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Abstract: The aim of this work is to model and characterize green anode paste compaction behavior.
For this purpose, a nonlinear viscoplastic constitutive law for compressible materials, based on the
finite strain theory and the thermodynamic framework, was used. An experimental study was carried
out to characterize axial and radial behaviors of the anode paste. To this end, simple compaction
tests using a thin steel instrumented mold were performed at a temperature of 150 ◦C. Results of
these experiments brought out the nonlinear mechanical behavior of the anode paste. Furthermore,
they showed the importance of its radial behavior. The constitutive law was implemented in Abaqus
software through the user’s material subroutine VUMAT for explicit dynamic analysis. An inverse
analysis procedure for material parameters identification showed that the model predicts compaction
tests results with a good agreement. In order to assess the constitutive law predictive potential in
situations involving density gradients, compaction tests using complex geometries such as slots and
stub holes were carried out. Finite element simulation results showed the ability of the model to
successfully predict density profiles measured by the X-ray tomography.

Keywords: green anode paste; compaction test; nonlinear viscoplastic constitutive law; finite element
method; X-ray tomography

1. Introduction

The Hall–Héroult process, used for aluminum production, is characterized by several complex
multiphysical phenomena such as thermo-electromechanical, electrochemical, and magneto-hydrodynamic
problems. Although this process has undergone major technical developments in recent decades, it remains
a high-energy-consumption process and represents a non-negligible source of greenhouse gas emissions [1].
In this context, considerable efforts are invested in optimizing this process. One of the promising solutions
could be control and the improvement of the green anode quality, which substantially affects the electrolysis
process efficiency.

The green anode is formed either by a compaction or a vibrocompaction process. The carbon paste
used is composed of carbon aggregates, fine particles, air voids, and the coal tar pitch that acts as a
binder matrix. The presence of complex geometries in the anode such as stub holes and slots generally
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leads to significant density gradients that could alter the anode quality [2]. Hence, the optimization of
the anode-forming process is of great interest for the aluminum industry. Nevertheless, taking into
account the high number of experimental tests required to improve the anode quality and the resulting
costs, it seems that modelling and the numerical simulation could be appropriate and powerful tools
that might successfully help to achieve this challenge.

To the best knowledge of the authors, research works on the anode forming process are few
and the problem is still obviously ill-understood. In [2], a simple dynamic model was developed
to simulate the anode behavior during vibrocompaction. In [3], the vibrocompaction of the anode
was experimentally studied at laboratory scale and a dynamic model taking into account the anode’s
stiffness evolution was proposed. However, in these two works the rheological behavior of the
anode was not investigated. In [4,5], the discrete element method (DEM) was used to study the
anode compaction. Even though this approach is suitable to investigate the mechanical behavior of
the anode paste constituents, it cannot be applied straightforwardly at the macro-mechanical scale.
Furthermore, the combination of the pitch as a binder matrix with aggregates is still a challenging
problem when dealing with this method. In [6], a viscoplastic material model, inspired from a work on
the compaction of asphalt mixtures [7], was used to characterize the compaction of the anode paste.
In this work, the authors investigated only the anode axial behavior since a rigid mold was used in
their experimental study.

From another standpoint, the anode paste’s composition is similar to materials like asphalt
mixtures and ramming pastes. In this context, several constitutive laws involving elastoplastic
and viscoplastic behaviors for a single phase were developed [8–11]. Due to the compressibility
nature of such materials, material parameters related to these constitutive laws evolve, among others,
as functions of the strain rate [9], aggregates microstructural properties [10], and the density
evolution [7].

This work aims to investigate anode paste’s axial and radial behaviors during the compaction
process. To this end, an experimental study using a steel thin-walled mold was carried out at 150 ◦C.
A viscoplastic material model based on the finite strain theory proposed in an earlier study [6] was
considered. An inverse identification procedure shows that the considered material model reproduces
experimental trends for both axial and radial directions. Furthermore, finite element simulation results
on the density profile of compaction tests involving complex geometries, such as slots and stub hole,
are compared to experimental results provided by X-ray computed tomography.

The paper is organized as follows. In Section 2, the viscoplastic constitutive law used in the
present study is briefly described. The experimental study and the subsequent results are presented in
Section 3. Section 4 is dedicated to the finite element simulation results. In the first step, the inverse
identification procedure that was followed to find an optimal set of the constitutive law material
parameters, is presented. In the second step, finite element simulation predictions for compaction tests
with complex geometries, are compared to experimental trends.

2. Constitutive Law

In this section, the main steps for the development of the constitutive law are described. The reader
is referred to Reference [6] for a detailed mathematical description of the model. The carbon
paste is considered as a single phase isotropic compressible material undergoing finite strains.
Using the thermodynamic framework and the concept of the intermediate stress-free configuration [12],
the model is built up in two steps: (i) an expression of the stress state is obtained by considering the
Clausius–Duhem inequality and (ii) a dissipation potential is proposed to characterize the evolution of
the intermediate stress-free configuration.

Let kr denote the material reference configuration. Assuming that the material is subjected
to a motion of deformations χ, the reference configuration is mapped at each time t to the current
configuration kc(t) (Figure 1). Consider the following kinematic tensors: the deformation gradient
tensor F = ∇Xχ, the right (the left) Cauchy–Green stretch tensor C = FT.F (B = F.FT), the velocity
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gradient tensor L = ∇xv =
.
F.F−1 and the rate of deformation tensor D = sym[L]. To take into

account the irreversible behavior of the anode paste, the intermediate stress-free configuration kp(t) is
introduced. Consequently, the deformation gradient can be decomposed as (Figure 1):

F = Fe.Fp, (1)

Fe is the deformation gradient’s component accounting for the elastic response of the material that
holds between configurations kp(t) and kc(t); the tensor Fp, mapping the configuration kr to the
intermediate configuration kp(t), accounts for the permanent part of the deformation process.
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Kinematic tensors associated with the intermediate configuration kp(t) are introduced: the right

(the left) Cauchy–Green stretch tensor Ce = (Fe)T.Fe
(

Be = Fe.(Fe)T
)

, the velocity gradient tensor

Lp =

.
_
Fp.(Fp)−1, and the rate of deformation tensor Dp = sym[Lp].

Assuming that the anode compaction process is carried out under an isothermal process, the
Clausius–Duhem inequality is expressed as [13]:

0 ≤ Φ = σ : L− ρ
.

Ψ, (2)

Φ represents the mechanical energy dissipation, σ is the Cauchy stress tensor, ρ is the density, and Ψ is
the specific Helmholtz free energy.

In this work, the Helmholtz free energy is assumed as a function of scalar invariants:

Ψ = Ψ(IBe , IIIBe , IIIFp), (3)

where 
IBe = Tr(Be)

IIIBe = det(Be)

IIIFp = det(Fp)

. (4)

The third scalar invariant, IIIFp , of the tensor Fp is considered to account for the evolution of the
constitutive law’s parameters.

The expression of the mechanical dissipation can be rewritten according to Definition (3) and
through the development of the material derivative of the free energy, as follows [6]:

0 ≤ Φ =
[
σ− 2ρ ∂Ψ

∂IBe
Be − 2ρIIIBe ∂Ψ

∂IIIBe
I
]

: D+[
2ρ ∂Ψ

∂IBe
Ce + 2ρIIIBe ∂Ψ

∂IIIBe
I− ρIIIFp ∂Ψ

∂IIIFp
I
]

: Dp
(5)
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From Equation (5), one can assume that the material’s stress state is given by:

σ = 2ρ
∂Ψ
∂IBe

Be + 2ρIIIBe
∂Ψ

∂IIIBe
I. (6)

Therefore, the intrinsic energy dissipation becomes:

0 ≤ Φ = ρ

[
2

∂Ψ
∂IBe

Ce + 2IIIBe
∂Ψ

∂IIIBe
I− IIIFp

∂Ψ
∂IIIFp

I
]

: Dp . (7)

The Cauchy stress tensor (Equation (6)) is expressed relative to the intermediate stress-free
configuration which is unknown. To complete the elaboration of the model, a dissipation potential has
to be defined with the purpose of characterizing the intermediate configuration evolution. To this end,
the potential of the dissipation is assumed to be quadratic and it is defined as [6]:

Φ = η(IIIFp)(Ce.Dp) : Dp (8)

The material parameter η(IIIFp) represents the viscosity of the whole anode paste, which evolves
during the compaction process.

By comparing Equations (7) and (8) and considering the stress Equation (6), one can show that
the intermediate configuration kp(t) is governed by the following differential equation (see [6] for a
detailed proof):

− η
2

 •
_
Be − L.Be − Be.LT

 = σ− ρIIIFp
∂Ψ

∂IIIFp
I. (9)

Considering the upper convected Oldroyd derivative of Be, defined as:

∇
Be =

•
_
Be − LBe − BeLT, (10)

one can conclude that the intermediate stress-free configuration is characterized through the following
equation:

∇
Be = − 2

η(IIIFp)

(
σ− ρIIIFp

∂Ψ
∂IIIFp

I
)

. (11)

For the specific Helmholtz free energy, the neo-Hookean form for a compressible material was
adopted [14]:

Ψ(IBe , IIIBe , IIIFp) =
µ(IIIFp)

2ρkp(t)

[IBe − 3− ln(IIIBe)] +
λ(IIIFp)

8ρkp(t)

ln(IIIBe)2. (12)

Material functions µ(.) and λ(.) evolve as the anode paste is deformed. They are related to the
evolution of the shear modulus and the Poisson ratio, respectively. ρkp(t)

is the density related to the
intermediate stress-free configuration kp(t).

Using the stress expression (Equation (6)) and the free energy definition (Equation (12)),
the Cauchy stress tensor becomes:

σ =
µ(IIIFp)√

IIIBe
Be +

1√
IIIBe

(
λ(IIIFp)

2
ln(IIIBe)− µ(IIIFp)

)
I . (13)

Expressions used in [7] to define shear and viscosity functions will be considered in this work:

µ(IIIFp) = µ̂
[
1 + λ1(IIIFp)2n1

]q1 , (14)
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η(IIIFp) = η̂
[
1 + λ2(IIIFp)2n2

]q2 , (15)

where µ̂, η̂, (λi)i=1,2, (ni)i=1,2 and (qi)i=1,2 are material parameters.
The material function λ(.) appearing in Equation (12) is defined as follows:

λ(IIIFp) = α exp
(

1− IIIFp

β

)
, (16)

where α and β are material parameters.
In Equations (14)–(16), material parameters are density dependent through the third invariant IIIFp .

3. Experimental Study

In order to characterize the mechanical behavior of the anode paste, an experimental study based
on compaction tests using a flexible mold wall was carried out at 150 ◦C. The anode paste consists of
coal tar pitch and coke aggregates ranging from fine particles to large aggregates. Fine particles are
obtained through ball milling of the calcined coke and the corresponding Blaine number was 4200.
The mesh size of aggregates and the pitch content are summarized in Table 1. The paste ingredients
were mixed following a procedure developed in [15].

Table 1. Anode paste composition.

Aggregates Size Content (%) Mass (g)

−4 + 8 17.9 1072.6
−8 + 14 8.1 487.1
−14 + 28 9.4 565.8
−28 + 48 10.3 619.9
−48 + 100 7.5 447.7
−100 + 200 8.7 521.5

Fines 20.1 1205.4
Pitch 18.0 1080.0
Total 100 6000.0

An experimental setup was developed to carry on compaction tests at high temperature [16].
To this end, a hydraulic press with a cell load of 250 kN, a furnace with controlled temperature and a
cylindrical stainless steel mold with thin wall were used (Figures 2 and 3). The mold has a diameter
of 254 mm, a height of 140 mm, a wall thickness of 0.356 mm, and is free of joints. Steel plates
having a thickness of 30 mm have been fixed on lower and upper pistons of the press to apply a
uniform load on the paste surface. During the compression test, the paste undergoes radial and
circumferential displacements acting on the mold wall. To measure the paste properties in these
directions, the mold wall was instrumented with four strain gauges in the axial direction and four
strain gauges in the circumferential direction. Strain gauges were fixed at one-third of the mold height.
Tests were performed at 150 ◦C and under a cross-head speed of 1 mm/s.

Figure 4 shows the evolution of the axial pressure acting on the anode paste as a function of
the height ratio. The anode paste was compacted up to 35% of its initial volume and the pressure
approximately reached 4 MPa. The height ratio represents the stretch of the paste in the direction of the
vertical load and it corresponds to the component Fzz of the deformation gradient tensor F. Figure 5
illustrates the measured circumferential strain at the mold wall. The strain is the average of strains
measured using the four strain gauges. When the anode paste reaches a given level of compaction
as about 25% in these experiments, the axial stress and the circumferential strain at the mold wall
undergo significant increases. This behavior can be explained by the rigid skeleton formation process.
Before this compaction level at which stress and circumferential strain start to evolve significantly,
the measured axial stress is negligible due to the high dissipative nature of the compressible paste.
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Once the skeleton forms, the axial force needed to maintain the compaction process increases and the
rigid skeleton acts on the thin mold’s wall, generating the observed circumferential strain behavior.Materials 2019, 12, x FOR PEER REVIEW 6 of 20 
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To characterize the anode paste behavior in the radial direction, the elastic theory of thin shell is
used. Considering a thin cylindrical shell subjected to an internal pressure Pi, strains and pressure are
related through the following formulas [17]:

u(r) =
a2Pi

E
(

b2 − a2
)[(1− ν)r + (1 + ν)

b2

r

]
(17)

εrr(r) =
∂u
∂r

=
a2Pi

E
(

b2 − a2
)[(1− ν)− (1 + ν)

b2

r2

]
(18)

εθθ(r) =
u(r)

r
=

a2Pi

E
(

b2 − a2
)[(1− ν) + (1 + ν)

b2

r2

]
(19)

where a and b represent inner and outer radii of the thin shell; E and ν are the Young’s modulus and
the Poisson coefficient of the shell; u(r), εrr(r), and εθθ(r) are the radial displacement, radial and
circumferential strains for a given radius r ∈ [a, b], respectively.

Using Equation (19), the internal pressure acting on the mold’s wall is estimated as follows:

Pi =
E
(

b2 − a2
)

2a2 εθθ(r = b) (20)

where εθθ(r = b) is the measured circumferential strain (Figure 5). The internal pressure corresponds
to the stress exerted by the paste on the mold.

The radial displacement of the anode paste that is supposed to be equal to the radial displacement
of the mold wall (u(r = a)), is estimated through the Equation (17).

The mold’s elastic properties that were measured using some simple traction tests were equal to
E = 220 GPa and ν = 0.31.

Figures 6 and 7 show the evolution of the radial pressure and the radial displacement of the anode
paste at the mold wall. Before reaching the aforementioned compaction level, radial displacement
and pressure are negligible. Once the skeleton is established, they evolve significantly. The internal
pressure is approximately half of the axial pressure. As a consequence, the anode radial behavior
cannot be neglected during the compaction process.
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In the aluminum industry, the anode has a complex geometry including slots and stub holes.
Consequently, the forming process may lead to significant density gradients. To highlight this trend,
a compaction test involving a circular slot placed at the bottom of the mold was carried out (Figure 8).
A second compaction test was performed using a simple stub-hole geometry located at the top of the
anode paste (Figure 9). Slot and stub-hole geometry dimensions are sketched in Figures 10 and 11.
Tests were performed under the same conditions as those for the aforementioned simple compaction
experiments. Compacted samples were scanned using X-ray tomography. For more technical details in
the application of this technic to carbon materials, the reader is referred to [18,19]. Figure 12 shows the
average density obtained for the sample with the circular slot. From a qualitative point of view, we notice
that in regions located just above the slot, the anode is more densified. This is also shown in Figure 13,
i.e., the density distribution in a plane positioned few millimeters over the slot. In this case, the darker
the area, the lower the density. Figure 14 depicts the average density for the sample with the stub hole.
Layers located under the stub hole show a relatively higher density than the rest of the sample.
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4. Inverse Identification and Numerical Simulations

In order to assess the constitutive law predictive capabilities, a user’s material subroutine VUMAT
was developed and implemented in the finite element analysis software Abaqus [20]. The implementation
of the VUMAT subroutine for the explicit dynamic analysis is illustrated in Figure 15. In a first step,
the code was used to identify constitutive law’s material parameters. To this end, the simple compaction
test results have been exploited. The flowchart used is depicted in Figure 16. The obtained values for
material parameters are reported in Table 2. Figures 17–20 show that the model provides good agreement
in axial and radial pressures, the circumferential strain, and the radial displacement at the mold wall.Materials 2019, 12, x FOR PEER REVIEW 12 of 20 
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Table 2. Inverse identification results.
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Figure 17. Axial pressure: FEM vs. experiment.

In a second step, compaction tests involving complex geometries such as the slot and the stub
hole were simulated. Figures 21 and 22 show the computer-aided design models used for simulations.
Taking into account the symmetry, it should be mentioned that only a quarter of the geometry was
simulated. In these simulations, the contact between the mold and the anode was considered through
a friction coefficient equal to 0.12. Density profiles predicted by numerical simulations are compared
to those computed from experiments using the X-ray tomography. For each geometry, the benchmark
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between experimental and numerical results is made on three layers (see Figures 23 and 24). Figures 25
and 26 depict the deformed mesh at the end of the simulation of each case.
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Figures 27–29 show the good agreement between numerical and experimental results for the
compaction test using the stub hole. Starting from the mold wall, the density distribution for layers
located under the stub hole does not show a significant gradient until we reach the region directly
underneath the stub hole where a density gradient is observed (Figures 27 and 28).
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Results for compaction test with the slot are shown in Figures 30–32. The constitutive law
predictions are in conformity with experimental trends. The presence of the slot leads to a significant
density variation in the surrounding regions (Figures 30 and 31). However, for regions positioned far
from the slot, the density profile seems to be more homogenous (Figure 32).
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Figure 32. Density profile along the radius (slot): experiment vs. finite element result (h = 70 mm).

In light of these results, numerical simulation of the anode compaction process shows that the
proposed constitutive law is in good agreement with experimental results, either for simple compaction
tests or tests with complex geometries.
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5. Conclusions

In this work, the compaction behavior of the green anode paste was investigated. For this purpose,
a viscoplastic constitutive law, based on the framework of the finite strain theory and the natural
configuration concept, was proposed and an experimental setup for the anode compaction process
at high temperature was eventually developed. A thin-walled mold was used and the theory of the
elastic thin shell was applied to characterize the anode paste radial behavior. Experimental results
from simple compaction tests showed the highly nonlinear mechanical behavior of the anode paste
and the importance of its radial behavior. The inverse identification procedure showed that the
constitutive law reproduces experimental results with good agreement. Furthermore, compaction
tests aiming at generation of density gradients were carried out using a stub hole and a circular
slot. The specimen’s density was evaluated through X-ray computed tomography. A benchmark
with finite element simulation results shows that the constitutive law predicts experimental trends
quite successfully.
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