2018) [36]. To create an appropriate numerical model a 281-shell element was assumed. 

This finite element possessed eight nodes with six degrees of freedom in each of them and was 

suitable to analyse moderately thick shell structures. With the use of that element one can perform 

linear and nonlinear simulation of multilayered structures including a sandwich structure. The 

accuracy of modelling composite materials by means of a 281-shell element was based on a first-order 

deformation theory (FODT) (it usually refers to Mindlin-Reissner’s shell theory). The plate box was 

divided into 40,000 finite elements (100 elements along the edge—Figure 3a).  
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Table 1. Material properties of basic constituents.

Components Young Modulus (GPa) Poisson’s Ratio (-)

Al 70 0.33

Al2O3 393 0.25

2.1. Finite Element Model (FEM)

Numerical simulation on the basis of the finite element method was performed in Ansys 18.2®

software (2018) [36]. To create an appropriate numerical model a 281-shell element was assumed. This
finite element possessed eight nodes with six degrees of freedom in each of them and was suitable
to analyse moderately thick shell structures. With the use of that element one can perform linear
and nonlinear simulation of multilayered structures including a sandwich structure. The accuracy of
modelling composite materials by means of a 281-shell element was based on a first-order deformation
theory (FODT) (it usually refers to Mindlin-Reissner’s shell theory). The plate box was divided into
40,000 finite elements (100 elements along the edge—Figure 3a).
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Figure 3. Discrete model (a) and distribution of material for variant_3 (b).

The nonlinear analysis for large strain and deflections was conducted by using Green–Lagrangian
equations. To ensure the appropriate equilibrium, simulations were executed with compliance to the
Newton–Raphson algorithm. The initial imperfection in all cases was assumed to be 0.01tt which
referred to the first buckling mode. The exemplary setup of layers in the finite element (FE) model
(corner of the box) is illustrated in Figure 3b (in this case the “mixed” variant is shown). Boundary
conditions in the FE model reflected to articulated supports on all edges (Table 2, —yes, #—no).

Table 2. Assumed boundary conditions in finite element (FE) model according to Figure 3.

Number
of Edges ux uy uz rotx roty rotz

Couple Degree of
Freedom in Nodes
in the z-Direction

Load in the
z-Direction

1 # const # # #
2 # const # # #
3 # const # # #
4 # const # # #
5 # # # # # #
6 # # # # # #
7 # # # # # #
8 # # # # # #

2.2. Koiter’s Asymptotic Approach

The nonlinear problem of stability has been solved with the semi-analytical method (SAM) based
on Koiter’s nonlinear theory [28,29,37,38]. The full Green’s strain tensor, the second Piola-Kirchhoff’s
stress tensor and the transition matrix using Godunov’s orthogonalisation have been used in the
description of the problem [18,19,37,38]. In Reference [15], on the basis of Koiter’s theory, the FG plates
have non-symmetric stable post-buckling equilibrium paths. This feature explains the differences
in the plate response dependence on the imperfection sign (sense). An FGM plate has a non-trivial
coupling matrix B and the coupling between extensional and bending deformations exists as in the
case of non-symmetric laminated plates [15]. The equilibrium equations for FGM plate structures can
be written as [15,18]:(

1 − σ

σr

)
ζr + apqrζpζq + brrrrζ3

r −
σ

σr
ζ∗r + ... = 0 for r = 1, . . . . . J. (1)
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In References [15,28,29], on the basis of Koiter’s theory, the FGM plates have non-symmetric
stable post-buckling equilibrium paths. This feature explains the differences in the plate response
dependence on the imperfection sign (direction of deflection).

An FGM plate has a non-trivial coupling matrix B and the coupling between extensional and
bending deformations exists as it in the case of non-symmetric laminated plates [15], where σr—critical
stress instead of the r-th buckling mode, ζr—dimensionless amplitude of the r-th buckling mode,
ζ∗r —dimensionless amplitude of the initial imperfections corresponding to the r-th buckling mode,
σ—compressive stress, aapq and brrrr—coefficients. The range of indices (p, q, r) is from 1 to J, where
J is the number of interacting modes. The summation is supposed on the repeated indices. For the
case of the uncoupled buckling mode (i.e., for one mode approach) J = 1 must be used. The first-order
coefficients (i.e., aapq) are found with the analytical-numerical method (ANM) based on Koiter’s
theory [15,28,38]. The second-order coefficients (i.e., brrrr) are calculated with the semi-analytical
method (SAM) [37]. In this method, one postulates to determine approximated values of brrrr on the
basis of the linear buckling problem. It is worth mentioning that the semi-analytical method (SAM)
allows phenomena to be analysed and interpreted in a considerably simpler way as compared to the
results obtained by FEM.

3. Results and Discussion

Before starting with the analysis of the results, one should return to Reference [15], where
compliance with Koiter’s theory enabled the phenomenon of the influence of the imperfection sign on
local post-critical equilibrium paths of plates made of functionally graded material to be explained.
For the plate structures built of FGM, non-symmetric stable post-critical equilibrium paths were
obtained. In the study, two methods were employed: SAM and FEM. Results received from FEM
are for geometrically complete nonlinear analysis. However, in SAM nonlinear expressions linked
with imperfection were omitted but values of post-critical coefficients of the second order were
approximately determined. This causes essential differences in the results obtained by two methods,
SAM and FEM, for the same value of imperfection. It was revealed that an initial deflection in ceramic
direction gives higher values of total deflections for a given value of structure load as compared to an
initial deflection in metal direction for an inflicted absolute value of imperfection. For FEM, differences
in deflections in metal and ceramic direction are more visible than in case of SAM. The deflection in
ceramic direction relates to greater stability, whereas a deflection in metal direction corresponds to
weaker stability. By retaining greater stability we obtained a lower level of total system energy as
compared to that achieved with lower stability. Real systems always trend to the lowest energy level.
In the present work, results were shown for a compressed column with the shape of a hexahedron
in which either outer layer of the detailed plates is made of ceramic or made of aluminium. For both
cases, small differences in critical load and post-critical equilibrium paths for loads close to critical
loading were obtained.

3.1. Buckling Forces

On the basis of SAM and FEM according to boundary conditions (Table 2 and Figure 3a), critical
forces for three first modes were obtained (Table 3). Differences in buckling forces for the first mode
between FEM and SAM amounted to 1.67%, 2.51% and 0.55% for variant_1, variant_2 and variant_3,
respectively. SAM gave lower forces in the first two cases. Furthermore, as it can be easily noticed,
for a mixed arrangement of material the critical force appeared to be the lowest one for FEM and for
SAM between for variations 1 and 2. For higher modes of buckling forces, differences in both methods
did not exceed 1.2%, at most. The first modes attained by applying FEM turned out to be the same
regardless of ceramic position (Figure 4). Regarding linear buckling, the maximum deflection was
always noticed on the wall in the y-direction.
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Table 3. Critical forces in kN.

Method of
Solution Buckling Mode Variant_1 Variant_2 Variant_3

Finite element
method (FEM)

First 115.490 114.961 112.176

Second 162.128 163.014 162.669

Third 177.761 177.344 177.056

Semi-analytical
method (SAM)

First 113.564 112.076 112.787

Second 162.331 161.046 162.452

Third 176.572 175.507 176.014
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3.2. Post-Buckling State

The phenomenon can be clarified in the following way. In the case of an isotropic cubic
hexahedron, the cross-section area possesses two symmetric axes and two anti-symmetric axes (this
means those axes are diagonals of the quadratic cross-section). In the case of an FGM box with a cube
shape relating to conclusions from [15], we have only two symmetric axes but the diagonals of the
cross-section are not anti-symmetric axes. Let us consider an FGM cube whose detailed plates in the
corner are connected by an articulated joint. In this case the corners of the box do not carry bending
moments and right angle is not retained. As far as such a box whose outer layer is ceramic can be
considered, then according to conclusions of [15], the post-critical deflection of all plates will be outside
the box. This is called blowing from the inside or the inflation of the box. If the inner layer of the box is
ceramic then post-critical deflections of all plates are directed toward the inside. In the present work it
also assumed for the cube with different arrangements in neighbouring plates (a so-called “mixed”
cube, which denotes a structure of one plate with an outer ceramic layer and a second neighbouring
plate with an aluminium layer—Figure 1c) that the arrangement of the walls responds to the buckling
of all the plates in the ceramic direction. This causes the post-critical equilibrium paths for all plates to
be the lowest in comparison to the two remaining cases (ceramic inside or outside). This is due to the
greater stability of the equilibrium path or the deepening influence of the initial deflection. Figures 5–8
show the deflections in the centre of each plate of the box vs. static load (Fst). For wall 1 (Figure 5),
curves obtained both by FEM and by SAM were posted. For the remaining walls, only results from
FEM were displayed because the deflections received by SAM for four walls differed slightly from
each other (approximately 0.1%). The characteristic for variant_2 (FEM) is the closest to the curves
of SAM but deflections (for SAM) seem to be greater (10%–15%, at most) especially over the critical
load. As seen in Figure 5, regardless of the considered variant, trends of SAM coincide with each other.
Owing to this fact, the main analysis was focused only on FEM results.
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In the cases of ceramic outside and ceramic inside, the post-critical paths are very close to each
other for walls 1, 2 and 4 (see Figures 5, 6 and 8). The exception is the behaviour of wall 3 (Figure 7). This
is caused by much smaller differences in amplitudes of mode deflection for detailed walls (amounting
to 0.001). Attention should be paid to the course of the curves for the ceramic inside in Figures 5 and 6
and for the ceramic outside in Figures 7 and 8. In practice, until reaching a critical value, curves are the
straight lines at minimal deviation into reverse direction with regard to post-critical paths for load
over the critical load. Those distances correspond to deflections in the direction at a lower stability
of equilibrium paths, following which small deflections pass through towards the greater stability of
paths. For higher values of initial deflections (imperfections), the phenomenon may occur for bigger
overloads above the critical load or be completely absent.

4. Conclusions

In this paper, the results of the semi-analytical method (SAM) and the finite element method (FEM)
employed to analyse the structure of an alumina-FGM plate subjected to static load were presented.
The behaviour of a box built of ceramic and step-variable graded material with a finite number of
layers was investigated. Three models were assumed: ceramic inside, ceramic outside and a mixed
presence of ceramic. Based on the obtained results, the following can be concluded:

(1) For variant_3 (with a mixed arrangement of material) the first critical force was the lowest.
For higher critical forces, differences were not noticeable and for FEM they did not exceed 1%.
Furthermore, in this case deflections on all walls appeared the fastest in comparison to other
considered options, but finally at greater overload curves were grew closer to each other.

(2) The difference in the deflection of walls achieved by SAM amounted to 0.1% in the whole scope
and this does not give substantial contrast in comparison to analysed variants as it was observed
in FEM.

(3) The SAM allows results of equilibrium paths to be achieved significantly faster than FEM. SAM
is very useful for interpreting the phenomena accompanying the interaction of different modes
of buckling in the full scope of the load. This method furthers our understanding of phenomena
that occur during coupled buckling.
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