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Abstract: The grain refinement and thermal stability behavior of a spray-casted AZ91D magnesium
alloy were investigated with the addition of 0.75 wt% Ce. The results showed that the adoption
of non-equilibrium solidification leads to remarkable grain refinement and the formation of a
supersaturated solid solution, which suppresses the needle-like Al11Ce3 phase with a low cooling
rate. After annealing at 420 ◦C, the grain morphology of rapidly solidified AZ91D+0.75Ce alloy
changed from a granular to polygonal shape. Moreover, Mg12Ce particles precipitated and
distributed homogeneously, which played an important role in grain boundary pinning at an elevated
temperature. Consequently, the grain growth occurring during the isothermal annealing stage could
be suppressed and the resultant grain size varied slightly, as did for the time, which increased from
2 h to 8 h.

Keywords: rapid solidification; microstructure refinement; precipitation; grain growth;
magnesium alloy

1. Introduction

The applications of magnesium alloy present drastic growth with the need for power saving
and environmental issues [1]. Amongst all the developed commercial alloys, AZ91D is one of
the most promising materials with a noteworthy lightweight, good castability and an excellent
electromagnetic shielding capacity [2–4]. According to the Hall–Petch relationship, the tensile strength
of polycrystalline material has a pronounced dependence on the final grain size and often improves
with the reduction of average grain size [5]. However, the magnesium alloy produced by a conventional
ingot metallurgy method exhibits coarse grain due to the lack of effective inoculants, which thus
generates an unsatisfactory strength and inferior corrosion resistance [6].

Non-equilibrium solidification has aroused continuous interest in the fields of materials science
and condensed matter physics [7]. Due to the large departure from thermodynamic equilibrium,
a remarkable grain refinement can be achieved by increasing the cooling rate during solidification
without changing the initial alloy composition [8–10]. Meanwhile, solid solubility extension [11],
meta-stable phase formation [12], as well as the elimination of detrimental intermetallic compounds [13]
can be realized successfully, which lead to satisfactory microstructure modification. With the addition
of a rare element, its mechanical property can be further improved due to solid solution hardening
and precipitation hardening effect [14–17].

Nevertheless, the fine grain structure formed in non-equilibrium solidification suffers a great
challenge due to the tendency of the grain growth to reduce their grain boundary energy, especially
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for the accelerated atomic diffusion rate at elevated temperature [18–20]. Up to now, it is commonly
accepted that the thermal stability of fine grain microstructure can be improved by two methods, i.e.,
the exotic addition of insoluble inclusions [21] or the in situ formation of thermal stable precipitates [22].
In comparison with the former method, the precipitation of fine particles by controlling nucleation
and growth processes seems more applicable because of the advantage of avoiding a non-uniform
dispersion problem [23]. Using this method, Sheng et al. studied the mechanical properties of a rapidly
solidified AZ91 alloy by forming thermally stable Mg2Si precipitates and an AlMg2Zn phase [24].
It was also reported that both the grain boundary sliding and dislocation motion can be inhibited
effectively due to the presence of fine dispersed stable Al–La compound particles along the grain
boundary [25].

While various methods have been reported for the grain refinement of magnesium alloy [26],
investigations of the corresponding thermostability are still rather limited, especially for the
relationship between the non-equilibrium effect and the subsequent solid state transformation [27].
In our previous study [18], it was reported that both the grain growth and the final grain size of a
non-equilibrium solidified AZ91D alloy depended to a great extent on the isothermal time during
the annealing process. The objective of present work is to investigate the microstructure evolution
and thermostability behavior of an AZ91D+0.75Ce alloy by using copper mold spray-casting and
isothermal annealing treatment. Special attention is paid to the non-equilibrium effect arising from a
higher cooling rate during solidification and the subsequent precipitation, as well as the associated
grain growth process.

2. Materials and Methods

The non-equilibrium solidification was performed by a copper mold spray-casting technique,
which was conducted in an inert vacuum environment to prevent oxidation of the liquid metal. The
commercial AZ91D magnesium alloy, coupled with 0.75 wt% Ce element, was selected in the present
study due to its excellent grain refinement effect [23]. The mixture of raw materials was melted in a
quartz crucible by a high-frequency induction heating apparatus and then injected into a copper mold
with the inner and outer diameter of 8 mm and 80 mm, respectively. For the sake of comparison, the
as-cast specimen was also prepared by in situ cooling in the crucible without injection. The isothermal
annealing for the spray-casted alloy was performed in a heat-resistant furnace at 420 ◦C, under the
protection of a flowing Ar atmosphere. To investigate the time dependence of the thermostability
behavior of the spray-casted alloy, different holding periods (i.e., 2, 4, 6 and 8 h), were selected
separately. The details of the experiment have been described elsewhere [18].

Microstructure analysis of the as-fabricated specimen was proceeded by optical microscopy (OM,
VHX-600, KEYENCE, Osaka, Japan) after standard metallographic preparation techniques. The high
magnification microstructure was observed by scanning electron microscope (SEM, Quantan 200, FEI,
Oregon, America) and the detailed chemical composition was determined by the attached energy
dispersive spectroscopy (EDS, INCA, Oxford Instruments, Oxford, UK) operating at 20 kV. To identify
the morphology of tiny precipitate, a field emission scanning electron microscope (FE-SEM, Nova
Nano 450, FEI, Oregon, America) with a point-to-point resolution of 1 nm was employed and the
element distribution was characterized by energy dispersive spectroscopy (INCA 250 X-Max 50, Oxford
Instruments, Oxford, UK), operating at 15 kV. To minimize the effect of electron–matter interaction
volume from the matrix, the mode of Spot 2 was selected with the acquisition rate larger than 1.5 kcps
and live time of 100 s. An X-ray diffractometer (XRD, D8 ADVANCE, Bruker-axs, Karlsruhe, Germany)
was used to reveal the phase components in both the spray-casted alloy and that after being annealed
for 2 h. Transmission electron microscopy (TEM, JEM 2100F, JEOL, Tokyo, Japan) operating at 200 kV
was applied for high-resolution observation of the precipitate and the detailed phase structure was
analyzed by the selected area electron diffraction method. The microhardness was measured by a
Vickers indenter (DuraScan, Struers, Copenhagen, Denmark) with a load of 200 g and a dwell time of
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15 s. Each of the samples was tested at five different areas and the average value was adopted in the
present work.

3. Results and Discussion

3.1. Effect of the Cooling Rate on the Microstructure Evolution of the AZ91D+0.75Ce Alloy

Figure 1 shows the optical micrographs taken from the as-cast and spray-casted AZ91D+0.75Ce
alloys, respectively. In the as-cast condition, coarse dendrites with a rosette-like morphology appeared,
accompanied by the continuous distribution of the second phase along the grain boundary (Figure 1a).
After measurement, the average grain size of the primary phase reached ~150 µm. In contrast,
a remarkable grain refinement occurred in the spray-casted alloy (Figure 1b), and the fine granular
with an average diameter of ~8 µm, could be observed from the enlarged structure (Figure 1c), which
could be ascribed to the enhanced nucleation events and shortened grain growth period during the
spray-casting process with a high cooling rate [28]. In addition, the accelerated migration rate for
the liquid–solid interface favored microstructure stability and suppressed the formation of dendrite
structure as well [29,30].
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Figure 1. Optical microstructures of AZ91D+0.75Ce alloy fabricated by different methods: (a) As-cast;
(b) spray-casting with low magnification and (c) spray-casting with high magnification.

Figure 2 presents the SEM micrographs of the as-cast magnesium alloy, in which three different
phases—labeled A, B, and C—are identified by EDS analysis and the results are listed in Table 1. After
equipment calibration, it was verified that the measurement accuracy was nearly 90% for an element
content larger than 1%, and more uncertainty existed for the minor alloying elements. As could be
seen clearly, the main element in the matrix area was Mg (Point A in Figure 2a), thus the primary
phase could be determined as α-Mg, according to the phase diagram [31]. However, a great amount of
Al element existed in the grain boundary region (Point B in Figure 2a). According to the measured
stoichiometry, it could be identified as the β phase, generating from serious solute segregation at the
final solidification stage. As reported earlier [32], the brittle intermetallics were unfavorable to the
mechanical strength, as well as the creep property at an elevated temperature. In addition, some
needle-shaped phases could be observed in the high magnification microstructure, as indicated by
Point C in Figure 2b. According to chemical analysis, it was revealed that both the Al and Ce elements
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were enriched with an atomic ratio of 4:1 and thus could be deduced as the Al11Ce3 phase, as reported
in our previous work [32].Materials 2018, 12, x FOR PEER REVIEW  4 of 10 
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Figure 2. Scanning electron micrographs of as-cast AZ91D+0.75Ce alloy: (a) Matrix phase and grain
boundary; (b) needle-like phase.

Table 1. EDS results for AZ91D+0.75Ce alloy fabricated by different methods (at percent).

Alloy Point Mg Al Zn Ce Mn Si O

As-cast A 85.81 4.81 - - - - 9.38
- B 52.12 33.16 2.02 - - - 12.70
- C 21.40 48.73 - 12.13 7.89 - 9.85

Spray-casting A 73.49 12.25 - 0.71 0.82 - 12.73
- B 72.60 17.28 - 0.76 0.75 - 8.61
- C 79.94 9.21 - 1.65 - - 9.20

Spray-casting + 420 °C × 2 h A 57.79 23.97 0.62 1.14 - 0.65 15.83
- B 57.41 29.50 0.78 1.07 0.29 - 10.95
- C 85.48 8.00 - - - - 6.52

- - - - - - - - -

After the copper mold spray-casting, both the solute distribution and the microstructure
morphology of the AZ91D+0.75Ce alloy changed significantly, as evidenced by the SEM and EDS
results shown in Figure 3 and Table 1. Firstly, the solute contents of Al, Ce and Mn in the α-Mg matrix
increased due to the solute trapping effect (Point A) [33]. Secondly, the morphology of the β phase in
the grain boundary appeared discontinuous (Point B). After measurement using Image-Pro Plus 6.0,
its volume fraction herein was merely 7.53%, which was much less than that of 14.94% for the as-cast
alloy. Generally speaking, the transition of grain morphology from coarse dendrite to fine granular
favors the diffusion of solute atoms in the channel of residual liquid. Moreover, the formation of a
supersaturation phase reduces the amount of solute atoms rejected from the as-solidified phase. As
expected, the extent of solute segregation was weakened, which in turn resulted in the suppression
of the β phase. Finally, both the length and volume fraction of the needle-like Al11Ce3 phase were
decreased significantly, as verified by the occasional existence shown in Point C. It should be noted
that both the Al content in β phase and Ce element in Al11Ce3 phase was much lower than that in
Figure 2, which could be explained by the effect of the electron–matter interaction volume from the
matrix and a larger uncertainty occurred for a smaller area herein. Regarding this fact, the influence of
minor zinc as the solute was not considered in the present work, even though it has a strong impact on
dendritic and eutectic phase formation [28].
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Figure 3. Scanning electron micrograph of spray-casted AZ91D+0.75Ce alloy.

3.2. Effect of Annealing on the Grain Growth and Precipitation of the Spray-Casted Alloy

Figure 4 presents the microstructure evolution of the spray-casted sample after being annealed at
420 ◦C for a different time. Even in the case of the shortest duration of 2 h, the granular morphology of
the primary phase clearly changed to a polygonal shape and the β phase disappeared completely, due
to its lower melting point temperature of merely 437 ◦C (Figure 4a). With increasing the annealing
time, the size of the polygonal grain maintained constantly (Figure 4b–d) and the detailed variation is
given in Figure 5 accordingly. As can be seen clearly, the average grain size was ~20 µm after being
annealed for 2 h. With an extending the holding time, its value varied slightly and the final size
reached ~26 µm, even for the longest time of 8 h, indicating a satisfactory thermostability behavior of
the as-fabricated fine grain structure. As reported earlier, the average grain size of the spray-casted
AZ91D alloy changed from ~35 µm to ~85 µm with increasing the holding time from 2 h to 8 h [18].
So, it could be deduced that the addition of Ce made the alloy less sensitive during exposure to an
elevated temperature.
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Figure 5. Average grain size of spray-casted AZ91D+0.75Ce alloy after annealed at 420 ◦C for
different times.

Although grain growth is inclined to occur upon annealing for spray-casted alloys [34], it
can be suppressed effectively by the formation of tiny particles. In order to understand the
underlying mechanism of the improved thermostability, Figure 6 shows the FE-SEM observations
of the microstructure variation for the spray-casted alloy, after isothermal annealing for 2 h and 8 h,
respectively. They were selected to represent the shortest and longest time for the studied annealing
process. It is clearly shown that there were many fine blocks and they were well dispersed within the
matrix, as well as at the corner of grain boundary (Figure 6a). According to the EDS measurements
listed in Table 1, the amount of Mg element herein (Point A and Point B in Figure 6) was ~57 at%,
which was much larger than the previous rare earth phase of 21.4 at% (Point C in Figure 2b). Moreover,
the Al element reduced significantly, indicating a new phase rather than Al11Ce3 forms after annealing
of spray casted alloy. rather than Al11Ce3, which formed after annealing of the spray-casted alloy.
Additionally, the Mg content in the matrix increased as well (Point C in Figure 6a), which could
be ascribed to the relief of microsegregation after the solid solution treatment. With extending the
isothermal time, these Ce-rich particles still existed, except for a slight reduction of its volume fraction
(Figure 6b). To verify the existence of Ce element in the particles, a mapping scanning for the specimen
annealed for 8 h was performed on the FE-SEM observation, and the result is shown in Figure 7. As
can be seen clearly, Ce was enriched for the bright phases embedded in the matrix and along the
grain boundary, which indicated that these blocks with various sizes were indeed Ce-rich particles
(Figure 7b).
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The structure of the Ce-rich compound was further analyzed by XRD, for the rapidly solidified
AZ91D+0.75Ce alloy, after being annealed for 2 h, as shown in Figure 8. The main phase in the
spray-casted alloy consisted of α-Mg, the β phase and a slight Al11Ce3 phase, which was in accordance
with the observations shown in Figure 3. After the annealing treatment, a very limited amount of
Mg12Ce could be identified, which was an indicator of the occurrence of precipitates. The phase was
also reported in the single roller melt-spinning Mg97Ce2Zn1 alloy after being annealed at 400 ◦C [35].
This deduction was further supported by the result of a selected area electron diffraction, shown in
Figure 9, where the particle at the grain boundary could be determined as the Mg12Ce phase with a
tetragonal crystal structure.
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Figure 9. Transmission electron microscopy micrograph and selected area electron diffraction pattern
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for 2 h.

Due to the supersaturation of the solute elements in the matrix being affected by the high cooling
rate, the driving force for the nucleation of precipitates was enhanced accordingly. In addition, various
defects, such as vacancies, dislocations and stacking faults, formed during the non-equilibrium
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solidification process and provided favorable sites for the initial nucleation in the subsequent
precipitation process [5]. After comparison with the apparent grain growth behavior in the spray-casted
AZ91D alloy without the Ce element [18], it could be inferred that the formation and presence of these
Ce-rich particles served as obstacles to inhibit the grain growth under a high temperature, which led to
the enhanced thermostability revealed in Figure 4. It should be noted that the particle size, spacing and
morphology are all crucial factors for affecting the grain growth kinetics at elevated temperature [34].
So, proper consideration should be conducted in future work for describing the detailed pinning effect.

3.3. Micro-hardness of the As-prepared AZ91D+0.75Ce Alloys

Figure 10 presents the microhardness of the as-prepared AZ91D+0.75Ce alloys with different
methods. Due to the combined strengthening effects of the solid solution and grain refinement,
a substantial enhancement of hardness was expected in the rapidly cooled alloy. It increased from
72 Hv for the as-casted alloy to 103 Hv for the spray-casted specimen. After an annealing treatment at
420 ◦C, a continuous decrease of hardness occurred, which could be ascribed to the dissolution of the
β brittle phase and a slight grain growth when extending the holding time.
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4. Conclusions

Copper mold spray-casting was adopted to investigate the microstructure evolution of an
AZ91D+0.75Ce alloy. Subsequently, isothermal annealing was employed to indicate the thermal
stability of the as-fabricated structure. The results obtained in this study are summarized as follows:

(1) The grain of the primary α-Mg in the spray-casted AZ91D+0.75Ce alloy was much finer than that
in the as-cast condition. The non-equilibrium solidified microstructure presented a reduction of
solute segregation and the suppression of the needle-like Al11Ce3 phase;

(2) After being annealed at 420 ◦C for 2 h, fine Ce-rich particles generated from the supersaturation
solid solution and distributed homogeneously in the matrix, which could be inferred as the
Mg12Ce phase. In addition, the grain morphology changed from a granular to polygonal shape,
accompanied by the disappearance of the β phase at grain boundary;

(3) With increasing the annealing time to 8 h, these Ce-rich particles presented stability, which played
an effective role in the inhibition of grain growth at an elevated temperature. As a consequence,
the average grain size maintained between 20 µm and 26 µm after the annealing treatment, which
indicated a satisfactory thermostability behavior of the fabricated fine grain structure;

(4) Both the solid solution strengthening and the fine grain strengthening improved the hardness of
the spray-casted alloy with a high cooling rate. Moreover, its value decreased gradually after
annealing at 420 ◦C, due to the dissolution of the β phase and weak grain growth.
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