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Abstract: It is well known that three-dimensional (3D) printing is an emerging technology used
to produce customized implants and surface characteristics of implants, strongly deciding their
osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational
printing parameters in order to tailor the surface micro-characteristics of the printed implants during
additive manufacturing by an in situ, controlled way. The laser path and hatching space were
responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and
bulbous–stripy composite surface (BS) were determined by contour scanning. A nano-sized structure
could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing
Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical
microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters.
Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly
enhanced, and the addition of nano-sized structures could be further improved. The BS surface with
nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present
research demonstrated an in situ, controlled way to tailor and optimize the surface structures in
micro-size during the 3D printing process for an implant with higher osseointegration ability.

Keywords: 3D printing; Ti implants; osteogenesis; micro-nano structured surface; in situ control

1. Introduction

Three-dimensional (3D) printing technology is one of the most effective and economical ways
to make individualized implants [1] because of the ability to structure arbitrary and complicated
geometry with low cost and short time [2]. Titanium (Ti) and its alloy have good mechanical properties,
strong corrosion resistance, high mechanical properties, and excellent cytocompatibility. Therefore,
they have been widely used for orthopedic surgery and other medical applications [3–10]. There has
been plenty of research about 3D-printed Ti implants. Nonetheless, most of this research was focused
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on the mechanical properties instead of the surface structures of the implants [11–13]. However,
the surface structures of implants are vital to regulate cell viability in the development of tissue
engineering and regenerative medicine [14,15]. The microstructure of metal implants plays a vital role
in cellular biocompatibility [16,17]. On the one hand, microstructures are conducive to cell adhesion
and proliferation; therefore, they can significantly enhance cell responses [18,19]. On the other hand,
microstructures are able to determine the mechanical interlocking degree with the host bone and
promote complex interaction between a synthetic foreign body and the host bone, which will further
affect the key property of an implant’s osseointegration ability and determine the success or failure
of the implants. In addition, researchers have demonstrated that unique nanostructures may trigger
related signal channels of cells [20,21], further affecting the pivotal role of cell morphology, adhesion,
proliferation, and migration [22]. Thus, the nanostructure of metal implants will make a difference in
cellular response and determine the bone-bonding strength with the host bone. It has been indicated
that the micrometer and nanometer scale of surface roughness could improve the adhesion and growth
of cells on a biomaterial surface [23–25].

At present, to promote the biological functions of 3D printed implants, surface modification,
such as biomimetic coating, Hydroxyapatite (HAP) polymerization, acid etching, sandblasting,
heat treatment, chemical treatment, Mg ion implantation, and so on [13,26–30], is applied to form
microstructures on the surface of 3D-printed implants. Nevertheless, surface modification is time
consuming and expensive. To construct specific microstructures during the 3D printing process will
work wonders in promoting the osseointegration ability of the 3D-printed implant; however, how to
control the surface microstructure in situ remains a challenge.

During the 3D printing process, microstructures are able to be developed directly when the Ti
alloy microsphere is melted by the laser. Different printing parameters, such as laser path and contour
printing, will cause a significant change in the microstructure of the 3D-printed implants [31]. A
bi-directional laser path will make stripy structures on both the top and side surface, while contour
rescan will flattening the stripy structures on the side surface [32] but form a spherical topography.
A composite structure of stripy and spherical characteristics can be developed without contour
rescanning. Meanwhile, hatching space and laser powder may regulate the surface microstructure
as well. These parameters are an efficient way to control the surface structures in situ, which could
further regulate the cell behavior and viability [16,17,33].

In this study, we attempted to adopt an in situ, controlled way to control surface
micro-characteristics of titanium alloy implants in the period of their additive manufacturing by
selecting rational printing parameters. The resulting, typical, surface, micro-sized morphologies were
evaluated with respect to cytocompatibility, and the relationship between the tailored morphologies
and cellular osteogenic differentiation was also investigated with the aim to provide guidance for
3D-printed implants with better osseointegration.

2. Materials and Methods

2.1. 3D Printing of Ti Alloy Implants

A 3D printing machine (EP-M250, Shining 3D Co. Ltd., Hangzhou, China) with a fiber laser was
used to construct the Ti alloy implants. The 3D printing process parameters (laser power, scanning
rate, hatching space, and layer thickness) were controlled and adjusted, specifying the laser power
to ±30% of 500 W. The hatching space was ±0.03 mm of 0.08 mm, the scanning rate was ±30% of
1280 m·s−1, and the layer thickness was 0.03 mm. The printed Ti alloy implants (TiP) were constructed
in the form of square substrates (250 × 250 × 300 mm3) in the presence of an Argon atmosphere
(~500 ppm O2). The constructing process started by laying a thin, even layer of Ti6Al4V powder on
a substrate plate in a building chamber. After the Ti powder was laid, a high-power focused laser
(DLR-976-1500 IPG Photonics, Oxford, MA, USA) was used to melt the selected areas pursuant to the
processed data. Once the laser scanning was finished, the constructing platform was lowered and a
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new layer of Ti powder was deposited on top, where the laser proceeded to scan a new layer. The
process was repeated for successive layers of Ti powder until reaching the required thickness (1 cm).
Once the 3D printing process was finished, wire cutting was used to cut the printed Ti samples from
the sample substrate plate.

2.2. Hydrothermal Treatment

Hydrothermal treatment was used to obtain the nanostructure on the 3D-printed, Ti alloy,
microsphere surface. The hydrothermal solution was prepared from 5 M NaOH. 80 mL hydrothermal
solution, and the 3D-printed Ti alloy substrates (TiP) were placed into a 100 mL Teflon vessel of the
hydrothermal autoclave (YZHR-100, Yan Zheng Instrument, Shanghai, China). The hydrothermal
autoclave was put into an oven at 80 ◦C for 24 h. The autoclave vessel was then taken out and cooled
down to room temperature. TiP substrates with nano-microstructures were taken and washed with
deionized water and ethanol.

2.3. Characterization of Prepared Ti Alloy Implants

Field-emission scanning electron microscope (FESEM, Hitachi Su-70, Hitachi, Tokyo, Japan) was
used to characterize the surface topography of the prepared implants. Furthermore, It was used to
observe the cell adhesion on different samples.

2.4. Protein Adsorption

The protein adsorption was studied by soaking the samples in a 24-well plate with a 500 µL
solution of minimum essential medium-alpha modification (α-MEM) containing 10% fetal bovine
serum (FBS) at 37 ◦C for 24 h. To detach the protein, the samples were placed in another 24-well
plate and put in 500 µL of 1% sodium dodecyl sulfate solution (SDS-CH3(CH2)11SO4Na, Sinopharm
Chemical Reagent Co. Ltd., Shanghai, China) for 2 h. The bicinchoninic acid assay kit was utilized to
determine the detached protein concentration in the solution.

2.5. Cell Culture

Mouse calvaria-derived preosteoblastic cells (MC3T3-E1, CRL-2594, and ATCC) were employed.
The MC3T3-E1 cells were cultured in minimum essential medium-alpha modification (α-MEM, Gibco)
supplemented with 10% FBS (PAA, Australia), 1% antibiotic solution containing 10,000 units/mL
penicillin and 10 mg/mL streptomycin (Gibco), 1% sodium pyruvate (Gibco), and 1% MEM
nonessential amino acids (Gibco). The cells were cultured under a humidified 5.0% CO2 atmosphere at
37 ◦C. The cultured cells were trypsinized with 0.25% trypsin and 1 mM ethylenediaminetetraacetic
acid (EDTA, Gibco), centrifuged, spread in fresh culture medium, and subcultured on substrate plants.

2.6. Cell Viability

CCK-8 (Dojindo Laboratories, Kumamoto, Japan) assay was applied to evaluate cell viability after
a density of 5 × 104 cells/cm2 cell was cultured over 1 day and 5 days. The samples were washed 3
times by PBS, 500 µL cell suspension was added with a 50 µL CCK-8 solution in new 24-well plates,
incubated for 3 h at 37 ◦C, and then, 120 µL mixed solution was transferred to a 96-well plate. The
absorbance value (OD) was tested by a microplate reader at 450 nm.

2.7. Cell Differentiation

Cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MC3T3-E1 cells were
inoculated on different samples in a 24-well plate. The culture medium was changed every 3 days.
After 7 or 14 days of culture, the samples were transferred to another 24-well plate. The cells were lysed
for 10 min and then centrifuged for 15 min. In order to obtain the content of ρ-nitrophenyl phosphatase,
20 µL supernate was used by ALP assay kit (Wako, Osaka, Japan) and then determined by a microplate
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reader (the absorption wavelength was set to 405 nm). Meanwhile the content of the cellular proteins
was determined through a Bicinchoninic acid (BCA, Thermo Fisher Scientific, Shanghai, China) kit
by using 25 µL supernate. ALP activity was the value of ρ-nitrophenyl phosphatase divided by the
content of the cellular proteins.

2.8. Cellular Cytoskeleton Morphology

Cellular cytoskeleton morphology was observed by laser scanning confocal microscopy (A1,
Nikon, Tokyo, Japan) after immunofluorescent staining. Cells with a density of 1 × 104 cells/well
were cultured for 1 day on the 3D-printed Ti substrate and fixed for 15 min in 4% paraformaldehyde.
Then, the cells were permeabilized in 0.4% Triton X-100/PBS for 15 min. A quantity of 250 µL
phalloidin (PHDR1, Cytoskeleton, Inc.) was used to stain the actin of the cell cytoskeleton for
30 min. Then, the samples were washed by 0.05% Tween 20/PBS 2 times. Next, 250 µL DAPI
(4’,6-diamidino-2-phenylindole)(DAPI, H-1200, VECTOR) was applied to stain the nucleus. Then,
0.05% Tween 20/PBS was used to wash the samples 2 times, and antifade mounting medium was
added and placed without light and ultimately observed by laser scanning confocal microscopy
(A1, Nikon).

2.9. Statistical Analysis

A mean of ±standard deviation (SD) was applied for all the data mentioned. By using one-way
analysis of variance (ANOVA), statistical analyses were carried out and Scheffe’s post hoc test with
SPSS software was used for multiple comparison tests. It was considered statistically significant when
* P < 0.05 (* P < 0.05, ** P < 0.01, *** P < 0.001).

3. Results

3.1. The In Situ Tailored Surface Structures of 3D-Printed Ti Alloy Implants

There were three typical microstructures tailored by varying the printing parameters. A stripy
structure (s) was constructed by zig-zag laser path, a bulbous structure (B) was formed with contour
scanning, and the bulbous–stripy composite structure (BS) was obtained without contour scanning.
The surface topography of the 3D-printed Ti alloy implants were characterized by scanning electron
microscopy [34], as shown in Figure 1.
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Figure 1. SEM images of three typical surface topographies: (a) stripy structure (S), (b) bulbous
structure (B), and (c) bulbous–stripy composite surface (BS); (d) high-resolution images of BS
microstructures; and (e) topography of Ti substrate (control).
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The results showed that the surface structure of S was striation, and the width of the striation
was 90 µm. The amount of titanium microsphere on the surface of the Ti alloy was estimated to be
~60 per mm2 (Figure 1a); however, the surface of B was denser than the surface S of microspheres
of various sizes, ranging from 10 to 53 µm. The amount of microsphere on the surface of the Ti
alloy was estimated to be ~1000 per mm2. As shown in Figure 1c, the surface structure of BS was a
combination of striation and microspheres. There were plenty of microsphere structures arranged on
line-like structures. The width of the line-like structure was an estimated ~160 µm, and the number
of microsphere structures was estimated ~700 per mm2. This distinctive microstructure feature was
comparable in size to the cells and thus beneficial to cell response.

Higher resolution images revealed that the microspheres’ structures were melted into the surface
and formed a firm and rough microstructure compared with commercial Ti, which is smooth, as shown
in Figure 1d,e.

3.2. The Post Hydrothermal Treatment of the Tailored Surface Structures

Hydrothermal treatment was carried out to introduce TiO2 nanostructures (Figure 2). The SEM
images illustrate nano-pores on the surface of the microsphere with an estimated average size of
~200 nm, while maintaining the microstructure feature topography.
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Figure 2. (a) SEM image of microstructures after hydrothermal treatment and (b) high-resolution
images of porous nanostructures on the microstructure.

3.3. Surface Composition

Observed by SEM, the surface of T, B, and BS are not completely smooth. There is graininess
on the surfaces, as shown in Figure 3a. To identify the graininess, Energy Dispersive Spectrometer
(EDS) was applied, as shown in Table 1. The titanium, aluminum, and vanadium elements on the
microsphere and substrate were similar and were speculated to be Ti6Al4V. The oxygen content on the
microsphere was higher due to oxidization during the heat treatment. The elements of graininess had
a much higher quantity of aluminum and oxygen. Meanwhile, surface scanning by SEM was used to
analyze the elements of the precipitates. As shown in Figure 3b–e, aluminum and oxygen elements
were gathering on the graininess. The results of the two items certified that the graininess was Al2O3.

Table 1. EDS determination of the element content of the different areas of the three-dimensional
(3D)-printed surface.

Area Ti K Al K V K O K

Substrate 73.98 5.51 3.28 14.86
Microsphere 72.44 5.46 3.16 15.87
Graininess 35.22 16.00 2.01 46.77
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3.4. In-Vitro Evaluation

3.4.1. Protein Adsorption

The protein adsorption properties of different samples were tested, as shown in Figure 4. N and
BS had similar amounts of protein adsorption quantities but much more than the control and S. Thus,
microspheres played a vital role in protein adsorption. After hydrothermal treatment, the samples had
higher protein adsorption simultaneously, and furthermore, defined nanostructures could improve
protein adsorption.
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3.4.2. Cell Viability

After a one-day culture, the MC3T3-E1 cells’ adhesion ability was investigated by a CCK-8 assay
analysis. As shown in Figure 5, B and BS had similar cell attachment ability, which proves that
spherical structures had a great impact on cell attachment. However, the porous structures had lower
cell attachment.
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Cell proliferation was tested after a five-day culture. As shown in Figure 5, B and BS exhibited
more markedly increased cell proliferation than the control and S, again verifying that spherical
microstructures were able to motivate cell viability. The cell proliferation of the nano-microstructures
of B and BS were improved, while S was decreased. These data illustrated that the nanostructure could
play a positive role with the help of microspherical structures.

3.4.3. Cell Distribution on Various Surfaces

As shown in Figure 6, the cells were distributed on the porous structure of S (Figure 6a). However,
when observing B (Figure 6b) and BS (Figure 6c), the cells were unable to crawl onto the microspheres,
only distributing around the microspheres. This indicated that microstructures play an important role
in cell distribution.

To further confirm how the surface structures affect the distribution of cells, cell staining was
applied. Confocal laser scanning microscope (CLSM) images showed that on B (Figure 7b) and BS
(Figure 7c), the cells were distributed on the substrate instead of on the microspheres. However, cells
were able to attach on and around the microsphere after nanostructures were introduced, as shown in
Figure 7e–f. Thus, nanostructures were conductive to cell adhesion.

Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

 

Figure 4. Protein adsorption ability analysis of MC3T3-E1 cells on different surface structures. 

3.4.2. Cell Viability 

After a one-day culture, the MC3T3-E1 cells’ adhesion ability was investigated by a CCK-8 assay 
analysis. As shown in Figure 5, B and BS had similar cell attachment ability, which proves that 
spherical structures had a great impact on cell attachment. However, the porous structures had lower 
cell attachment. 

Cell proliferation was tested after a five-day culture. As shown in Figure 5, B and BS exhibited 
more markedly increased cell proliferation than the control and S, again verifying that spherical 
microstructures were able to motivate cell viability. The cell proliferation of the nano-microstructures 
of B and BS were improved, while S was decreased. These data illustrated that the nanostructure 
could play a positive role with the help of microspherical structures. 

 
Figure 5. Cellular viability evaluation (CCK-8 assay) of MC3T3-E1 cells on different surface surfaces 
after one-day and five-day cultures. 

3.4.3. Cell Distribution on Various Surfaces.  

As shown in Figure 6, the cells were distributed on the porous structure of S (Figure 6a). 
However, when observing B (Figure 6b) and BS (Figure 6c), the cells were unable to crawl onto the 
microspheres, only distributing around the microspheres. This indicated that microstructures play 
an important role in cell distribution.  

To further confirm how the surface structures affect the distribution of cells, cell staining was 
applied. Confocal laser scanning microscope (CLSM) images showed that on B (Figure 7b) and BS 
(Figure 7c), the cells were distributed on the substrate instead of on the microspheres. However, cells 
were able to attach on and around the microsphere after nanostructures were introduced, as shown 
in Figure 7e–f. Thus, nanostructures were conductive to cell adhesion. 

   
Figure 6. Cont.



Materials 2019, 12, 815 8 of 13
Materials 2019, 12, x FOR PEER REVIEW 8 of 14 

 

 

Figure 6. The fluorescence staining images representing the distribution of cells (a) S, (b) B, (c) BS. 

   

   
Figure 7. The confocal laser scanning microscopy (CLSM) images representing cellular distribution 
on different surfaces: (a) S, (b) B, (c) BS, (d) PS, (e) PB, (f) PBS. The circles identify the nanostructured 
microspheres. 

3.4.4. Cell Differentiation 

Alkaline phosphatase (ALP) expression of MC3T3-E1 cells as an osteogenic differentiation 
indicator in the early stages is shown in Figure 8. The expression of ALP protein on (BS) was 
remarkably enhanced at day 7 and 14. The cells on BS showed significant upregulated ALP activity 
compared with that of the other structures. In addition, BS showed much more differentiation at day 
14, notably higher than the other structured surfaces. The variability in cell differentiation for the 
structures revealed a similar trend with respect to cell adhesion, as well as proliferation. Obviously, 
the cells on the BS structure had better osteogenic differentiation, which might be attributed to the 
initial cell viability. 

Figure 6. The fluorescence staining images representing the distribution of cells (a) S, (b) B, (c) BS.

Materials 2019, 12, x FOR PEER REVIEW 8 of 14 

 

 

Figure 6. The fluorescence staining images representing the distribution of cells (a) S, (b) B, (c) BS. 

   

   
Figure 7. The confocal laser scanning microscopy (CLSM) images representing cellular distribution 
on different surfaces: (a) S, (b) B, (c) BS, (d) PS, (e) PB, (f) PBS. The circles identify the nanostructured 
microspheres. 

3.4.4. Cell Differentiation 

Alkaline phosphatase (ALP) expression of MC3T3-E1 cells as an osteogenic differentiation 
indicator in the early stages is shown in Figure 8. The expression of ALP protein on (BS) was 
remarkably enhanced at day 7 and 14. The cells on BS showed significant upregulated ALP activity 
compared with that of the other structures. In addition, BS showed much more differentiation at day 
14, notably higher than the other structured surfaces. The variability in cell differentiation for the 
structures revealed a similar trend with respect to cell adhesion, as well as proliferation. Obviously, 
the cells on the BS structure had better osteogenic differentiation, which might be attributed to the 
initial cell viability. 

Figure 7. The confocal laser scanning microscopy (CLSM) images representing cellular distribution
on different surfaces: (a) S, (b) B, (c) BS, (d) PS, (e) PB, (f) PBS. The circles identify the
nanostructured microspheres.

3.4.4. Cell Differentiation

Alkaline phosphatase (ALP) expression of MC3T3-E1 cells as an osteogenic differentiation
indicator in the early stages is shown in Figure 8. The expression of ALP protein on (BS) was
remarkably enhanced at day 7 and 14. The cells on BS showed significant upregulated ALP activity
compared with that of the other structures. In addition, BS showed much more differentiation at day
14, notably higher than the other structured surfaces. The variability in cell differentiation for the
structures revealed a similar trend with respect to cell adhesion, as well as proliferation. Obviously,
the cells on the BS structure had better osteogenic differentiation, which might be attributed to the
initial cell viability.
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4. Discussion

4.1. In Situ, Controlled Surface Structure

4.1.1. In Situ, Controlled Surface Microstructure

During the 3D printing process, Ti alloy powders are laid to form a layer with a set thickness,
and then, a laser beam scans the powder selectively with a given laser power, hatching space, and
scanning path. The powders, upon scanning, are melted immediately and then rapidly cooled and
solidified. The surrounding powder that has not been scanned or melted is adsorbed by the melted
liquid Ti alloy due to capillary force and then firmly attached when the liquid Ti alloy solidifies. At
the end of a layer printing, the contour is rescanned if needed. Once the layer is completely printed,
powders are laid on the previous layer and melted again, the above operations are repeated, and the
layers are superimposed above layers until the printing is completed. The schematic of these Selective
Laser Melting (SLM) processing parameters are shown in Figure 9.

Compared with forming different surface structures by controlling printing angles, such as a
0 angle, 45 angle, and 60 angle [35], varying the printing parameters is a much more efficient and easier
way to tailor surface structure.

When the laser scans the powder in bi-directional (zig-zag) path, the powder is melted by a
high-power laser along the laser path and the surface temperature difference between the solidified
part and the laser beam lead to surface tension force exerting a shear force on the liquid surface, thus
causing a rippling effect and forming a stripy structure (named as S) along laser path. The width of the
strip will be determined by the hatching space when the hatching space increased.

When the laser beam reaches the edge of the samples, the laser path is retraced, and it results in
the formation of embossment on the side surface of the sample. After a few layers of superimposing
the embossment, a stripy structure along the Z-axis formed, with double the width of the hatching
space. Meanwhile, as a result of capillary force, the surrounding powder that has not been scanned or
melted is firmly adsorbed on the side surface of the sample by a molten pool when the molten material
is cooled and solidified, forming a spherical structure on the stripy structures. Thus, a composite
structure of stripy structures and bulbous structures was developed on the side face of the sample,
called BS (bulbous–stripy structure).

When the laser rescans the contour of the samples, the stripy structure along the Z-axis is melted
under a high-energy laser beam, the molten pool is flattened, and wettability is increased. The stripy
structures then disappear, and the surrounding powder that has not been scanned and melted is
adsorbed and spherized, resulting in a bulbous microstructure (called B).
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Hence, during the 3D printing process, by adjusting the hatching space, laser path, and contour
rescanning, the topography of the samples can be tailored in situ. In comparison with sandblasting
and other post-treatments, an in situ, controlled way of altering the surface microstructure is much
more convenient and efficient [29,36]. Furthermore, this method is able to avert radial fracture or
damage to the implants caused by post-treatment [37].
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4.1.2. Construction of Nanostructure

Hydrothermal treatment was carried out under high temperature and high pressure. The chemical
bond of O-Ti-O was broken by the NaOH solution. Na+ ions penetrated into the TiO2 crystal, leading
to the instability of the crystal and peeling off from the sample surface, becoming flake-like sodium
titanate, after which it dissolved and diffused in the solution. Sodium titanate could not immediately
diffuse into the solution very evenly; therefore, it concentrated on the surface of the sample and
led to the concentration difference of sodium titanate, promoted the growth of sodium titanate in
multi-dimensional scaling, and formed a porous nanostructure on the surface.

4.2. Analysis of Cellular Responses on the Tailored Surface Structures of the Implants

Surface topography formed by microscale and nanoscale structures could make a difference with
respect to the cell proliferation, behavior, and differentiation and further affect the integration between
the implants and bone tissue [33,38–40]. In this study, three different surface topographies, S, B, and
BS, were tailored in situ on implants by 3D printing (Figure 1). Furthermore, hydrothermal treatment
was applied to form nanostructures (Figure 2). Cell distribution on different surfaces was observed.
The cells could rarely distribute on the microsphere substrate (Figures 6 and 7a–c). After treatment,
the cells were capable of attaching on and around the microspheres (Figure 7d–f).
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The cells were not able to crawl onto the microstructures, which were larger, but a porous
nanostructure provided more adhesion sites for the cells. This may be caused by the improved protein
absorption by the nanostructured surfaces, as Woo noted that nanostructures could create a more
favorable environment for cells and improve the features of protein adsorption [41].

Cell adhesion is one of the first factors causing implants to adhere with the host bone and further
influencing cell behavior, such as cell proliferation and differentiation. High cell proliferation could
lay the foundation for cell differentiation. B and BS had much higher cell attachment ability and cell
differentiation ability than S and the control (Figure 5). This demonstrated that surface topography
plays a vital role in cell viability, and microspheres could dramatically motivate cell adhesion and
proliferation. It is noteworthy that the nanostructured group had lower cell adhesion ability but
higher cell proliferation ability than the untreated group. As a result of the introduction of Al2O3,
precipitation was detrimental to cell adhesion (Figure 3) but beneficial to cell proliferation. Moreover,
cell proliferation on different structures illustrated that the nanostructure could play a positive role
with the help of a microspherical structure.

Cell osteogenic differentiation is considered the foremost property for implants, because it
is closely related with osseointegration ability. It has been demonstrated that rough surface
microstructures may hasten the osseointegration of implants [42]. BS showed favorable cell
differentiation ability, which was notably higher than other structured surfaces (Figure 8). Cell
differentiation ability displayed the same trend as protein adsorption (Figure 4) and cell viability
(Figure 5). Hence, it can be concluded that surface topography had an impact on protein adsorption
and then made a difference with respect to the cell adhesion site, further affecting cell viability and
differentiation. Thus, osseointegration of implants can be regulated by tailoring surface structure.

5. Conclusions

In this work, we demonstrated that tailored surface microstructures of 3D-printed implants could
be regulated in situ by changing printing parameters. The tailored surface microstructures played a
crucial role in the biocompatibility of the implants. Further, the initial osteointegration improved when
the porous nanostructures were formed by hydrothermal treatment. This work provides theoretical
guidance and technical support for in situ surface design and processing of 3D-printed implants with
high osteogenic and biological responsiveness.
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