Supplemental Information for

Seebeck and Figure of Merit Enhancement by Rare Earth Doping in Yb₁₄₋ $_{x}RE_{x}ZnSb_{11}$ (x = 0.5)

Elizabeth L. Kunz Wille¹, Navtej S. Grewal¹, Sabah Bux² and Susan M. Kauzlarich^{1*}

- ¹ Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
- ² Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
- * Correspondence: smkauzlarich@ucdavis.edu

Yb_{13.5}Y_{0.5}ZnSb₁₁

Yb_{13.5}La_{0.5}ZnSb₁₁

Figure S1. Microprobe backscatter electron images of (a) Yb13.5Y0.5ZnSb11 and (b) Yb13.5La0.5ZnSb11.

Figure S2. Powder X-Ray diffraction patterns from samples of Yb13.5Y0.5ZnSb11 and Yb13.5La0.5ZnSb11.

Figure S3. Electrical resistivity as a function of temperature for samples of Yb_{13.5}Y_{0.5}ZnSb₁₁, Yb_{13.5}La_{0.5}ZnSb₁₁ and Yb₁₄ZnSb₁₁ (data from Ref. 9).

Figure S4. Seebeck as a function of temperature for samples of Yb_{13.5}Y_{0.5}ZnSb₁₁, Yb_{13.5}La_{0.5}ZnSb₁₁ and Yb₁₄ZnSb₁₁ (data from Ref 9).

Figure S5. Total thermal conductivity and calculated lattice thermal conductivity as a function of temperature for samples of Yb13.5Y0.5ZnSb11, Yb13.5La0.5ZnSb11 and Yb14ZnSb11 (taken from Ref. 9).

 Brown, S.R.; Toberer, E.S.; Ikeda, T.; Cox, C.A.; Gascoin, F.; Kauzlarich, S.M.; Snyder, G.J. Improved Thermoelectric Performance in Yb₁₄Mn_{1-x}Zn_xSb₁₁ by the Reduction of Spin-Disorder Scattering. *Chem. Mater.* 2008, 20, 3412–3419.