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Abstract: Adsorbed metal atoms and metal doping onto TiO2 can effectively enhance the optical and
photocatalytic activity of photocatalytic efficiency of titanium dioxide (TiO2), favoring the extension
of its optical absorption spectrum and the efficiency of hydrogen generation. To investigate the
possible mechanism causing potential improvement of photocatalytic activity, the electronic and
optical properties of the anatase TiO2(101) plane with different adsorbed metal atom have been
theoretically calculated through density functional theory (DFT) method. Adsorption of Pd and Ru
atoms increases the delocalization of the density of states, with an impurity state near the Fermi level.
Moreover, the investigated adsorbed metal atoms (Mo, Pd, Ru, Rh) narrow the band gap of anatase
TiO2, thus enhancing the probability of photoactivation by visible light. The orbital hybridization of
the d orbit from the adsorbed metal atom and the p orbit from the O of the defect site increases the
Schottky barrier of the electronic structure.

Keywords: density functional theory (DFT); anatase TiO2; TiO2(101) plane; electronic structure;
optical absorption; adsorption mechanism

1. Introduction

Concerning global energy and environmental issues, the development of technologies for
environmental pollution control and clean and efficient energy is very important. Beginning with the
pioneering research on photocatalysis water splitting of titanium dioxide (TiO2) electrodes reported
in 1972 [1], photocatalysis technology using semiconductors and solar energy has been attracting
tremendous attention [2], and various particulate overall water splitting photocatalysts have been
investigated [3–6]. Titanium dioxide (TiO2) has been widely applied in many fields, including pigments
productions, photocatalysis, hydrogen storage, and production and novel solar cells, thanks to its
favorable properties including nontoxicity, high stability, abundant availability, etc. [7,8]. However, as a
wide band-gap semiconductor (3.2 eV for anatase and 3.0 eV for rutile), TiO2 can only absorb ultraviolet
(UV) radiation, which amounts to about 5% of the solar energy [9]. To overcome these shortcomings,
it is critical to reduce the band gap of semiconductors, such as TiO2, so that the absorption properties
might match well with the solar spectra. In order to achieve this target, numerous attempts have been
made with respect to modifying the energy band and structure of TiO2, such as ion doping or metal
adsorption, semiconductor coupling, dye sensitization, etc. [10–14]. Compared with the others, metal
adsorption or ion doping is the most direct and efficacious method.
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Among the reported natural polymorphs of TiO2 (rutile, anatase, and brookite), anatase phase
commonly exists in TiO2 nano-scale materials [15,16]. Under equilibrium conditions, both the natural
and synthetic anatase TiO2 crystals grow along (001) direction, which exposes the low-energy (101)
facets thereby minimizing the surface energy and increasing the crystal stability by forming truncated
bipyramidal shapes [17,18]. Moreover, theoretical calculation reveals that the surface energy of major
exposed facets of anatase TiO2 crystal follows the order (110) > (001) > (100) > (101) [19–21]. Thus, the
(101) plane is the most stable one in anatase TiO2 and represents the dominant crystalline face [22].

Adsorption of metals onto TiO2 are an effective method to narrow the band gap of TiO2 and
improve the photocatalytic activity [23]. Recently, theoretical calculations have been widely used to
study the photocatalytic principle of metal being doped into the inner lattice of TiO2 [24]. The results
of the theoretical calculations demonstrated the mechanism of the photocatalytic activity intensified
by the doped metal cluster. Furthermore, some studies on the deposition of metal onto the surface
of TiO2 are mainly focused on the analysis of photocatalytic activity from the experimental point of
view [25–27]. However, fewer researchers have focused on the changes of surface electronic structure
caused by the deposition of metal clusters. Furthermore, the Mulliken charges, electrostatic potential,
and averaged differences were investigated to provide evidence for practical applications. It is critical
to explain at the atomic scale the mechanism of metals being adsorbed on the surface of TiO2 to
improve photocatalytic activity by researching the electronic structure and optical properties of metal
cluster deposited TiO2.

In this work, the electronic and optical properties of structures composed of metals (M = Run,
Rhn, Mon, and Pdn, n = 1−2) adsorbed on the anatase TiO2 (101) plane (hereafter abbreviated as
M/TiO2) are investigated by density functional theory (DFT) calculations to indicate the mechanism
for narrowing band gap and intensifying the migration of photo-induced carriers.

2. Computational Methods and Models

All calculations were based on density functional theory (DFT) with the exchange-correlation
functional at the generalized gradient approximation (GGA) level parametrized by Perdew, Burke, and
Ernzerh (PBE) [28], as implemented in the Cambridge Serial Total Energy Package (CASTEP) codes [16],
combined with ultrasoft pseudopotentials (USPP) [29]. In this procedure, the electronic wave function
was expanded in the plane wave basis sets with a cutoff energy of 400 eV. The minimization algorithm
was the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme [30]. The k-points grid sample of the
Monkhorst Pack scheme was set as 3 × 2 × 2 in the irreducible Brillouin zone for the slab model of
M/TiO2. Moreover, the atomic coordinates were optimized by minimizing the total energy and atomic
forces to obtain accurate results. The convergence criteria were set as follows: the maximal force on
the atoms was 0.01 eV/Å, the stress on the atomic nuclei was less than 0.05 GPa, the maximal atomic
displacement was 2 × 10−3Å, and the maximal energy change per atom was 2 × 10−5 eV.

The unit cell of anatase TiO2 (as shown in Figure 1a) has a symmetry of space group
D19

4h-I41/amd [31], the lattice constants of the primitive anatase TiO2 from the literature and the
relative errors of GGA calculations are listed in Table 1 [31]. A slightly larger relative error of c was still
less than 2.5%, so the computational methods are reasonable. The calculated band gap of anatase phase
TiO2 is 2.0 eV. This is less than the experimental value of 3.2 eV. The density functional theory omits
the discontinuity of the electron exchange correlation potential, which results in a deviation of 30–50%
of the basic band gap width from the experimental value. The scissors operator effectively describes
the difference between the theoretical and experimental band gap values. In order to compensate for
the band gap difference, the scissor operator is set to 1.2 eV during the analysis. Fortunately, the above
contents being omitted has not affected the computational results of the electronic structure. The (101)
anatase was simulated by periodic (2 × 2) slab models with four O–Ti–O layers and a 10 Å vacuum
layer. A single slab is shown in Figure 1b. For the optimization of the unit cell geometry, the bottom
two O–Ti–O atomic layers were considered as fixed and the upper two atom layers were relaxed.
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The valence electron configurations Ti (3d24s2), O (2s22p4) were analyzed for their contribution to
the photocatalytic activity. The bonding of anatase TiO2 between anions and cations as a tetragonal
system shows mixed bonding characteristics: dominant ionic binding and partial covalent bonding [32].
The coordination numbers for anions and cations are 6 and 3, respectively. The octahedral phase of
[TiO6]8− is interconnected by common bonds to form an anatase. Compared with the bulk phase, the
coordination environment of anions and cations on the top of the layer with a clean anatase with (101)
face is changed: two-fold coordinated anions and five-fold coordinated cations are present on the first
and second atomic layers, respectively (Figure 1b). Furthermore, on the anatase TiO2(101) plane, the
chains of two-fold coordinated O atoms called “bridging” are parallel to the (101) direction and rise
above the plane of the surface. We investigated the adsorption of noble metal M (M = Run, Rhn, Mon,

and Pdn, n = 1−2) on the sites of two-fold coordinated anions (O2c, in other words, bridging O atoms)
and five-fold coordinated cations (Ti5c) in the anatase TiO2(101) plane.

The stability of the electronic structures of M/TiO2 (101) had been estimated by the adsorption
energy Eads = Eatom + Esurface − Eatom/surface. Here, Eatom is the energy of an isolated metal atoms,
Esurface is the energy of clean (101) surface slab, and Eatom/surface is the total energy of the surface with
metal atom (M) adsorption [33].

Table 1. Lattice constants for anatase TiO2 and their differences with respect to experimental measurements.

Lattice Constants (A)

Category a/b c

This work 3.796 9.712
Experimental 3.782 9.502

Difference 0.368% 2.162%
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Figure 1. Model of the adsorbed structure: (a) the unit cell of anatase TiO2; and (b) the slab of the
anatase TiO2(101) plane, the distances represented in Figure 1b are the calculated lengths of the O2c-Ti5c

bond (1.843 Å) and O2c-Ti6c bond (1.828 Å). Gray and red spheres represent Ti and O atoms, respectively.

3. Results and Discussion

Two configurations of metal M atoms’ adsorption on the anatase TiO2(101) plane were modeled.
The optimized adsorption configurations are given in Figure 2. In the monoatomic adsorption
configuration, one of the M atoms was adsorbed between two O2c atoms on the anatase TiO2(101)
plane and formed two M-O bonds (shown in Figure 2a). Another was in the diatomic configuration,
and double M atoms were bonded between two O2c and Ti5c atoms on the anatase TiO2(101) plane
(shown in Figure 2b).
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3.1. Structure of Surface Adsorption

The calculated O-Ti bond lengths on free (101) anatase surface (i.e., pristine anatase) were 1.843 Å
and 1.828 Å (as indicated in Figure 1b) for O2c-Ti5c and O2c-Ti6c, respectively. Hence, the average O-Ti
bond length for pristine (101) surface was found to be 1.8355 Å. The presence of an adsorbed metal
atom (M) modifies the electronic structure and the bond configuration: a summary of the structural
parameters modified by Ru, Rh, Mo and Pd adsorbed atoms is reported in Table 2 for both monoatomic
and diatomic adsorption structure. More in detail, Table 2 reports the calculated average O-Ti bond
length, the difference between O-Ti bond length of free and metal-adsorbed (101) anatase surface, the
adsorption energy, the electrostatic potential and the Mulliken charge (see next for further description).

In diatomic configuration, the (101) plane is significantly relaxed and O2c atoms are dragged
out from their primitive position due to the adsorption of metal atoms. The bonds of O2c-Ti5c

and O2c-Ti6c were elongated. Compared with the primitive anatase TiO2 (101) plane, in both
adsorption configuration, the largest and smaller increase for O2c-Ti5c and O2c-Ti6c bond lengths
are obtained via Mo adsorption and Ru adsorption, respectively. Compared with the diatomic
adsorption configuration, the O2c-Ti5c and O2c-Ti6c bond length change is smaller than the monoatomic
configuration. Furthermore, the changes in O2c-Ti5c and O2c-Ti6c lengths affect the stability of surface
adsorption, as it is more stable for smaller bond changes.

The adsorption-induced shifts of average O2c-Ti5c and O2c-Ti6c bond lengths in the two
investigated adsorption configurations indicate that the adsorption of metal atoms on the anatase
TiO2(101) plane is chemisorption, resulting in a change in the local O-Ti bond (indicated as ∆ in Table 2).
Table 2 also reports the calculated adsorption energies for the M atoms: it is noted that all of them
are negative. This indicates a favorable process [34]; i.e., the investigated metal should be steadily
adsorbed onto the anatase TiO2(101) plane.

3.2. Electronic Structure

The potential distribution can provide information about the electric field and transfer of
photogenerated charges in the M/TiO2 (101) systems. As reported in Table 2, the average electrostatic
potential of Ru/TiO2 (101) in the monoatomic structures (4.23 eV) was lower than that of the free
TiO2(101) surface (7.033 eV).

In the monoatomic adsorption configuration, the final built-in electric field of Ru/TiO2(101)
pointed from the metal Ru layer to the TiO2(101) surface layer. Because of the differences of the average
electrostatic potential between the primitive TiO2 and the monoatomic adsorption configuration
Ru/TiO2(101), the mobile (i.e., photogenerated) electrons will tend to localize close to the adsorbed Ru
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atom, thus leading to separation of the photogenerated carriers [32]. Compared with the monoatomic
adsorption configuration. Four metals atoms adsorbed in the diatomic configuration have a smaller
value of the average electrostatic potential. This was favorable for the capture of photogenerated
carriers. However, the difference between the average electrostatic potentials was different. For Ru
and Pd atoms adsorbed in the two configuration have smaller value of difference between the average
electrostatic potentials (the value of Ru adsorbed was 2.803, 2.893 eV), this was favorable for the
capture of photogenerated carriers. However, Rh and Mo atoms adsorbed in the two configuration
have bigger value of difference between the average electrostatic potentials (the value of Rh adsorbed
was 6.1, 6.15 eV).

To reveal the separated mechanism of the photogenerated carriers, the charge distribution of
M/TiO2(101) such as Mulliken charge analysis proved to be very advantageous. The data of Mulliken
charge analysis are shown in Table 2. From charge transfer at the M/TiO2(101), the amount of
monoatomic Rh/TiO2(101) surface electron transfer in the structure is the largest on these M/TiO2(101)
surface, followed by the monoatomic Ru/TiO2(101) surface. Combined with the results of the average
electrostatic potential and the Mulliken charge distribution, electron aggregation occurs at the side
of metal-M, while the anatase TiO2(101) plane shows electron depletion after M/TiO2(101) surface
structure formation.

Table 2. Average O2c-Ti5c and O2c-Ti6c bond lengths (Å) adsorption-induced shift of average bond
lengths (in Angstrom units), average electrostatic potentials and the Mulliken charges for the various
M/(101)TiO2 systems investigated.

Configurations Average O-Ti
Bond Length (Å) ∆(Å) Eads(eV) Electrostatic

Potential (eV)
Mulliken
Charge (e)

Free (101) Anatase 1.8355 0 - 7.033 2.48

Monoat.

Ru 1.8595 0.046 −0.81 4.23 2.23

Rh 1.8865 0.100 −0.24 0.94 2.4

Mo 1.9175 0.142 −0.11 1.03 2.45

Pd 1.8545 0.063 −0.63 3.94 2.30

Diatom.

Ru 1.8815 0.015 −1.04 4.14 2.12

Rh 1.9357 0.051 −0.52 0.88 2.3

Mo 1.978 0.082 −0.47 0.66 2.43

Pd 1.8985 0.019 −0.76 3.81 2.17

The photocatalytic performance can be traced to the surface electronic structure. As shown in
Figure 3a, the valence band (VB) and conduction band (CB) of anatase TiO2 were predominantly
composed of O-2p states and Ti-3d states, respectively.

According to density of states (DOS) calculations, the unrelaxed TiO2 exhibits continuous
conduction and valence bands extending in energy ranges from 1 eV to 7 eV and from −5 eV to
1 eV, respectively. Regarding the relaxed (101) anatase, its maximum conduction band DOS is found
to be about 30 electrons/eV, i.e., 1.5 times higher than that of unrelaxed anatase while its maximum
valence band DOS is about four times greater than the unrelaxed anatase one, as shown in Figure 3b.

To investigate the photogenerated electronic characteristics of metal adsorbed photocatalysts,
the total and partial DOS of the M/TiO2(101) systems are shown in Figure 4. Although the adsorbed
metal atoms do not change the properties of the primitive TiO2, the results of the electronic structure
calculation indicates that the metal 4d orbitals contribute to energy levels positioned very close to the
Fermi level. Among the various adsorbed metals, Ru exhibits the largest energy dispersion while Pd
shows the largest DOS and the energy localization (i.e., smallest energy dispersion) Compared with the
monoatomic adsorption structure, the DOS of M-4d in the diatomic adsorption configuration exhibited
a larger degree of energy dispersion, i.e., the second adsorbed atom enhanced the DOS energy spread
with respect to the previous case. Due to the appearance of M-4d electronic impurity states, a new
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degenerate energy levels are formed, narrowing the band gap and eventually increasing the probability
of TiO2 activation via the optical promotion of electrons from the top of the M-4d impurity state to the
conduction band.
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3.3. Optical Absorption

The optical absorption coefficient is related to the complex dielectric function ε = ε1 + iε2 by the
following equation:

α(ω) =
2ω

c

{
1
2

[
ε2

1(ω) + ε2
2(ω)

]1/2
− ε1(ω)

}1/2
(1)

Here, we calculated the imaginary part (ε2) and the real part (ε1) of the dielectric function via DFT
and then the absorption coefficient using Equation (1).

The optical absorption spectra in the UV–VIS region were shown in Figure 5. From the Figure 5a,b,
the metal adsorbed on the surface of the TiO2(101) not only intensified the absorption in the UV region,
but also extended to the visible region. In the visible light region, the Ru, Pd/TiO2 exhibited a stronger
light absorption property than the Mo, Rh/TiO2, and the valence band red shift of the Ru/TiO2(101)
surface was the largest. The relatively strong infrared light absorption of Mo/TiO2 could induce
the surface plasmonic effects, if the metal Mo are present nanoparticle on the surface of TiO2. As is
shown in Figure 5c,d, it is found that anatase TiO2 plane only responds to UV light and shows smaller
absorption activity to the visible light. Generally, metal adsorption or ion doping promotes the shift
of the fundamental absorption edges toward the visible light region with a noticeable red-shift effect
and the absorption efficiency is larger than anatase TiO2 plane. It can be seen that Ru and Pd atoms
adsorbed on the surface intensified the absorption and promotes the shift of absorption in the visible
light region, as shown in Figure 5c,d.
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Figure 5. The optical absorption spectra of different adsorption structures: (a) the anatase TiO2(101)
plane and M/TiO2(101) with the monoatomic adsorption structures; (b) the M/TiO2(101) with the
diatomic adsorption structure; (c,d) the Tauc plots of M/TiO2(101) with the monoatomic and diatomic
adsorption structures, respectively.

4. Conclusions

Electron aggregation and delocalization occur at the side of the adsorbed metal atom (Ru, Rh,
Mo, or Pd) on the anatase TiO2(101) plane, and the appearance of (Ru, Rh, Mo, or Pd)-4d electronic
impurity states increases the probability of migration of the electrons from the top of the impurity state
to the conduction band, as a result of the narrowed band gap.
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