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Abstract: Calcium carbonate is wildly used in cementitious composites at different scales and
can affect the properties of cementitious composites through physical effects (such as the filler
effect, dilution effect and nucleation effect) and chemical effects. The effects of macro (>1 mm)-,
micro (1 µm–1 mm)- and nano (<1 µm)-sizes of calcium carbonate on the hydration process,
workability, mechanical properties and durability are reviewed. Macro-calcium carbonate mainly acts
as an inert filler and can be involved in building the skeletons of hardened cementitious composites
to provide part of the strength. Micro-calcium carbonate not only fills the voids between cement
grains, but also accelerates the hydration process and affects the workability, mechanical properties
and durability through the dilution, nucleation and even chemical effects. Nano-calcium carbonate
also has both physical and chemical effects on the properties of cementitious composites, and these
effects behave even more effectively than those of micro-calcium carbonate. However, agglomeration
of nano-calcium carbonate reduces its enhancement effects remarkably.
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1. Introduction

Concrete is a kind of multi-component and multi-scale composite. Because of its relatively
low price, diverse sources and good durability, concrete is widely used in many kinds of buildings
and structures. However, with the massive use of concrete, environmental pollution and resource
consumption inevitably happen. Cement is a necessary raw material for concrete production, on the
other hand, cement manufacture is also one of the most energy intensive industries among mineral
process industries [1]. According to data from the U.S. Geological Survey in 2017, global cement
production reached approximately 4.2 billion tons [2] and is expected to increase year by year.
Moreover, major growth will be foreseen in some developing countries such as China and India [3].
Thus, resource and energy consumption will be an even more serious problem with the increase in
cement production. At the same time, 0.87 tons of carbon dioxide will be generated at per ton of
cement produced [2]. So, the large amount of carbon dioxide emissions is another severe problem
that needs to be solved. Aggregates are also an important constitution of concrete and aggregate
consumption is detrimental to the environment as well.

Due to these reasons, supplementary cementitious materials (SCMs) and mineral admixtures
are used in concrete or cement manufacture to substitute partial cement or aggregates. Incorporation
of SCMs and mineral admixtures such as fly ash, slag, silica fume and limestone is not only an
effective way to reduce the carbon dioxide emissions and sources consumption, but also an economic
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and environmentally friendly way to produce cement or concrete, because most SCMs and mineral
admixtures are industrial waste products [4]. Among these SCMs and mineral admixtures, limestone
is widely used as a kind of filler material [5–9], aggregate [10–13], micro-fiber [14–20] and early
strength agent [21] because of its various scales (macro-, micro- and nano-scale) [2,22], morphologies
(bulk, granular and fibrous shape), crystal systems (calcite, aragonite, vaterite and amorphous
calcium carbonate) [2].

Limestone can be formed of various minerals such as calcite, aragonite, vaterite and amorphous
calcium carbonate [2]. Among these, calcite is the most common and stable. So most natural limestone
is formed of calcite [23]. It has been confirmed that incorporation of calcium carbonate will not be
detrimental to mechanical properties and even has a positive synergic effect on early-age strength,
the hydration process, durability and microstructure of cementitious composites [2,22,24–26]. Hence,
much research has been conducted to clarify the effect mechanism of calcium carbonate on cement paste,
mortar or concrete [7,9,27]. In 1938, Bessey et al. [2] first found the formation of calcium-carboaluminate
in the hydration process of cement when calcium carbonate was incorporated, which was called the
chemical effect of calcium carbonate, and similar results have been found in later studies [2,22,28–33].
Subsequently, a large number of studies were conducted on the role of calcium carbonate in cement
paste, mortar or concrete. Now it is widely accepted that the density of the matrix can be increased
when calcium carbonate is incorporated, because of its filler effect, and the hydration process can
be accelerated because of its nucleation effect [2,22,34]. When the particle size of calcium carbonate
is comparable to cement grains, the dilution effect will be effective to influence the workability and
hydration process of cement [2,35,36]. However, these effects are not independent and often have
a coupling effect on mechanical properties, the hydration process, workability and durability of
cementitious composites because of its particle size, content and morphology.

Figure 1 shows the number of publications about using limestone in concrete from 2000
to 2017. Applications of limestone is still a hotspot attracting many researchers, especially in
recent years. Based on extensive references and research on the effects of calcium carbonate on
properties of cementitious composites, many standards have been set to guide the use of calcium
carbonate (limestone) in interground and blended cement production, and these standards are sorted
chronologically in Table 1. It can be found that calcium carbonate is widely used in many countries
acting as aggregates, fillers or admixtures and its content varies from country to country because of its
various applications and particle sizes.
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Table 1. Standards related to use of limestone in cement production in different areas [1–3,23,25].

Date Area Standard Content

1987 Europe – Define Portland-LS cement with 15% ± 5% LS.

1991 Brazil NBR 11578/91 Portland-LS cement can contain from 6% to 10% LS fillers.

1999 Mexico NMX C-414-0/99 Portland-LS cement can contain from 6% to 35% LS fillers.

2000 Europe EN 197-1
Define different four types of Portland-LS cement containing

6–20% limestone (types II/A-L and II/A-LL) and 21–35%
limestone (types II/B-L and II/B-LL), respectively.

2007 China GB 175-2007 LS can act as an inactive mixture in cement production.

2007 Argentina IRAM 50000/07 Portland-LS cement can cantina up to 25% of
calcareous materials.

2008 Canada CSA A3001-08 LS content is below 15% of total binder content.

2010 Canada CSA A3001-10 Portland-LS cement is defined as GUL.

2012 U.S. ASTM C595 LS content is up to 15% of total binder content.

Note: LS means limestone; GUL represents general use limestone cement.

Because many studies have been conducted on the effects of calcium carbonate on properties of
cementitious composites from fresh mixtures to hardened products, this review focuses on particle size
of calcium carbonate and the influence of macro-, micro- and nano-calcium carbonate on the hydration
process, mechanical properties, workability and durability of cementitious composites. Moreover,
through the summaries of previous references, some constructive suggestions and expectations are
proposed as well.

2. Macro-Calcium Carbonate

Macro-calcium carbonate refers to calcium carbonate with particle sizes of a millimetric (>1 mm)
level, such as coarse limestone aggregates [10,11] and coarse limestone sand [13]. At this scale,
the chemical and nucleation effects of calcium carbonate are not significant and thereby the influence
of macro-calcium carbonate on the hydration process is negligible. However, the water absorption,
particle size and constitution of macro-calcium carbonate aggregates (coarse limestone aggregates) are
effective to influence the workability, mechanical properties and durability of cementitious composites.

2.1. Workability

The coarse and fine aggregates generally occupy 70–80% of the concrete volume and the
water absorption of coarse aggregates significantly influences the fresh properties of cementitious
composites [11]. It has been found through investigation that slump loss of fresh concrete is most
significant in the first 15 min and dry coarse limestone aggregates causes a higher slump loss compared
with the wet one because fresh concrete containing dry coarse limestone aggregates have a higher
effective water to cement ratio [11]. Moreover, the workability of fresh concrete also depends on the
surfacing filling and particle size of the coarse limestone aggregates. When the fineness modulus of
aggregates decreased, the coarse limestone aggregates ratio decreased. Thus, more water is required to
achieve the desired workability [37].

2.2. Mechanical Properties

The mechanical properties of concrete depend on water absorption, particle size and constitutions
of coarse limestone aggregates. Incorporation of wet coarse limestone aggregates can generate a
concrete with higher compressive strength compared with incorporation of the dry one [11]. In addition,
utilization of smaller particle size aggregates may produce a higher compressive strength, as shown in
Table 2 [37]. When the coarse limestone aggregate dimension is 0–5 mm, the compressive strength of
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hardened concrete is up to 42.12 MPa (w/c = 0.33–0.36, 28 d). At the same time, when partial mountain
sand is replaced by limestone aggregates with a grain size less than 5 mm, the drying shrinkage of
hardened concrete will also decrease [38].

Table 2. Compressive strength of concrete in different water to cement ratio and curing days (unit: MPa) [37].

Aggregate
Dimension (mm)

w/c = 0.33–0.36 w/c = 0.3 w/c = 0.4 w/c = 0.5

7 d 14 d 28 d 7 d 14 d 28 d 7 d 14 d 28 d 7 d 14 d 28 d

0–5 11.86 19.92 42.12 12.44 20.51 42.34 11.21 19.82 42.08 7.47 16.69 34.95
0–10 11.48 17.25 35.08 9.99 17.09 36.13 13.03 17.42 33.91 5.13 9.56 19.84
0–20 8.04 17.21 35.23 7.46 17.12 34.78 8.78 17.39 35.73 7.48 11.08 22.35
5–10 8.19 14.87 29.75 7.29 14.82 30.33 9.06 14.95 28.69 5.58 10.61 20.39

10–20 8.63 8.56 18.36 4.99 7.27 17.41 6.33 12.31 20.43 3.24 6.46 12.42

The constitution of coarse limestone aggregates influences the strengths and elastic modulus of
concrete, especially for high strength concrete (HSC). Due to its low water to cement ratio, the strengths
of HSC are determined by the strengths of aggregates, rather than the bond strength between cement
paste and coarse aggregates [39,40]. Therefore, it is the mineralogy and strength that control the
ultimate strength of HSC. Compared with the different constitutions of coarse limestone aggregates
such as calcareous limestone aggregate (85% calcite), dolomitic limestone aggregate (80% dolomite) and
quartzitic-gravel aggregate containing schist, dolomite limestone concrete has the highest compressive
strength [40]. Beshr and Almusallam [39,40] also obtained similar results when comparing four kinds
of coarse aggregates (calcareous limestone, dolomitic limestone, quartzite limestone and steel slag).
In addition, they also found that the steel slag concrete had the highest split tensile strength and elastic
modulus, followed by that of concrete specimens prepared with the quartzitic, dolomitic and calcareous
limestone aggregates because of soft nature of calcareous limestone aggregates. These results have also
been proved by the loss on abrasion in different coarse aggregates as shown in Table 3 [39]. However,
incorporation of some SCMs such as silica fume, the split tensile strength may increase because of
the reaction of calcium hydroxide (Ca(OH)2) and silica fume. Thus, concrete prepared with mineral
aggregates, such as dolomitic and calcareous limestone aggregates, has a significant improvement in
split tensile strength, especially for 90d-strength [40].

Table 3. Loss on abrasion in the coarse aggregates [39].

Type of Aggregate Loss on Abrasion (%)

Calcareous limestone 34.4
Dolomitic limestone 24.2
Quartzitic limestone 19.2

Steel slag 11.6

2.3. Durability

According to what is known, incorporation of limestone aggregates in concrete can affect its
durability [25], especially the acid resistance and fire resistance.

2.3.1. Acid Attack

Concrete used for sewer structures is often attacked by sulfuric acid converted from hydrogen
sulfide by bacterial action [13]. To reduce the damage of concrete in an acid condition, there are two
effective ways. First, incorporation of SCMs such as fly ash and silica fume in concrete is effective in
the reduction of acid attack because of the decreased presence of Ca(OH)2, which reacts with acid [41].
Second, usage of a sacrificial medium can reduce the acid concentration near the concrete surface and
decrease the rate of deterioration in concrete subjected to acid attack. Calcareous limestone aggregates
could act as a sacrificial medium to neutralize the acidic environment and reduce the pH value [13].
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In addition, the calcareous limestone aggregate concrete has an excellent sulfuric acid attack resistance
ability when SCMs are incorporated in it.

2.3.2. High Temperature Exposure

The compressive strength of concrete after exposure to high temperatures significantly depends
on the type of aggregates. The compressive strengths of limestone and siliceous aggregate concrete
after exposure to high temperatures have been compared [42,43]. Limestone aggregate concrete has a
higher thermal stability compared with the siliceous aggregate concrete, because quartz in siliceous
aggregates polymorphically changes at 570 ◦C with a volume expiation but the decomposition of
calcium carbonate is at 800–900 ◦C [42,44]. However, due to the functions of internal autoclaving,
secondary hydration of unhydrated clinkers and SCMs, and the pozzolanic effect, the post-fire strength
of concrete may have an increasing trend before 300 ◦C [43–45], especially for the concrete made with
siliceous aggregates [43]. Note that when the temperature exceeds 800 ◦C, concrete would deteriorate
irreversibly regardless of being prepared by limestone or siliceous aggregates.

In conclusion, macro-calcium carbonate such as coarse limestone aggregate plays an important
role in controlling workability, mechanical properties and durability of cementitious composites.
Incorporation of macro-calcium carbonate in cementitious composites can improve both ambient and
post-fire strengths. Moreover, macro-calcium carbonate can be regarded as an inert filler.

3. Micro-Calcium Carbonate

Micro-calcium carbonate (1 µm–1 mm), such as limestone powder and limestone dust, is widely
used in cement manufacture as a kind of blended or interground material. Though micro-calcium
carbonate has no pozzolanic activity and cannot react with alkaline substances such as Ca(OH)2 and
calcium oxide (CaO), incorporation of micro-calcium carbonate in cement can have both physical and
chemical effects on the hydration process, workability of fresh mixture and mechanical properties of
hardened products. Thus, it is imprecise to regard micro-calcium carbonate as an inert filler, especially
when micro-calcium carbonate has a smaller particle size than cement grains or is incorporated in
ternary or quaternary blends containing SCMs such as fly ash and metakaolin; in these situations
micro-calcium carbonate may participate in the cement hydration process and affect the factors of
hydration kinetics and microstructure [46–48]. Finally, the mechanical properties and durability
will also be influenced. Therefore, the effect of micro-calcium carbonate on the hydration process,
workability, mechanical properties and durability is reviewed in the following section.

3.1. Hydration Process

As a micro-calcium carbonate, limestone powder has a higher specific area and surface energy
than that of macro-calcium carbonate. So the effects of limestone powder on accumulative hydration
heat, the release rate of hydration heat and the hydration products of cementitious composites are
different from that of macro-calcium carbonate and mainly affected by various particle size, content and
crystal structure of micro-calcium carbonate. Table 4 shows the main action mechanism of limestone
powder on the hydration process of cement paste. According to this table, the main action mechanism
of limestone powder on the hydration process is discussed through the following aspects of particle
size, content and crystal structure.
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Table 4. Effect of micro-calcium carbonate on cement hydration.

Author (Date)
[Reference]

Binder Particle Size (µm) Blaine Fineness (cm2/g)
Main Action Mechanism

Mass Content (wt.%) Volume Content (vol. %) LS PC LS PC

Bonavetti et al.
(2001) [30] (20%) LS + (80%) PC – D61 = 13.2 D90 = 26.6 7100 2850 Chemical effect

Poppe et al.
(2005) [5]

(0–67%) LS +
(33–100%) PC – D50 ≈ 10

D50 ≈1 7 (CEM I 42.5R);
D50 ≈ 18 (CEM I 52.5);

D50 ≈ 10 (CEM I 52.5 HSR LA)
5260

2810 (CEM I 42.5R);
2860 (CEM I 52.5);

4180 (CEM I 52.5 HSR LA)

Nucleation effect,
Chemical effect

Ye et al.
(2007) [9] (33–43%) LS + (57–67%) PC – – 5260 4200 (CEM I 52.5) Nucleation effect

Lothenbach et al.
(2008) [49] PC4: (4%) LS + (96%) PC – Mean particle size: 4 –

4130 (PC);
4290 (PC4) Chemical effect

Weerdt et al.
(2011) [32]

(0–5%) LS + (0–35%) FA +
(65–100%) PC – D50 = 4 D50 = 11 8100 4500 Chemical effect

Bentz et al.
(2012) [50] –

(0–10%) LS + (30–40%) FA
+ (55–100%) PC

D50 (median particle
size of LS) = 4.4, 16.4;

Nano-LS
(nm): 50–120

D50 (median particle size) ≈ 20 – 4760 Nucleation effect;
Chemical effect

Vance et al.
(2013) [47] –

(0–40%) LS + (0–10%)
FA/MK + (50–100%) PC

D50 (median particle
size) = 0.7, 3, 15 D50 ≈ 10 – –

Nucleation (0.7 and 3 µm LS);
Chemical effect

Zajac et al.
(2014) [51]

Laboratory cement
containing 15% of LS;
Commercial cement

containing 1%, 3%, 9% of
LS, respectively

–
D50 = 8 (LS in

laboratory cement) –
7000 (LS in
laboratory

cement)
–

Nucleation effect;
Chemical effect

Thongsanitgarn
et al. (2014) [35]

(0–30%) LS + (0–30%) FA +
(70–100%) PC;

(0–15%) LS + (85–100%) FA
–

Maximum particle
size: 5, 20 – – –

Nucleation effect,
chemical effect (5 µm);
Dilution effect (20 µm)

Bentz et al.
(2015) [26]

(0–10%) LS + (0–20%) FA +
(75–100%) PC –

D50 = 1.58 (Fine LS);
D50 = 15.7 (Coarse LS);

D50 = 7.11
(Mmarblewhite);

D50 = 3.09 (Sturcal F);
D50 = 1.59 (HT Sturcal F)

D50 =10.6 (Type III cement);
D50 = 9.85 (White cement);

D50 = 11.9 (Type I/II cement)
–

4810 (Type III cement);
3970 (White cement);

3730 (Type I/II cement)

Nucleation effect
(fine LS and calcite LS);

Chemical effect (fine LS);
Dilution effect

(fine and coarse LS)

Schöler et al.
(2015) [29]

(0–20%) LS + (0–30%) FA +
(20–30%) BFS + 50% PC – D50 = 16 D50 = 11 4650 5180 Chemical effect

Notes: LS, PC, MK, FA, BFS represent limestone, Portland cement, metakaolin, fly ash and blast furnace slag, respectively; D50, D61, D90 represent the particle sizes of limestone powder
when fraction passing are 50%, 61% and 90%, respectively; CEM and HSR LA represent different cement types.
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3.1.1. Particle Size

The particle size of micro-calcium carbonate affects its physical effects (the filler effect, dilution
effect and nucleation effect) and chemical effects. When a coarser (comparable or coarser than
cement grains) limestone powder is used in cementitious composites, the main action effect of
limestone is the filler effect. Because of the smaller surface energy and lower dissolution in an
alkaline environment, limestone powder hardly participates in the hydration process of cement
and may only fill the voids between aggregates such as sand and coarse aggregates. However,
when a finer (finer than cement grains) limestone powder is incorporated in cementitious composites,
accumulative hydration heat, the release rate of hydration heat and the hydration products are all
greatly different. For the chemical effect of micro-calcium carbonate, the results may be interesting.
Vance et al. [47] investigated the particle size of limestone powder on cement hydration and three
limestone powders of different fineness were used. The finer limestone powder (median particle
size = 0.7 or 3 µm) significantly accelerates the hydration process of calcium silicate and increases
the hydration peak (see in Figure 2 [47]), because finer limestone powder has a larger specific area
and surface energy and provide additional nucleation sites for the formation and development of
calcium silicate hydrate (C-S-H) [5,9,26,35,47,50,51], which is known as nucleation effect. Moreover,
the second hydration peak is generally recognized as the hydration of calcium aluminate and will
demonstrate a significant improvement when 0.7 µm limestone powder is incorporated, which means
the formation of new hydration products such as hemicarboaluminate and monocarboaluminate.
The formation of carboaluminates has also been confirmed by many other researchers [5,26,30,51].
However, hemicarboaluminate is not thermostable and mainly exists in the early hydration process
(before 7 d), and then slowly converts to monocarboaluminate. The formation of carboaluminate
depends on many factors such as kinetics of hemi- and monocarboaluminate formation and the
dissolution of calcium carbonate is lower in high pH conditions, which causes the actual amount of
calcium carbonate participating in the formation of carboaluminate to be far less than the content of
limestone powder [51]. Therefore, the intensity of the carboaluminates peaks in the X-ray diffraction
(XRD) pattern is lower and difficult to detect compared to other hydrates, as shown in Figure 3 [51].
For the second hydration peak, Bentz et al. had a similar result through the investigation of hydration
of cement prepared with different fineness of limestone powder [50], and another possibility for
the increasing second hydration peak of cement containing fine limestone powder (nano-limestone
powder and 4.4 µm limestone powder in reference [50]) may be that limestone powder can provide an
additional source of calcium irons to the pore solution, even though calcium carbonate has a relatively
low dissolution in the elevated pH condition [50]. When a coarser limestone powder (15 µm in
reference [47]; 20 µm in reference [35] and 15.7 µm in reference [26]) is used in cementitious composites,
the dilution effect is also significant. Though the heat release rate of coarse limestone powder-cement
is still higher than that of the pure cement, the total hydration heat is comparable or even lower than
that of pure cement, as shown in Figure 2 [47].

3.1.2. Content

The content of limestone powder can also affect the main action mechanism of limestone powder
on cement hydration. In general, the nucleation effect increases with the increase of limestone powder
content. This is because more nucleation sites can be provided for the formation of C-S-H and the
accumulative hydration. The heat release rate will also increase. The effect of the content of limestone
powder on its chemical effect may be complicated for the following two reasons: (1) the formation of
hemi- and monocarboaluminate mainly depends on the kinetics rather than the amount of calcium
carbonate present; and (2) the dissolution of calcium carbonate is small and the content of aluminate
in cement is low as well [51]. However, some quantitative relationships of the chemical effects of
limestone powder can still be calculated according to the chemical reaction equations, and the results
are shown in Figure 4 [24]. Regions I, II and III are delineated by dotted lines, which means the hydrates
in these areas are metastable phases. According to the boundaries in the three areas, the content of
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carboaluminates is the function of the content of sulfate, carbonate and aluminate. There is no calcite
in regions I to IV, which means calcite totally participates in the reaction of calcium carbonate and
tricalcium aluminate (C3A). But in regions V and VI, the calcite just acts as an inert filler to fill the
voids between cement grains. Conversely, the dilution effect has a significant enhancement with the
increase of limestone powder content, especially for the ultra-fine limestone powder [2]. Because more
free water can be substituted by the ultra-fine limestone powder in voids, the effective water to cement
ratio increased.Materials 2019, 12, x FOR PEER REVIEW 9 of 21 
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Figure 3. Influence of different quantities of anhydrite on the hydration of laboratory limestone (LS)
containing Portland cements: (a) 2.1% CaSO4 + 15% LS, (b) 3% CaSO4 + 15% LS, and (c) 3.8% CaSO4 +
15% LS. The main reflexes of ettringite (Et), hemicarbonate (Hc), monocarbonate (Mc) are indicated [51].

3.1.3. Crystal Structure

Limestone powders with different crystal structures may have different influences on cement
hydration. The influence of aragonite (sturcal F) and calcite (heat-treated sturcal F) on cement hydration
have been investigated [26]. Calcite can significantly accelerate the hydration process, but aragonite
may not. As shown in Figure 5 [52], the planar configuration of calcite consists of Ca and O atoms,
which is similar to the CaO layer in C-S-H gel. But to aragonite, only Ca atoms are detected in the
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surface layer for aragonite. So, calcite has an improvement on hydration process. However, because
of the similar dissolution processes of calcite and aragonite in an ambient environment, the chemical
effect may not be distinguished [26].
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3.2. Workability

The workability of a fresh mixture containing limestone powder mainly depends on its particle
size, content and surface morphology. The viscosity (tested by V-funnel time or rheometer) increases
with the decrease in particle size of limestone powder, especially when the particle size is comparable
or smaller than those of cement grains, because of the fill effect and higher specific area of limestone
powder [53]. Therefore, self-compacting concrete (SCC) prepared with fine limestone powder (median
particle size < 20 µm [53–55]) may have a good segregation resistance ability and workability.
The viscosity is also influenced by the replacement content of limestone powder, but it is not a
linear relationship between the replacement content and variation of viscosity [53]. The effects of
limestone powder on yield stress (tested by spread flow or rheometer) may be complicated. Coarse
limestone powder (Blaine fineness = 4430 cm3/g) could reduce the spread flow values (increased the
yield stress), but fine limestone powder (Blaine fineness = 5380 cm3/g) increased the spread flow
values (decreased the yield stress) [53]. Bentz et al. [52] used a finer limestone powder than that in
reference [53] and found that fine limestone powder could increase the flowability and decrease the
yield stress. Cao et al. also investigated the effect of morphology of calcium carbonate on viscosity and
yield stress of cement mortar containing aragonite calcium carbonate whisker (CW) with a needle-like
shape (aspect ratio = 10–60) [56]. Both viscosity and yield stress increase with the increased substitution
amount of cement because of its higher specific area. The purity of limestone powder [57] also affects
the workability of fresh mixture in addition to the above factors.

3.3. Mechanical Properties

3.3.1. Limestone Powder

The mechanical properties of cementitious composites containing limestone powder depend on
particle size, content and morphology. With the decrease particle size, compressive strength at early-age
(before 7d) is found to increase with a constant content of limestone powder [1,47,54,55]. But for
long-term age, incorporation of finer limestone powder may decrease the compressive strength [1],
because the dilution effect of finer limestone powder may be more effective than its filler effect or
nucleation effect at the end stage of the hydration process. With the increased content, compressive
strength and flexural strength decrease [1,47,54,55,58]. On one hand, a high replacement content
reduces the amount of cement and this is not good for the strength development because limestone
powder has no cementitious ability. On the other hand, the dilution effect is more effective with the
increase in substitution content, and causes a high effective water to cement ratio and lower strength.
However, flexural defection of polyvinyl alcohol fiber reinforced engineered cementitious composites
(PVA-ECC) may be improved after the addition of limestone powder because of uniform dispersion of
PVA fiber caused by the diluting effect of limestone powder [58].

3.3.2. Calcium Carbonate Whisker

Calcium carbonate whisker (CW) was first used in the paper industry to enhance the toughness of
paper. It is different from limestone powder with a bulk shape [35] or granular shape (see in Figure 6),
but is needle-like [56] (see in Figure 7). Because of its shape, CW not only fills the voids to make the
matrix dense [14] but also plays a role in resisting the development of micro-cracks, especially with
incorporated steel fiber [16,20,59], PVA fiber [15] and carbon fiber [60]. Moreover, a positive synergic
effect can be demonstrated when incorporated of a hybrid fiber system [61,62].



Materials 2019, 12, 781 11 of 20

Materials 2019, 12, x FOR PEER REVIEW 12 of 21 

 

long-term age, incorporation of finer limestone powder may decrease the compressive strength [1], 

because the dilution effect of finer limestone powder may be more effective than its filler effect or 

nucleation effect at the end stage of the hydration process. With the increased content, compressive 

strength and flexural strength decrease [1,47,54,55,58]. On one hand, a high replacement content 

reduces the amount of cement and this is not good for the strength development because limestone 

powder has no cementitious ability. On the other hand, the dilution effect is more effective with the 

increase in substitution content, and causes a high effective water to cement ratio and lower strength. 

However, flexural defection of polyvinyl alcohol fiber reinforced engineered cementitious 

composites (PVA-ECC) may be improved after the addition of limestone powder because of uniform 

dispersion of PVA fiber caused by the diluting effect of limestone powder [58]. 

3.3.2. Calcium Carbonate Whisker 

Calcium carbonate whisker (CW) was first used in the paper industry to enhance the toughness 

of paper. It is different from limestone powder with a bulk shape [35] or granular shape (see in Figure 

6), but is needle-like [56] (see in Figure 7). Because of its shape, CW not only fills the voids to make 

the matrix dense [14] but also plays a role in resisting the development of micro-cracks, especially 

with incorporated steel fiber [16,20,59], PVA fiber [15] and carbon fiber [60]. Moreover, a positive 

synergic effect can be demonstrated when incorporated of a hybrid fiber system [61,62]. 

 

Figure 6. Scanning electron microscopy (SEM) images of limestone powder with particle size of (a) 5 

μm and (b) 20 μm [35]. 

 

Figure 7. Images of (a) macro-morphology of calcium carbonate whisker (CW); (b) micro-morphology 

of CW as shown by SEM [56]. 

3.4. Durability 

3.4.1. Acid Attack  

Figure 6. Scanning electron microscopy (SEM) images of limestone powder with particle size of (a)
5 µm and (b) 20 µm [35].

Materials 2019, 12, x FOR PEER REVIEW 12 of 21 

 

long-term age, incorporation of finer limestone powder may decrease the compressive strength [1], 

because the dilution effect of finer limestone powder may be more effective than its filler effect or 

nucleation effect at the end stage of the hydration process. With the increased content, compressive 

strength and flexural strength decrease [1,47,54,55,58]. On one hand, a high replacement content 

reduces the amount of cement and this is not good for the strength development because limestone 

powder has no cementitious ability. On the other hand, the dilution effect is more effective with the 

increase in substitution content, and causes a high effective water to cement ratio and lower strength. 

However, flexural defection of polyvinyl alcohol fiber reinforced engineered cementitious 

composites (PVA-ECC) may be improved after the addition of limestone powder because of uniform 

dispersion of PVA fiber caused by the diluting effect of limestone powder [58]. 

3.3.2. Calcium Carbonate Whisker 

Calcium carbonate whisker (CW) was first used in the paper industry to enhance the toughness 

of paper. It is different from limestone powder with a bulk shape [35] or granular shape (see in Figure 

6), but is needle-like [56] (see in Figure 7). Because of its shape, CW not only fills the voids to make 

the matrix dense [14] but also plays a role in resisting the development of micro-cracks, especially 

with incorporated steel fiber [16,20,59], PVA fiber [15] and carbon fiber [60]. Moreover, a positive 

synergic effect can be demonstrated when incorporated of a hybrid fiber system [61,62]. 

 

Figure 6. Scanning electron microscopy (SEM) images of limestone powder with particle size of (a) 5 

μm and (b) 20 μm [35]. 

 

Figure 7. Images of (a) macro-morphology of calcium carbonate whisker (CW); (b) micro-morphology 

of CW as shown by SEM [56]. 

3.4. Durability 

3.4.1. Acid Attack  

Figure 7. Images of (a) macro-morphology of calcium carbonate whisker (CW); (b) micro-morphology
of CW as shown by SEM [56].

3.4. Durability

3.4.1. Acid Attack

In some special environments, concrete may be attacked by acid. Because of the reaction between
Ca(OH)2 produced by the hydration process and acid ions, a high weight loss may occur and, therefore,
cause the deterioration of strength. Incorporation of limestone power in cementitious composites can
reduce the weight loss [55,63]. Moreover, with the increase of substitution content and decrease of
particle size, cement mortar or concrete containing limestone powder exhibit a better resistance to
acid attack [55]. This is because less Ca(OH)2 is produced when the replacement content of cement
is higher. In addition, a finer limestone powder may have a more effective filler effect and make a
denser matrix [55]. Thereby, the incorporation of more and finer limestone powder in cementitious
composites may give a better resistance to acid attack, to some extent.

3.4.2. High Temperature Exposure

Incorporation of limestone powder in cementitious composites may be not good for their ability
to resist high temperature exposure. With the increases of temperature and/or content of limestone
powder, there are decreases of the compressive strength, ultrasonic pulse velocity (UPV) decrease
and increase of weight loss [64,65], especially after the decomposition of calcium carbonate at around
800–900 ◦C [42,44].

However, it is noticeable that limestone powder used in these references [64,65] is coarser
than cement grains and causes a more effective dilution effect, especially when more cement is
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replaced. Therefore, the residual is lower compared to that without limestone powder before 600 ◦C.
In addition, there are not enough studies about the effects of limestone powder on the properties
of high temperature-damaged cementitious composites, especially when the fineness and crystal
structure of limestone powder are taken into consideration. So, more studies are needed in this area.

In conclusion, micro-calcium carbonate can affect the hydration process of cement by its dilution
effect, nucleation effect and chemical effect. These effects are significantly influenced by the particle size,
content and crystal structure. Workability of fresh mixture is also influenced by the particle size and
content through the filler effect. Subsequently, mechanical properties and durability are also influenced
because of the effect of micro-calcium carbonate on the hydration process and workability. Moreover,
the main difference between macro- and micro-calcium carbonate is that micro-calcium carbonate has
a chemical effect on cementitious composites, except for the physical effect (filler effect), especially
incorporation of finer micro-calcium carbonate (limestone powder) in cementitious composites.

4. Nano-Calcium Carbonate

Nanoparticles are commonly defined as materials with a particle size of less than 100 nm [66,67],
and can make revolutionary changes in bulk material properties [68]. Incorporation of nanoparticles in
cementitious composites can significantly improve their mechanical properties and durability [67,69–72].
Among these nanoparticles, nano-calcium carbonate is one of the most widely used nanoparticles in
the construction sector. In order to distinguish micro-calcium carbonate and nano-calcium carbonate,
the particle size of nano-calcium carbonate is less than 1 µm, rather than being more strictly defined as
less than 100 nm. Compared with micro-calcium carbonate, nano-calcium carbonate has a finer particle
size and larger specific area, and thereby a more significant effect on the hydration process, workability,
mechanical properties and durability of cementitious composites can be observed, even only with a
small amount.

4.1. Hydration Process

The effect of nano-calcium carbonate on the hydration process of cement depends on its content,
particle size and crystal structure [22,73–79]. Sato et al. [73,79] studied the influence of content and
particle size of nano-calcium carbonate on cement hydration. Nano-calcium carbonate (50–120 nm) is
very effective in accelerating the cement hydration, especially for the induction period of tricalcium
silicate (C3S), because of its nucleation effect [79]. Moreover, with the increase of calcium carbonate
content, the acceleration effect of nano-calcium carbonate is more and more pronounced and the
hydration peak of tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) is also more and
more remarkable. Similar results are also shown in Figure 8 [77]. Both the dormant period and the
appearance of the second hydration peak (associated with hydration of C3A and C4AF) are shortened.
The reasons are that the calcium ions can be absorbed onto the surface of nano-calcium carbonate
when the C3S is dissolved in water because of the high surface energy of nano-calcium carbonate,
and thereby it causes the concentration reduction of calcium ions around the C3S. It is favorable for
accelerating the reaction of C3S. In addition, dissolved carbonate ions from nano-calcium carbonate can
react with C3A to form hemi- and monocarboaluminates [76,77]. However, nano-calcium carbonate
can also react with C3S to form C-S-H gel and Ca(OH)2 and this may be also the reason for earlier and
higher hydration heat. The dilution effect of nano-calcium carbonate can also be found in Figure 8
because the mixture containing 4.8% ( by weight) nano-calcium carbonate (15-105 nm, 97.8% calcite)
has a higher and earlier hydration heat [77], which means nano-calcium carbonate is more effective to
perform a dilution effect compared with micro-calcium carbonate (micro-calcium carbonate performs
a dilution effect when its content is 10% (by weight) discussed in Figure 2 [47]).
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Crystal structure of nano-calcium carbonate can also influence the cement hydration process.
The influence of calcite nano-calcium carbonate (NC) and aragonite nano-calcium carbonate (AC) on
the properties of PVA-ECC are investigated [78]. From the thermogravimetric analysis (TGA/DTA)
in Figure 9, ECC containing AC has a similar Ca(OH)2 content compared with the control group at
90d because the surface structure of aragonite calcium carbonate is less favorable for the formation
of C-S-H [78], which means AC is less effective to accelerate the hydration process compared with
the NC. These results are similar to that for micro-calcium carbonate [26]. However, the Ca(OH)2

content decreases with the increase of age because of the formation of carboaluminates, carbonation
and pozzolanic effect (only for nano-silicon oxide in this reference).Materials 2019, 12, x FOR PEER REVIEW 15 of 21 
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4.2. Workability

The workability of cementitious composites with incorporated nano-calcium carbonate depends
on content and particle size. In general, with an increase in particle size or content, the yield stress
(spread flow) and viscosity (V-funnel time) increase [27,80,81]. However, when particle size and
content of nano-calcium carbonate are taken into consideration at the same time, their combined
effect on the workability may be different from the effect of each one. It is generally recognized that
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demanding water of cementitious composites includes two aspects: (1) filling water in the voids
between the cement grains; and (2) absorbing water on the surface of cement particles [77]. In addition,
the action mechanism may also include two aspects: (1) the dilution effect, which means water in
voids can be substituted by nano-calcium carbonate particles; and (2) the filler effect, which means
finer nano-calcium carbonate particles can fill the space between cement particles and at the same
time, more free water can be absorbed onto the surface of nano-calcium carbonate because of its larger
specific area and higher surface energy. Both the two action mechanisms can be influenced by particle
size and content of nano-calcium carbonate, and thereby with the increase of content, the flowability
may perform differently [22,75,82].

4.3. Mechanical Properties

The mechanical properties of cementitious composites containing nano-calcium carbonate mainly
depend on their contents. Flexural strength initially increased up to a nano-calcium carbonate
(15–40 nm) addition rate of 2% (by weight) and then decreased [78]. With incorporation of nano-calcium
carbonate in PVA-ECC, the mid-span deflection significantly improves, especially at early-age (before
1 d). However, comparing the effect of calcite and aragonite nano-calcium carbonate on flexural
and compressive properties, the calcite is more effective because it is more favorable to accelerate
the formation of C-S-H [78]. For compressive strength, with the increase in nano-calcium carbonate
content, compressive strength initially increases and then decreases [27,77,81,83]. The reasons are that,
on one hand, nano-calcium carbonate can accelerate the hydration process and react with C3S and
C3A to form C-S-H and carboaluminates, and this effect is more effective with the increase of content
to some extent. However, when a large amount of cement is replaced by nano-calcium carbonate,
the dilution effect is more effective, just like the micro-calcium carbonate. Moreover, agglomeration
of nano-calcium carbonate will seriously reduce the development of compression, which is different
to micro-calcium carbonate [1,54,55,58]. In addition, the denser matrix caused by the addition of
nano-calcium carbonate could not provide available space for the formation of hydration products [77].
In general, incorporation of nano-calcium carbonate in cementitious composites can improve early-age
strength and incorporation of SCMs may be helpful for long-term strength [84], so the hybrid use of
nano-calcium carbonate and SCMs may have a synergic effect on both early-age and long-term strength.

4.4. Durability

Very few studies about the effects of acid attack on properties of cementitious composites
containing nano-calcium carbonate can be found. However, according to other durability tests such
as water sorptivity and chloride permeability [80,85], incorporation of nano-calcium carbonate in
cementitious composites can make the matrix dense and reduce the pores. Thus, the impermeability
and the acid attack resistance ability may be good, especially when the partial replacement of cement
is greater.

For high temperature exposure, incorporation of nano-calcium carbonate in cementitious composites
can improve its peak compressive stress, ultimate compressive strain, compressive toughness and flexural
properties no matter in ambient environment or in/after high temperature [68,86,87]. But it is ineluctable
for the rapid decrease in strength after 800 ◦C because of the decomposition of calcium carbonate.

In conclusion, just like the micro-calcium carbonate, nano-calcium carbonate can also affect the
hydration process, workability, mechanical properties and durability through the filler effect, dilution
effect, nucleation effect and chemical effect. All these effects are influenced by the content, particle size
and crystal structure of the nano-calcium carbonate. However, the effects of nano-calcium carbonate
are more effective than those of micro-calcium carbonate, and it is ineluctable that the agglomeration
of nano-calcium carbonate is also more remarkable than that of micro-calcium carbonate because of its
higher surface energy and larger specific area.
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5. Summary and Expectation

5.1. Summary

The effects of macro-, micro- and nano-calcium carbonate on the hydration process, workability,
mechanical properties and durability of cementitious composites have been reviewed. Based on the
discussion above, conclusions can be drawn as follows:

(1) Macro-calcium carbonate mainly acts as an inert filler in cementitious composites. The influence
of macro-calcium carbonate on the cement hydration process is insignificant. The workability
of fresh mixture depends on water absorption and particle size of macro-calcium carbonate,
and concrete prepared with dry macro-calcium carbonate has a higher slump loss. The mechanical
properties of concrete depend on water absorption, particle size and the constitutions of
macro-calcium carbonate and concrete prepared with wet and fine macro-calcium carbonate may
have a higher strength. Comparison of different mineral aggregates, macro-calcium carbonate
(coarse limestone) aggregates are less favorable for the improvement of strength, but incorporation
of SCMs in concrete can offset this problem. Macro-calcium carbonate is not a good material
to resist an acid attack because of its soft nature. But it is good for resisting high temperature
exposure compared with siliceous aggregate, because of its higher thermostability.

(2) Micro-calcium carbonate has both a physical effect (filler effect, dilution effect and nucleation
effect) and a chemical effect on cementitious composites. The cement hydration process depends
on particle size, content and crystal structure of micro-calcium carbonate. In general, the finer
the micro-calcium carbonate particles are, and the higher the content is, the more significant
the acceleration effect of the hydration process will be. Moreover, calcite is more favorable
in accelerating the hydration process than aragonite, because of their different crystal surface
structures. The workability of fresh mixture containing micro-calcium carbonate powder mainly
depends on its particle size, content and surface morphology. A finer powder and higher content
may cause a higher yield stress and viscosity, but at the same time the dilution effect is also
more effective. Therefore, the workability may not have a clear and linear relationship with
the particle size or content when all of these factors work together. Conversely, the influence
of CW on workability is clearer, and both viscosity and yield stress increase with increased
substitution amount of cement. The mechanical properties of cementitious composites containing
micro-calcium carbonate depend on its particle size, content and surface morphology. In general,
the improvement of micro-calcium carbonate is effective on early-age strength because of its
acceleration effect of cement hydration. Incorporation of micro-calcium carbonate in cementitious
composites can make the matrix denser and thereby the acid attack resistance ability is better
compared with that without micro-calcium carbonate. Incorporation of micro-calcium carbonate
in cementitious composites may not be good for its ability to resist high temperature exposure.

(3) Nano-calcium carbonate can have physical and chemical effects on cementitious composites,
and these effects of nano-calcium carbonate are more effective compared with those of
micro-calcium carbonate. However, the agglomeration of nano-calcium carbonate is also more
effective. The effect of nano-calcium carbonate on the hydration process of cement depends on
its content, particle size and crystal structure. The hydration process can be accelerated through
the nucleation effect and chemical effect. But the dilution effect decreases total hydration heat.
The workability of cementitious composites with incorporated nano-calcium carbonate depends
on their content and particles. In addition, yield stress and viscosity will perform differently
because of the combined effect of particle size and content. Incorporation of nano-calcium
carbonate in cementitious composites can improve early-age strength when a proper amount is
used. Hybrid use of nano-calcium carbonate and SCMs has a synergic effect both on early-age and
long-term strengths. The resistance ability to acid attack of cementitious composites containing
nano-calcium carbonate is not clear, but nano-calcium carbonate can make the matrix denser.
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Incorporation of nano-calcium carbonate in cementitious composites is favorable for its high
temperature behaviors.

5.2. Expectation

There have been many studies about the effect of macro-, micro- and nano-calcium carbonate on
properties of cementitious composites. Many effective and significant results and mechanisms have
been produced and proposed. But further studies are still needed on:

(1) The high temperature properties of cementitious composites containing calcium carbonate
particles. On one hand, the activity and chemical constitutions of calcium carbonate may be
different in/after high temperatures. On the other hand, whether incorporation of calcium
carbonate is favorable for the high temperature properties of cementitious composites needs more
study, especially for aragonite, because a crystal transition will happen at around 450 ◦C and the
influence of crystal transition on the properties of cementitious composites is still not clear.

(2) Hybrid use of multi-scale calcium carbonate. Macro- and micro-calcium carbonate are more
widely used compared with nano-calcium carbonate because nano-calcium carbonate has a
relatively high price and is difficult to be dispersed uniformly. Hybrid use of multi-scale calcium
carbonate may be a useful way to solve these problems, and thereby more research needs to be
conducted to investigate the feasibility and effectiveness of this method.
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