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Abstract: Flax fiber-reinforced composites (FFRCs) exhibit excellent environmentally friendly
qualities, such as light weight, low cost, recyclability, and excellent mechanical properties.
Understanding the dynamic mechanical behavior of FFRCs could broaden their potential applications
in lightweight, crashworthy, and impact-critical structures. This study presents a study on the
fabrication of FFRCs by vacuum-assisted resin infusion. The dynamic stress–strain responses of
the fabricated specimens at strain rates ranging from 0.006 s−1 to 2200 s−1 were evaluated using
quasi-static tests and the Split–Hopkinson pressure bar (SHPB). The results indicated that the FFRC
exhibited superior strain rate sensitivity. Final deformation photographs and scanning electron
micrographs clearly revealed the damage evolution of the FFRC specimens, as well as various failure
mechanisms, including fiber–matrix debonding, fiber pull-out, and fiber fracture at different strain
rates. On the basis of the experimental results, a simplified Johnson–Cook model was established
to describe the strain-rate dependent constitutive model of FFRC. The validation of the suggested
constitutive model was embedded in the finite element simulations and could well repeat the strain
wave observed from the experiment results. Finally, the quasi-static compression and drop-hammer
impact of pyramidal lattice structures with FFRC cores were investigated both numerically and
experimentally, proving the effectiveness of the simplified Johnson–Cook model. This study could
potentially contribute to a deeper understanding of the dynamic mechanical behavior of FFRCs and
provide fundamental experimental data for future engineering applications.

Keywords: flax fiber-reinforced composite; strain rate effect; Johnson–Cook model; lattice structure;
failure mechanism

1. Introduction

Over the last decades, lightweight, low cost, and recyclability have been the highlighted
material properties for automotive and aerospace industries [1]. Synthetic high-performance
fiber-reinforced composites were able to overcome the lightweight problem; however, most of
them were nondegradable and harmful to the environment. To reduce the environmental impact
of composite materials, natural fiber-reinforced composites (NFRCs) with favorable mechanical
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and economic properties, as well as higher environmental friendliness, have been investigated as
potential substitutes for synthetic fibers as reinforcements [1–9]. Extensive research on the mechanical
properties of NFRCs have been conducted and compared with those of synthetic fibers. Dittenber
and Gangarao [1] reported that the specific modulus of flax fiber was approximately 45 GPa/

(
g/cm3),

higher than that of glass fiber measuring approximately 29 GPa/
(
g/cm3). Joshi et al. [10] showed that

flax fibers exhibited specific strength equal to or even higher than that of glass fibers and could be a
suitable replacement for glass fibers. Amenini et al. [6] investigated the dynamic characterization of a
flax fiber-reinforced polyamide 11 bio-composite. Koh and Madsen [11] studied the failure criteria to
accurately predict the strength of NFRCs, and they recommended Hashin and Puck failure theories, as
they showed the smallest error compared to experimental data. Ramesh [12] carried out a detailed
review on the preparation and properties of flax fiber and its composite materials.

In recent years, NFRCs have been investigated for application in aeronautic and automotive
engineering [4,13,14] because of their distinct mechanical properties and low cost. Composites
in these fields have been highly susceptible to impact damage induced by striking with foreign
objects [13,15,16]. Thus, characterizing the mechanical performance of NFRCs under impact loading
conditions is important. Ravandi et al. [17] reported that composites with woven flax fiber exhibited
better impact properties compared to those with non-woven fiber. Meredith et al. [18] performed drop
hammer experiments at an impact speed of approximately 8.0 m/s to evaluate the energy absorption
characteristics of cone tubes made of woven flax and regenerated cellulose textiles; the specific energy
absorption of cone tubes varied from 21.2 to 34.2 kJ/kg. Another important finding was that cone
tubes made of Biotex flax combined with stiffer resin could obtain a higher specific energy absorption
than that of cone tubes made of tougher resin. López–Alba et al. [4] investigated the energy absorption
behaviors of NFRC tubes at different impact velocities. They found that the specific energy absorption
of NFRC tubes heavily depended on the material parameters, including wall thickness, type of weave
material, reinforced textiles, and matrix used. Shishevan et al. [19] assessed the low-velocity impact
responses of basalt fiber-reinforced composites at different magnitudes of impact energy—30, 60,
80, 100, 120 and 160 J. In addition, the related key impact parameters, such as maximum contact
force, absorbed energy, deflection, and duration were compared with those of carbon fiber-reinforced
composites. On the basis of the experimental results, the impact performance of basalt fiber-reinforced
composites was greater than that of carbon fiber-reinforced composites because of the higher toughness
of basalt fibers. To evaluate the effects of fiber content and fiber orientation on the impact behavior of
flax fiber-reinforced polypropylene composites, Rahman et al. [20] measured the impact properties
of FFRCs by using the Charpy impact test and drop-weight impact test. Their results indicated that
composites with varying fiber orientations exhibited different energy absorption for the in-plane and
out-of-plane impact loads. Dhakal et al. [21] evaluated the effects of impactor shape and impact
velocity on the dynamic mechanical properties of hemp–unsaturated PE composite under low-velocity
impact conditions. The results showed that the specimens impacted by a hemispherical impactor
exhibited higher force and absorbed more energy compared with specimens impacted by a conic
impactor. In addition, with an increase in impact velocity, the damage to the back face of the specimen
was more prominent for the laminates impacted by the hemispherical impactor. Rajaei et al. [22]
investigated the effect of preheating on the impact performance of flax fiber-reinforced composite
laminates. The impact test results showed that heat exposure at 300 ◦C reduced the energy absorption of
the flax fiber composites. Shen et al. [23] also studied the effect of manufacturing process temperature,
exposure temperature and water absorption on the low-velocity impact damage threshold and damage
mechanisms of NFRCS. It was found that excessive temperature and water uptake could cause a
serious reduction on the impact damage threshold and damage resistance. To further enhance impact
properties of flax fibers, Al-Hajaj et al. [24] carried out pendulum impact tests with a range of impact
energies (5–40 J) to investigate the effect of hybridization with woven carbon fibers plus flax fibers
on impact properties. Results showed that these hybrid composites had superior impact properties
compared to pure flax fiber-reinforced epoxy composites, suggesting that hybridization using synthetic
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and natural fiber could be done successfully. Moreover, under high loading rate conditions, the
effect of strain rate on the mechanical properties of NFRCs has received considerable interest and has
been extensively studied in metal, foam, and carbon- and glass fiber-reinforced composites [25,26].
Using the Split–Hopkinson pressure bar (SHPB), Omar et al. [27] examined the dynamic properties
of pultruded jute and kenaf fiber-reinforced unsaturated polyester composites under different strain
rates, nearly reaching 1400 s−1. The compression modulus, compressive strength, and flow stress
of both NFRCs were highly sensitive to strain rates. Similar experiments were also performed by
Kim et al. [28] to study the dynamic mechanical responses of hemp, hemp/glass hybrid, cellulose, and
wheat straw-reinforced polymeric composites at strain rates between 600 and 2400 s−1. These NFRCs
exhibited evident strain rate sensitivity. However, studies concerning the effects of strain rate on the
mechanical behaviors of NFRCs compared with those of metals and composites, remained relatively
inadequate, requiring further studies.

In addition, numerical simulation has become a widely used tool for predicting structural
responses, thereby reducing experiment expense and time cost. For NFRCs, several numerical
modeling studies can be found in the literature [29–32]. On the basis of the hypotheses of linear–elastic
behavior up to failure and strain rate independent behavior, Rubio-López et al. [29] developed a finite
element method (FEM) model to predict the low-velocity impact behavior of all-cellulose composite
plates. Poilâne et al. [30] proposed a viscoelastoplastic model with eight independent parameters to
model the behavior of the unidirectional flax fabric polymer composite. However, these two models
failed to consider strain dependency. Rubio-López [31] presented a rheological model to describe the
viscoplastic behavior of NFRCs at different strain rates and used this model to successfully analyze the
low-velocity impact responses of NFRCs. Numerical prediction was consistent with experimental data
conducted with two impactor shapes at different impact energies. However, in their study, the strain
rates were considerably low, ranging from 2. 08 × 10−4 s−1 to 8.33 × 10−3 s−1, which could still be
considered under quasi-static loading condition. Consequently, higher strain rates were expected to
more accurately describe the dynamic behaviors of NFRCs.

To bridge these gaps, in the present study, flax fiber-reinforced composites (FFRCs) were
manufactured by vacuum-assisted resin infusion (VARI). Quasi-static and SHPB experiments were
then conducted to obtain mechanical properties in order to investigate the effects of strain rate. Based
on experimental results, a simplified Johnson–Cook model, validated by SHPB experiments, was
developed to describe both quasi-static and dynamic characteristics of FFRCs. Lastly, the effectiveness
of the simplified Johnson–Cook model was further verified by quasi-static and drop-hammer crushing
experiments of lattice structures.

2. Materials and Methods

2.1. Fabrication

Flax fiber plain weave fabrics (50% weft yarns per 50% warp yarns: [0◦/90◦] purchased from Linyi
City, Shandong Province, China) and epoxy resin (LY1564/Aradur22962, Huntsman, from Shanghai,
China) were selected to fabricate laminated composites by VARI. The diameters of the tows of the
fabrics varied from about 0.6 mm to 1.5 mm. The nominal area density of the fabric and the fabric
weight fraction were measured to be approximately 230 g/m2 and 48%, respectively. The quasi-static
tension tests of the pure matrix were performed and the stress-strain curves were provided in Figure S1.
The viscosity of the resin was 450 mPa·s and the glass transition temperature was 140◦C. The operating
time of the resin was about 120 min, within which the fabrication should be finished outside the
heating oven. The curing cycle was 80 ◦C for 2 h and 120 ◦C for 3 h.

VARI is a type of low-cost molding technology for manufacturing large-scale composite structures.
The process in this study includes the following four steps:

� First, the mold surface is cleaned with acetone to achieve a perfect surface quality.
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� Secondly, the layers of woven fiber dried at 70 ◦C for 3 h in an oven are laid on a mold sheet and
other supplementary materials as shown in Figure 1a.

� Third, the resin is injected into the mold with atmospheric pressure after vacuuming and checking
the sealing.

� Last, the resin flow is closed, and the resin is cured in an oven. The composite sheet after
demolding is shown in Figure 1b, and the detailed image of the sheet is shown in Figure 1c.

Figure 1. (a) Schematic of woven fiber and other supplementary materials; (b) composite sheet; (c)
detailed image of the sheet.

In the present study, the fabricated composite sheet consisted of 20 layers, with a total thickness
of 11.0 mm. The measured density of the composite sheet was 1.18 g/cm3. Cylindrical specimens with
measuring 9 mm in diameter and 5 mm in length were adopted for both quasi-static and dynamic
compression experiments. For consistency with the fiber orientation of the trusses of the lattice
structure in Section 4.3, the same direction with a fiber orientation of 45◦ was used for the specimens
of quasi-static and SHPB compression experiments (Figure 2).

Figure 2. Cutting direction (a) and size (b) of the material test specimen.
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2.2. Experimental Set-Up

2.2.1. Quasi-Static Compression Experiment

Quasi-static compression experiments were conducted on a hydraulic servo testing machine
INSTRON 8801 (manufactured in Boston, MA, USA) at constant loading rates of 2, 20, and 200 mm/min,
corresponding to the nominal strain rates of 0.006, 0.06, and 0.6 s−1, respectively. The temperature was
25 ◦C, the relative humidity was 20%, and the maximum load capacity of the machine was 100 kN. The
specimens were placed centrally between the polished platens. Prior to continuous loading, about 10
N was preloaded to eliminate the clearance. The axial deformation was captured by a non-contacting
video extensometer (Instron AVE 2.0, manufactured in Boston, MA, USA) with a precision of 0.5 per
thousand during the quasi-static tests.

2.2.2. SHPB Experiment

The SHPB apparatus is widely used to investigate the dynamic behavior of materials. The device
typically consists of a striker bar, an incident bar, a transmission bar, and a gas gun, among other
things, as shown in Figure 3. The strain gauge, digital storage oscilloscope, and ultrahigh dynamic
extensometer are used to calibrate and measure the time history curves of incident, reflected, and
transmitted waves. The cylindrical specimen is placed between the incident bar and the transmission
bar. When the striker is propelled from the gas gun to impact the incident bar, a compressive elastic
wave is generated and propagated through the incident bar. Once the wave reaches the specimen, part
of the wave reflects on the interface of the specimen, while the remaining portion passes through the
transmission bar. The traveling waves in the incident bar and the transmitted bar can be quantitatively
captured by strain gauges mounted on these two bars. Thus, the strain–time histories of the incident,
reflected, and transmitted waves can be recorded using the oscilloscope.

Figure 3. Schematic of the SHPB device.

The engineering stress, engineering strain, and strain rate can be calculated using the following
equations [23]:

σe(t) =
EA0

As
εt(t), (1a)

εe(t) = −2C0

Ls

∫ t

0
εt(t)dt, (1b)

.
ε(t) = −2C0

Ls
εr(t), (1c)

where E, C0, and A0 denote Young’s modulus, stress wave speed, and the cross-section area of the
incident bar, respectively. As and Ls represent the cross-section area and length of the specimen,
respectively. εt(t) and εr(t) refer to the amplitude of the transmitted wave and the reflected wave as
functions of time t, respectively. σe(t) and εe(t) denote engineering stress and strain, respectively.

Furthermore, the true stress–strain relationship can be obtained using the following equations:

σ(t) = σe(t)(1 − εe(t)), (1d)

ε(t) = ln(1 − εe(t)), (1e)
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where σ(t) and ε(t) are the true stress and the true strain, respectively.
In the present study, the detailed parameters of the SHPB apparatus were as follows: the striker

measured 300 mm in length and 12 mm in diameter; both the incident bar and the transmitted bar were
1200 mm in length and 12 mm in diameter; and the three bars were made of steel. The experiments
were conducted at different strain rates: 1300 s−1 and 2200 s−1. Two repeated experiments were
conducted at each strain rate to ensure the repeatability of the experimental results.

3. Experimental Results

In the SHPB tests, the striker bar was launched by varying the gas pressure to achieve different
average nominal strain rates. Figure 4 shows the stress–strain curves of the FFRCs under quasi-static
and SHPB compression experiments. The experimental results exhibited good repeatability (see
Figure 4a–e). In addition, Figure 4f shows that FFRC is strongly affected by strain rates. The yield
stress, as well as the flow stress, of the FFRCs markedly increased with an increase in strain rate.
Therefore, the FFRCs showed evident strain rate sensitivity. This finding was highly similar to that
reported by Omar et al. [27].

Figure 4. Stress–strain curves at different strain rates: (a) 0.006 s−1, (b) 0.06 s−1, (c) 0.6 s−1, (d) 1300 s−1,
(e) 2200 s−1. (f) Comparison of typical curves.

The representative stress–strain curve in Figure 5 shows the trend of this stress–strain curve can
be divided into three distinct stages—elastic region (oa), yield stage (bc), and plastic stage (cd)—similar
to that of metal [25]; however, the specimen is made of a fiber-reinforced polymer material. The yield
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strength, σ1, of the representative curves were extracted from the figure and listed in Table 1, consistent
with the previous study (100–200 MPa) [33]. Evidently, σ1 increased with an increase in strain rate. For
example, when the nominal strain rate reached 1300 s−1, σ1 markedly increased to 152 MPa, which was
about 1.5 times higher than that of 0.006 s−1. The increase in yield strength from 1300 s−1 to 2200 s−1

was 11.7 MPa.

Figure 5. Different stages of a typical stress–strain curve: elastic region (oa), yield stage (bc), and plastic
stage (cd).

Table 1. Yield strength of representative curves.

.
ε 0.006 s−1 0.06 s−1 0.6 s−1 1300 s−1 2200 s−1

σ1 102.0 MPa 112.3 MPa 149.9 MPa 152.0 MPa 163.7 MPa

In addition, Young’s modulus exhibited an appreciably increasing trend with an increase in
strain rate, which was consistent with reference [27]. They attributed the increase in stiffening to
the increase in strain rate, thereby decreasing the molecular mobility of polymer chains. However,
dynamic Young’s modulus could not be accurately measured by SHPB [34]. In the current study, the
value of Young’s modulus was not given to avoid inconsistency.

Figure 6a–c shows the final deformation morphologies of the crushed specimens. At a lower strain
rate, the specimen only exhibits a reduction in thickness, where no obvious damage in appearance is
observed. In the case of 1300 s−1, the margin of the specimen was damaged to a certain extent and
compression deformation was evident. In the case of 2200 s−1, the specimen broke into two fragments,
along with small cracks, and the fracture angle was approximately 45◦ (Figure 6c). The magnitude of
the shear fracture angle mainly depended on the interfacial bond strength: a strong interface resulted
in a larger shear fracture angle, whereas a weak interface generated a small fracture angle [27]. The
failure could be inferred to have been initiated by matrix plasticity, followed by cracks passing through
the layers of the laminate and forming a shear fracture with an angle of 45◦.

The microscopic failure mechanism was analyzed by scanning electron microscopy (SEM, Zeiss
Auriga, manufactured in Oberkochen, Germany) to highlight the dominant failure modes at selected
locations on the specimens. Prior to SEM observation, the specimens were coated with an ion sputter
coater to obtain enhanced conductance. Figure 6d–f presents micrographs of the fractured surface of
the crushed specimen at the strain rate of 2200 s−1. Fiber pull-out from the matrix is clearly shown
in Figure 6d. Almost no matrix residue could be found on the surface of the fibers (Figure 6d,e).
This observation could be attributed to the poor adhesion between the hydrophilic flax fiber and the
hydrophobic epoxy matrix [18,35]. As seen in Figure 6e, a crack occurs along the fiber’s longitudinal
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direction, which could be attributed to the shear failure of the fiber when the matrix fractured. The
crack also indicated a reduction in the shear strength of the flax fiber. In Figure 6f, flax fragments were
stuck to the matrix after fiber pull-out, and superficial flax shavings exhibit partly separated from
the fibers—that is, not completely from the reinforcements. This occurrence was highly consistent
with the observation of Liang et al. [35] that this could be considered as an additional type of damage
mechanism for NFRCs.

Figure 6. Specimens after experiments (a) 0.6 s−1, (b) 1300 s−1, (c) 2200 s−1; Micrographs of fractured
edges: (d) fiber breakage and fiber pull-out, (e) fiber–matrix debonding and crack along the fiber,
(f) superficial fiber shavings.

4. Discussion

4.1. Simplified Johnson–Cook Model

The simplified Johnson–Cook model is widely accepted to describe the coupling factors among
stress, strain, and strain rate [25,36]. The profile of the stress–strain curves of FFRCs was similar
to those of traditional metals with a well-defined Johnson–Cook model. Owing to the difficulty in
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extracting temperature data and the slight effect of temperature on constitutive behaviors under low
impact energy, for the sake of simplicity, only isotropic hardening and strain-rate hardening effects
were considered in this study. Therefore, the dynamic behavior of FFRCs can be expressed as

σ = (A + Bεn)
(

1 + C ln
.
ε
∗), (2)

where σ is the stress; A is the yield stress; B and n represent the effect of strain hardening, respectively;
C is the material constant determined by the specific material, representing the strain rate dependence
of the material; ε is the equivalent plastic strain and obtained by subtracting the elastic strain from the
total strain;

.
ε is the strain rate; and

.
ε
∗ is the dimensionless plastic strain rate expressed as

.
ε/

.
ε0, where

.
ε0 = 0.006 s−1 on the basis of quasi-static experiments.

Naturally, in the quasi-static experiment for
.
ε
∗
= 1, the constitutive model of Equation (2) can be

further simplified to
σ = A + Bεn, (3)

Taking the logarithm of both sides of Equation (3) may result in the following:

ln(σ − A) = ln B + n ln ε, (4)

Subsequently, Equation (4) is applied to fit the quasi-static experimental data in logarithmic
coordinates by the least square method, such that ln B represents the intercept of the straight line, and
n represents the slope. Thus, B and n can be determined using simple mathematical conversion. At
room temperature, C can be obtained through the fitting in accordance with Equation (2)

σ2
( .
ε
)

σ1
− 1 = C ln

.
ε
.
ε0

, (5)

where σ1 = A + Bεn, σ1 represents the yield stress when the strain rate is 0.006 s−1, and σ2
( .
ε
)

is the
yield stress at the strain rate of

.
ε.

The simplified Johnson–Cook model (Equation (2)) was used to describe the dynamic
rate-dependent constitutive behavior of the FFRCs. The fitting parameters in the constitutive models
in accordance with the experimental data are listed in Table 2 and the constitutive relationship was
obtained as follow: σ =

(
102.0 + 70.8ε0.416)(1 + 0.047 ln

.
ε

0.006

)
. The fitting curves of the model and

the experimental data are illustrated and compared in Figure 7.

Figure 7. Comparison of the fitting curves of the experimental data.
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4.2. Dynamic Wave Verification

To validate the effectiveness of the developed simplified Johnson–Cook model of FFRCs,
numerical simulation was conducted using the commercial FEM software ABAQUS 6.13 (Dassault
Systemes S.A, Vélizy-Villacoublay, France) to simulate the SHPB experiment.

A three-dimensional FEM model was set up to simulate the SHPB experiments. The FEM model
consisted of four components: a striker bar, an incident bar, a transmission bar, and an FFRC specimen,
each of which was of the same size as the SHPB apparatus shown in Figure 3. To improve the accuracy
of the FEM analysis, an 8-node linear brick with reduced integration and hourglass control (C3D8R)
was adopted. The minimum size of all elements was 1 mm. The same material was used for the three
components made of steel, with the following measurements: modulus, 190 Gpa; density, 8 g/cm3, and
Poisson ratio, 0.3. The developed simplified Johnson–Cook model was used to simulate the mechanical
behavior of the FFRC specimen in Table 2. The time history of the strain wave was obtained from the
same location of the strain gauges on the incident and transmission bars with SHPB experiments.

Table 2. Fitting parameters in the simplified Johnson–Cook model.

Simplified Johnson-Cook model A (MPa) B (MPa) n C
.
ε0

Value 102.0 70.8 0.416 0.047 0.006

The speed of the striker was varied to obtain the various loading conditions of the tested specimens.
The strain wave obtained from the experiments, with its counterpart from the FEM calculations, is
shown in Figure 8. Consistency was found, indicating the validity and accuracy of the simplified
Johnson–Cook material model. However, a slight general difference still observed, which could be
attributed to the following: (a) The influence of thermal softening under impact could not be simulated
in ABAQUS Explicit [25]; (2) The geometry of the specimens was not perfectly cubic [37]; (3) The
non-parallelism and friction between the faces in contact with the bars were hardly included in the
FEM model [37]; (4) The strain rate was not constant in the SHPB, and so on.

Figure 8. Comparison of strain waves between the simplified Johnson–Cook model and experimental
data under strain rates (a) 1300 s−1, (b) 2200 s−1.

4.3. Prediction of the Crushing Peofrmance of Lattice Structures

As in Section 4.2, to further validate the effectiveness of the developed simplified Johnson–Cook
model of the FFRC applied in engineering structure analysis, numerical simulation was also
conducted using ABAQUS to simulate lattice structures subjected to quasi-static crushing and
drop-hammer impact.

4.3.1. Specimen and FEM Model

Lattice structures were man-made open, porous cellular solids with periodic truss
microstructures [38,39], which could meet many stringent requirements of engineering applications,
such as blast and ballistic resistance, impact load carrying, and energy absorption. In the present
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study, FFRCs were used to manufacture pyramidal lattice cores with additional horizontal trusses
for structure crashworthiness applications. The manufacturing process is illustrated in Figure 9. Six
types of truss strips were cut with a carving machine (3040, Shenzhen Yidiao, Shenzhen, China) with a
cutting precision of 0.03 mm from an FFRC sheet and then assembled into a pyramidal lattice structure
by strip slot insertion (see Figure 9a–d). To fix the lattice core, two pieces of glass fiber-reinforced
composite panels (see Figure 9e) were used to bond both sides of the lattice core forming a sandwich
structure (see Figure 9f). The specimen of the lattice structure measured 84 mm in length, 84 mm in
width, and 14 mm in height.

Figure 9. Pyramid lattice manufacturing: (a) Cutting truss strips of the lattice core from the fabricated
FFRC; (b) obtaining six types of truss; (c) assembling truss into a pyramidal lattice structure by strip
slot insertion; (d) assembled lattice structure; (e) top view of the specimen; (f) left view of the specimen;
(g) FEM model of the specimen.
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Numerical models were then established to predict the crushing performance of the lattice
structure under quasi-static and drop-hammer impact conditions in the out-of-plane loading direction.
A three-dimensional FEM model with the C3D8R element type was numerically established in
ABAQUS, (Figure 9g). The density of the elements was relatively higher in the core, and the element
size was 0.3 mm. The FEM model had exactly the same size as the tested specimen with setups. Two
plates were considered as rigid bodies to crush the specimen.

4.3.2. Quasi-Static and Impact Experiments

Quasi-static and drop-hammer impact experiments, corresponding to the loading condition the
of numerical simulation, were also conducted to validate numerical results to further evaluate the
effectiveness of the simplified Johnson–Cook model in typical engineering structures. Quasi-static
crushing tests were conducted on INSTRON 8801 (manufactured in Boston, MA, USA), where
specimens were placed centrally between the polished moving platen and the stationary platen. To
eliminate the influence of glass fiber panels, the platens were bigger than the specimens. All specimens
were crushed under the following conditions: stroke distance, 5 mm; loading rate, 2 mm/min; and
temperature, 25 ◦C. The crush-load curve with respect to the moving platen displacement was recorded
automatically into a computer. A drop-hammer testing system was used for impact crushing tests
to evaluate the effect of strain rate. The drop hammer, with a mass of 6 kg, was lifted by the pulley
to different heights and then released through the trip gear to achieve different levels of impact
energy, such as 30 and 45 J. The strain rates during impact crushing fell within the range of the SHPB
experiments. The specimens were located at the center of the base of the drop-hammer testing system,
directly opposite to the center of the mass of the hammer. The size of the hammer was larger than
that of the specimen. A force sensor was mounted on the base to measure the impact force. The
force response signals could then be recorded using a digital oscilloscope at a sampling frequency of
100,000 Hz and stored on a computer. Thus, the time history of crush load could be obtained from
the recorded data. In addition, during the impact tests, a high-speed camera was used to capture the
crushing deformation of the specimen with a rate of 2000 frame/s.

4.3.3. Numerical Simulation and Experiment Correlation

Numerical simulation of lattice structures under quasi-static and drop-hammer impact conditions,
as well as the corresponding experiments, was conducted. The results are depicted in Figures 10
and 11. At a glance, an acceptable agreement could be observed for both quasi-static and dynamic
results, indicating the validity of the simplified Johnson–Cook model. Table 3 summarizes the peak
load comparison between the numerical simulation and the experiments.
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Figure 10. Comparison between the experiment and the numerical simulation: (a) Crush load versus
displacement curve; (b) deformation process.

Under quasi-static conditions, the specimen exhibited typical progressive crushing (Figure 10).
When the moving platen came into contact with the specimen, the crushing load was generated and
increased linearly until the peak load was reached, corresponding to the critical Euler buckling load of
the truss. As compression continued, the crush load was followed by a decrease stage and kink-band
formation, resulting in the development of shear stresses, as featured in Figure 10b. In Figure 10a,
the crush load curves of both numerical and experimental results exhibited a highly similar trend,
except that the former was slightly higher than the latter. The deformation process was also similar
with each other; specifically, numerical simulation was able to well predict the kink band formation of
the specimen.
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Figure 11. Comparison of the time history of crush load and deformation obtained by FEM calculation
with its counterpart from experimental measurement under different impact energy: 30 J (a,b) and 45 J
(c,d).

Table 3. Comparison of peak load between numerical simulation and experiments.

Impact
Energy (J)

Peak Load (kN)
Deviation %Experiments

Simulation
No. 1 No. 2 No. 3 Mean

Quasi static 10.89 11.18 11.27 11.11 ± 0.16 11.73 5.58
30 J 15.13 18.74 12.79 15.55 ± 2.45 17.96 15.50
45 J 16.70 14.06 - 15.83 ± 1.32 18.40 16.23
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In the drop-hammer impact experiments, dynamic crushing was highly similar to the quasi-static
crushing with the same failure mechanism of Euler buckling. Figure 11 presents the time history
of crush load of both the numerical and experimental results under impact energy of 30 and 45 J,
and corresponding deformation results were also presented. The numerical results were close to the
experimental results, with a slight difference. In addition, the peak load was significantly higher
than the quasi-static crushing experiment, which illustrates the effect of strain rate. As for the lattice
structure subjected to crush loading with impact energy of 30 J, the curves of both the numerical
simulation and the experiment were clearly characterized by one peak corresponding to Euler buckling
initiation (Figure 11a). The deformation of the numerical simulation was also consistent with that of
experiments (Figure 11b). With regard to the lattice structure subjected to crush loading with an impact
energy of 45 J, both curves of the numerical simulation and the experiment were clearly characterized
by two peaks (Figure 11c). The first peak load also corresponded to Euler buckling initiation. The
second peak load was attributed to the impact between the top and bottom panels, when higher
impact energy beyond the truss bearing capacity resulted in lattice compaction (Figure 11d). The
crush load from the numerical simulation could efficiently predict the experimental results, despite
the slight difference with time delay of the second peak between the numerical simulation and the
experiment. These differences could be attributed to the following: First, the lattice structure was
manually manufactured and assembled, which inevitably introduced geometry errors, including
machining errors, assembly errors, size errors, defects, and so on. Euler buckling was known to be
extremely sensitive to these geometry errors, which failed to easily perform quantitative evaluation
and thus was not considered in the FEM models, leading to an error in crushing response prediction.
Second, the damage initiation and evolution model was not considered in the FEM model. The
development of an accurate, efficient, and robust damage model remained a challenge. Accordingly,
the developed simplified Johnson–Cook model without damage initiation and evolution could not
obtain a highly precise failure prediction under complex contact interfaces and stress state.

However, considering the complexity of the actual structure, the accuracy of numerical simulation
could be acceptable. Thus, adequate confidence in the present numerical studies with the developed
simplified Johnson–Cook model could be extended to engineering structure analysis.

5. Conclusions

Flax fiber-reinforced composites were expected to play an increasingly important role in the design
of engineering structures subject to dynamic loadings because of the requirements for lightweight,
low cost, recyclability, and excellent mechanical properties. Thus, full understanding of the dynamic
material behavior of FFRCs became a priority. In this study, FFRCs were fabricated by VARI. The effects
of strain rate on the mechanical properties of the FFRCs were investigated using quasi-static and SHPB
experiments. Distinguishing strain-hardening behaviors were observed under both quasi-static and
dynamic loading conditions, which revealed that FFRCs exhibited evident strain-rate sensitivity. On
the basis of the experimental results, a simplified Johnson–Cook model was obtained and verified by
numerical simulation of SHPB experiments. Moreover, the dynamic behavior of the lattice structures
composed of FFRCs was numerically simulated and compared with the quasi-static and drop-hammer
crushing experiments. The results evidently revealed that the proposed simplified Johnson–Cook
model was able to accurately describe the dynamic mechanical behaviors of the FFRC material. Overall,
the results of this study could be a solid step to elucidate the dynamic mechanical behaviors of the
FFRC material and could provide valuable guidance for future applications in engineering.
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