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Abstract: Yb14ZnSb11 has been of interest for its intermediate valency and possible Kondo designation.
It is one of the few transition metal compounds of the Ca14AlSb11 structure type that show metallic
behavior. While the solid solution of Yb14Mn1-xZnxSb11 shows an improvement in the high
temperature figure of merit of about 10% over Yb14MnSb11, there has been no investigation of
optimization of the Zn containing phase. In an effort to expand the possible high temperature
p-type thermoelectric materials with this structure type, the rare earth (RE) containing solid solution
Yb14-xRExZnSb11 (RE = Y, La) was investigated. The substitution of a small amount of 3+ rare earth
(RE) for Yb2+ was employed as a means of optimizing Yb14MnSb11 for use as a thermoelectric material.
Yb14ZnSb11 is considered an intermediate valence Kondo system where some percentage of the Yb is
formally 3+ and undergoes a reduction to 2+ at ~85 K. The substitution of a 3+ RE element could either
replace the Yb3+ or add to the total amount of 3+ RE and provides changes to the electronic states.
RE = Y, La were chosen as they represent the two extremes in size as substitutions for Yb: a similar
and much larger size RE, respectively, compared with Yb3+. The composition x = 0.5 was chosen as
that is the typical amount of RE element that can be substituted into Yb14MnSb11. These two new
RE containing compositions show a significant improvement in Seebeck while decreasing thermal
conductivity. The addition of RE increases the melting point of Yb14ZnSb11 so that the transport
data from 300 K to 1275 K can be collected. The figure of merit is increased five times over that of
Yb14ZnSb11 and provides a zT ~0.7 at 1275 K.

Keywords: thermoelectric; Seebeck; Yb14MnSb11; intermetallic; intermediate valence;
valence fluctuation

1. Introduction

Compounds of the Ca14AlSb11 (14-1-11) structure type have been shown to exhibit high
thermoelectric figure of merit, zT, at high temperatures [1–4]. While Yb14MnSb11 and Yb14MgSb11

members of this group have been high achievers in this area [5,6], the more metallic Yb14ZnSb11 has
never been considered a good thermoelectric material because of its low Seebeck coefficient (α) and,
therefore, low zT, as it scales with α2 [7,8]. However, the low electrical resistivity that it possesses is
an attractive feature, and prior work sought to tap into this by forming a solid solution of Zn with
Mn, which resulted in improved zT compared with Yb14MnSb11 [9]. Yb14ZnSb11 has a smaller unit
cell and possesses a lower decomposition temperature than those of its Mn and Mg counterparts;
the latter property further dashing hopes for its use in high temperature TE devices. Yb14ZnSb11 is
unique amongst the members of the 14-1-11 family in that it exhibits Curie-Weiss behavior equivalent
to about 0.75 Yb3+ from 300 K to 100 K and a broad maximum in magnetic susceptibility at around 85 K
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that drops as temperature is lowered, followed by a sharp increase at 20 K. The fact that there is not
a simple integral amount of Yb3+ is consistent with an “intermediate valence”. The broad maximum is
interpreted as a fluctuation between the f13 (3+) and f14 (2+) electronic configurations of Yb, while the
low temperature increase in susceptibility is attributed to free Yb3+ impurities. Intermediate valence
is observed in some of the rare earth elements, such as Ce, Eu, and Yb [10]. The resulting change
in valence corresponds to the effective nuclear charge and then, ultimately, to a change in lattice
parameters [7]. The valence fluctuation in Yb14ZnSb11 is the shift from the small percentage of Yb3+

states at high temperature to all Yb2+ at a low temperature. A Curie–Weiss fit of the paramagnetic
region above 150 K yields a µeff of 3.8 µB, which corresponds to the presence of approximately 0.8
Yb3+ per formula unit [7]. The existence of 0.75 Yb3+ in this compound makes Yb14ZnSb11 close to
a valence precise Zintl formula, but the low resistivity and intermediate valence of Yb distinguish it
from this simplistic interpretation of bonding. Recently, magnetic susceptibility measurements of the
Mg compound were reported and are consistent with a similar amount of Yb3+, but there is no evidence
for intermediate valency [11]. Yb14MnSb11 contains only Yb2+, confirmed by X-ray photoelectron
spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) and neutron measurements [8,12].

Figure 1 shows a view of the unit cell of Yb14ZnSb11 along the c axis. This compound is considered
as a Zintl phase with the approximate formula of 13Yb2+ + ~1Yb3+ +ZnSb4

10− + Sb3
7− + 4Sb3− [7].

There are four Yb crystallographic sites in the structure, but there is no direct evidence from the
structure concerning site preference for the Yb3+ cation, although Yb14ZnSb11 does have the smallest
lattice parameters within this family of compounds. While the valence precise Zintl phase of Yb14AlSb11

has been shown to have semiconducting electrical transport properties, Yb14ZnSb11 shows the lowest
resistance of compounds of this structure type published to date. The crystal structures of Yb14ZnSb11

and Ca14ZnSb11 were reported with defects or interstitial atoms; Yb14ZnSb11 contains a slight deficiency
on the Zn site and Ca14ZnSb11 is purported to contain interstitial Sb [8,13]. The low resistance of
Yb14ZnSb11 is attributed to either the intermediate valence of Yb or to the defects in the structure [7].
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red, and the blue tetrahedra are the ZnSb4 units.

In Yb14MnSb11, the substitution of 3+ rare earth (RE) cations for Yb cations in small amounts
(x < 0.5) has been successful in improving zT and, in addition, has been shown in some cases to
decrease the high temperature sublimation (as is the case for RE = La) [14]. A slight reduction in carrier
concentration from the substitution of the RE helps to boost α and, in turn, zT. In all attempts, no more
than x ~0.7 was found to incorporate into the structure of single crystals of Yb14-xRExMnSb11 solution
grown in Sn flux [14–17]. The isostructural Ca14-xRExMnSb11 grown in Pb flux is reported to exhibit
a limit of x = 1 [18]. It is not clear if the differences in substitution for the two different parent phases,
Yb14MnSb11 versus Ca14MnSb11, is due to the different flux employed or electronic and size effects.
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In an effort to further expand our investigation of the effect of RE3+ on the transport properties of
this structure type, the solid solution, Yb14-xRExZnSb11 (RE = Y and La), was investigated. The solid
solutions were made via a stoichiometric metallurgical approach and the samples condensed into fully
dense pellets for measurement. Seebeck, electrical and thermal transport, and Hall measurements
are reported.

2. Materials and Methods

2.1. Synthesis

Samples of Yb13.5RE0.5ZnSb11 were synthesized by combining Yb filings, Sb shot, Zn shot (100%
excess), and RE filings with a total mass of 8 g in a SPEX 55ml tungsten carbide canister with one large
and two small tungsten carbide balls. Work was performed in an argon filled drybox and both RE
and Yb were brushed with a designated wire brush prior to filing to remove any oxide on the surface.
Samples were milled using a SPEX 8000M mixer mill (SPEX, 65 Liberty Street, Metuchen, NJ, USA) for
a total of 1 h and 30 min, with 15 min of rest time between 30 min milling intervals, and a scrape down
inside the drybox after 1 h of milling time. Samples were sealed in 13 cm long Nb tubes, arc melted
shut under Ar, and sealed in quartz under vacuum. The samples were annealed for 96 h at 900 ◦C in
a box furnace. Zn was used in 100% excess in an effort to prevent formation of Yb11Sb10. Samples
made with a stoichiometric amount of Zn contained this side phase as 20% or larger composition,
indicating some loss of Zn during the ball milling or annealing stage.

2.2. Consolidation of Powder

Annealed powder samples were made into dense pellets for measurement via a spark plasma
sintering (SPS) Dr. Sinter Lab SPS-211LX unit (Fuji Electric Industrial Co., Ltd, 6-2-22 Fujimi,
Tsurugashima, Saitama, Japan). In an argon drybox, the annealed powder was ground in an agate
mortar and pestle and passed through a 200 mesh stainless steel sieve and loaded between multiple
thin graphite foil spacers in a 12.7 mm inner diameter high-density graphite die. Sintering was
performed under dynamic vacuum and with a starting sample pressure of 20 MPa. The temperature
was ramped from 20 ◦C to 750 ◦C over four minutes, then to 800 ◦C in one minute to avoid temperature
overshoot. The pressure was slowly and steadily increased to 63 MPa during the temperature range
700–800 ◦C (about 1.5 min). Then, 800 ◦C and 63 MPa were held constant for 15 min, after which the
sintering process was ended, and pressure/temperature released. Pressed pellets were typically 2 g
in size and were cut circumferentially into two disks using a Buehler diamond saw to allow for one
to be pulverized for use in characterization via powder X-ray diffraction. The other pellet was saved
for properties measurements. The pellet densities obtained through this sintering profile were greater
than 96% of the theoretical densities for each compound.

2.3. Electron Microprobe Analysis and Wavelength Dispersive Spectroscopy

After measurement of TE properties, small pieces of pellets were mounted in epoxy and polished
using grits sizes down to 0.01 µm. Care was taken to prevent oxidation of these polished sample pucks
and, after preparation, they were stored under dynamic vacuum and transported triple-bagged in
argon atmosphere. Prior to their measurement, the pucks were carbon coated to prevent charging.
Samples were analyzed using a Cameca SX100 electron microprobe (CAMECA Instruments, Inc.,
5470 Nobel Drive, Madison, WI, USA) with five wavelength dispersive X-ray spectrometers, operated
at 15 kV accelerating potential and beam current of 20 nA. A polished single crystal of Yb14MnSb11 was
used as wavelength dispersive X-ray spectroscopy (WDS) standard for Yb. Zn and Sb metal, LaPO4,
and yttrium aluminum garnet (YAG) crystals were used as WDS standards for Zn and Sb, La and Y,
respectively. The composition of each sample was determined by calculating the average and standard
deviation of 15 data points of the main phase and 5 data points of the side phase randomly spaced
through the sample.
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2.4. Powder X-Ray Diffraction

Powder X-ray diffraction (PXRD) data were collected on each sample after furnace annealing
and after consolidation in the SPS. Samples were ground into a fine powder by mortar and pestle
in an Ar drybox and plated with ethanol to obtain a uniform, thin spread onto a zero background
holder on a Bruker D8 Advance Eco Diffractometer (BRUKER AXS, Inc., 5465 East Cheryl Parkway,
Madison, WI, USA) operated at 40 kV and 25 mA utilizing Ni filtered Cu Kα radiation with the
knife-edge attachment. Data were collected from 20◦ to 80◦ 2θ with a step size of 0.19◦ at 1.5 s.
Data were converted from .raw to .gsas using powdll and analyzed via Rietveld refinement using
General Structure Analysis System, GSAS-II [19,20]. The GSAS-II instrument parameter file used in
refinement was generated from a similarly-prepared LaB6 standard. Lattice parameters of the RE
phases were obtained from refinement of a 14-1-11 phase modelled from published Crystallographic
Information File (CIF) of Yb14ZnSb11.

2.5. Electrical Resistivity, Hall Effect, and Seebeck Coefficient

The electrical resistivity (ρ) and Hall coefficient were measured simultaneously from 300 K to
1275 K on a home-built instrument under dynamic vacuum. Resistivity was measured via the van
der Pauw technique using a current of 100 mA; Hall was measured under a forward and reverse
magnetic field of about 7500 G. The carrier concentration (n) was calculated from n = 1/RHe, where RH
is the measured Hall coefficient and e the elementary charge. The hall factor was assumed to be
1 [21]. The Seebeck coefficient (α) was measured using a home-built instrument with graphite heater
using W/Nb thermocouples and the temperature differential generated by light pulse. The resultant
resistivity and Seebeck data from the heating up measurements were each fitted to a six-order
polynomial function for the calculation of zT.

2.6. Thermal Conductivity

Thermal diffusivity (Dt) data were collected from 300 K to 1275 K using a Netzsch LFA-457 laser
flash unit (Netzsch Instruments North America, 129 Middlesex Turnpike Burlington, MA, USA). Then,
12.7 mm diameter pellet samples were polished to obtain parallel top and bottom surfaces and overall
thickness less than 1.2 mm, and were then coated in graphite. The measurement was performed under
dynamic vacuum and with three data points per temperature step. The Cowan + pulse correction
fit of the detected signal was employed through the Netzsch software to obtain values of thermal
diffusivity, which were then averaged for each temperature step. Thermal conductivity was calculated
via κ = Dt × ρ × Cp, where ρ = density and Cp = heat capacity as a function of temperature [21].
Room-temperature density was measured geometrically and high-temperature density was estimated
using thermal expansion data from previous study on Yb14MnSb11 [22]. The previously reported
experimentally-determined Cp values for Yb14MnSb11 were used as an estimate for these compounds
correcting for mass [23].

3. Results

The two compounds, Yb13.5RE0.5ZnSb11 (RE = Y, La), were prepared with excess Zn in order to
prevent the formation of the unwanted side phase Yb11Sb10. We have shown in previous publications
that the highest temperature properties of compounds of this structure type are compromised once
Yb11Sb10 forms [24]. Synthesis of phase pure Yb14MgSb11 requires 20% excess Mg; this requirement
is attributed to the high vapor pressure of Mg at the reaction temperature. Zn has a slightly higher
vapor pressure than that of Mg at the reaction and sintering temperatures, highlighting the need for
excess [25]. The samples were prepared by balling the elements, sealing the fine powder into niobium
tubes, and heat treating at 900 °C. The product was then pressed into a dense pellet via spark plasma
sintering (SPS).
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Yttrium and lanthanum rare earth elements were chosen for this study because of their sizes.
Y3+ (0.900 Å) is closest in size to Yb3+ (0.868 Å), while La3+ (1.032 Å) represents the largest of the 3+
RE cations [26]. As previously mentioned, there are four crystallographic sites for the Yb cation in
Yb14ZnSb11 coordinated by antimony with various sized polyhedral volumes. The site specificity of
various rare earth elements has been shown to be correlated with size in studies of Yb14-xRExMnSb11.
Early RE cations with larger ionic radius, such as La, were shown to preferentially substitute on the Yb2
and Yb4 sites, while RE of smaller ionic radius such as Y substitutes on all of the Yb sites [15,16]. While it
is expected that carrier concentration plays the largest role in controlling the transport properties,
the RE site selectivity has been indicated as important for subtle differences in thermoelectric properties
across the series, Yb14-xRExMnSb11 [2,27].

Electron microprobe X-ray maps of the dense pellets (Figure 2) show that the samples have a good
distribution of the elements and that there is excess Zn at the grain boundaries. Figure S1 shows
the microprobe backscatter electron images of Yb13.5Y0.5ZnSb11 and Yb13.5La0.5ZnSb11. Wavelength
dispersive X-ray spectroscopy of the samples show two phases: a main phase (Yb13.5RE0.5ZnSb11)
and side phase (Yb1.95RE0.0.5Zn0.8Sb2), tabulated in Table 1. While the main phase was loaded as
Yb13.5RE0.5ZnSb11, the analysis shows that when RE = Y, the amount incorporated is slightly less.
Whereas for RE = La, it is in good agreement, and the Zn is slightly deficient in both samples, giving rise
to the stoichiometries Yb13.7Y0.35Zn0.85Sb11 and Yb13.7La0.48Zn0.91Sb11. The WDS data were normalized
to 11 Sb and while that provides a slightly high Yb + RE content, it is within error consistent with the
stoichiometry of 14-1-11, with deficiencies of Zn.

Table 1. Wavelength dispersive X-ray spectroscopy (WDS) stoichiometry from pelleted samples from
an average of 15 data points (main phase) and an average of 5 points (side phase). RE—rare earth.

As Loaded Yb RE Zn Sb

Main Phase
Yb13.5Y0.5ZnSb11 13.7(2) 0.35(1) 0.85(5) 11.0(1)
Yb13.5La0.5ZnSb11 13.7(2) 0.48(5) 0.91(5) 11.0(1)

Secondary Phase Yb13.5Y0.5ZnSb11 1.96(2) 0.04(1) 0.78(2) 2.00(2)
Yb13.5La0.5ZnSb11 1.95(2) 0.08(1) 0.79(2) 2.00(2)
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The WDS of the side phase provides a formula that is consistent as a solid solution of RE
and ‘Yb2ZnSb2’ with slight deficiency of Zn. The phase Yb2ZnSb2 is as of yet unreported, and the
obvious possible analog, Ca2ZnSb2, is also not a reported phase. Rietveld refinement of powder
X-ray diffraction data for each of these samples included the phases Yb14ZnSb11 and Yb2O3;
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small unidentified peaks were present after refinement attributed to this side phase. There are
reports of the Eu2ZnSb2 and Sr2ZnSb2 phase that crystallize in the P63/mmc space group [28].
Attempts to unambiguously identify these peaks with the appropriately scaled lattice parameters
of known 2-1-2 structure types employing the elements Yb, Zn, and Sb were unsuccessful. Figure 3
contains a zoomed-in overlay of the PXRD data from Yb13.5RE0.5ZnSb11, with the unidentified peaks
marked. Unit cell parameters of Yb13.5RE0.5ZnSb11 obtained from the refinement are listed in Table 2.
Representative PXRD data are provided in Figure S2. Because the two pellets show similar amounts
of this unknown phase and the majority of the phase is the Yb13.5RE0.5ZnSb11, measurements of
the thermoelectric and transport properties will provide some insight into the effects of the RE
solid solution.
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asterisks in respective colors.

Table 2. Lattice parameters as determined by refinement of powder X-ray diffraction (PXRD) data
using GSAS II.

As Loaded a (Å) c (Å) V (Å3) wR (Overall) RF2/RF (14-1-11 Phase)

Yb13.5Y0.5ZnSb11 16.5939(4) 21.9309(7) 6038.9(3) 20.812% 14.122%/9.616%
Yb13.5La0.5ZnSb11 16.6412(4) 21.9188(6) 6070.0(3) 19.914% 12.328%/8.316%

Figure 4 contains the plots of the electrical resistivity, Seebeck, and thermal conductivity of the
samples. Both heating and cooling data sets for resistivity and Seebeck are provided in Figures S3
and S4. As mentioned previously, Yb14ZnSb11 has low electrical resistivity, similar to that seen in
many intermediate Yb valence compounds, and magnetic susceptibility is consistent with the presence
of about 0.75 Yb3+ [7]. This mixture of Yb2+ and Yb3+ can be more exotic and can be described
as an intermediate valence state. Yb containing intermetallics can show this effect when the nearly
degenerate 4 f 13 and 4f 14 electron levels are close to the s-d band, favoring an intermediate valence state.
Rare earth ions in this state fluctuate between two 4f electronic configurations competing for stability.
With doping, the hybridization strength of the f -electrons with the conduction electrons can change,
resulting in a change in the effective mass and thereby the associated transport properties [29,30].
The electrical resistivity of Yb13.5RE0.5ZnSb11 shows a significant increase at temperatures above 500 K
over Yb14ZnSb11 for both samples. In the Zintl electron counting scenario, RE3+ adds one electron
to the p-type Yb14ZnSb11 and is thus expected to reduce the carrier concentration and thereby the
electrical resistivity. Consistent with the slightly higher amount of RE in the sample, the RE = La
sample shows a slightly higher resistivity value. Consistent with the electrical resistivity, the thermal
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conductivities of the samples are reduced from that of Yb14ZnSb11. Lattice thermal conductivity is
provided in Figure S5. This is attributed to both the loss of electrical conduction at a high temperature
and, from point defect scattering, of the solid solution. There is a decrease in thermal conductivity
even at 300 K compared with Yb14ZnSb11. The Seebeck coefficient shows a remarkable increase over
that of Yb14ZnSb11 for the entire temperature range, with the RE = La sample showing a slightly
higher Seebeck at the highest temperatures, consistent with the slightly larger amount of RE cation.
This suggests that the effect of the RE3+ is to change the hybridization of Yb/RE, thereby leading to
a change in bands that are important for the high temperature behavior.Materials 2019, 12, x FOR PEER REVIEW 8 of 13 
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Figure 5 shows the Hall mobility and Hall carrier concentration of the RE solid solutions. The RE
element was substituted with the goal of reducing the carrier concentration and making this compound
a better thermoelectric material. The carrier concentrations of both RE samples are lower than that of
Yb14ZnSb11, which shows conductive electrical resistivity at low temperatures and presumably has
a high carrier concentration. Typically, for transition metal containing compounds with the formula
Yb14MSb11, where Yb is considered to be all Yb2+ and M = M2+, the carrier concentration is equivalent
to one hole in the unit cell volume. Therefore, the addition of an RE3+ cation provides one additional
electron to reduce the p-type carrier concentration. In this example, considering the effect of the RE3+

cation is complicated because this compound has both Yb2+ and Yb3+ at room temperature. If the
Y3+ or La3+ cation does not simply substitute for Yb3+ in Yb14ZnSb11 and instead substitutes for Yb2+,
it would contribute an extra 0.5 electron per formula unit (or 0.35 in the case of Y). Calculating the
carrier concentration, it would contribute approximately 6.6 × 1020 carriers/cm3. This would indicate
that at room temperature, the carrier concentration of Yb14ZnSb11 should be 1.3 × 1021 cm−3, a value
close to the highest room temperature concentrations obtained for Yb14MnSb11, which is much less
metallic than Yb14ZnSb11. In a similar system, Yb14-xLaxMnSb11 (x = 0.4, 0.7) was found to have
a reduction in room temperature carrier concentration from that of Yb14MnSb11 (1.1 to 1.3 × 1021

cm−3), which closely corresponded with the amount of La added, 6 × 1020 cm−3 and 4 × 1020 cm−3 for
0.4 La and 0.7 La, respectively [14,17]. Therefore, these results suggest that RE3+ is substituting for Yb3+

in Yb14ZnSb11 and that once the Yb3+ is no longer a species in the structure, the metallic conduction is
no longer viable. Because neither Y nor La have filled f electrons, it is possible that a hybridized band
from Yb3+ is responsible for the low electrical conduction in Yb14ZnSb11. Considering the reductions in
carrier concentrations from the Y3+ and La3+ substitutions, the large increase in Seebeck is consistent.
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La) compounds.

Figure 6 shows the zT for the Yb13.5RE0.5ZnSb11 (RE = Y, La) compounds compared with the zT of
Yb14ZnSb11. The properties of Yb14ZnSb11 were only measured up to 900 K because of the stability
of the compound. With the addition of the RE, the Yb13.5RE0.5ZnSb11 (RE = Y, La) compounds are
stable to 1275 K. This is a side benefit of RE3+ incorporation that has been also noted for Yb14MnSb11,
where the melting point is increased and sublimation vapor pressure is decreased depending upon the
identification and amount of rare earth ion incorporation [31].

Figure 7 contains Pisarenko plots at 400 K, 800 K, and 1200 K that were generated using a single
parabolic band (SPB) model. The parameters used to generate these plots are provided in Table 3.
The effective mass values generated for this model at 1200 K for both RE = La, Y are significantly larger
than those generated at 400 and 800 K. These parameters indicate that modelling Yb13.5RE0.5ZnSb11

as a single parabolic band is insufficient and that the band(s) change from light to heavy with
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temperature [32]. This is supported by the reduction in carrier concentration that these samples
exhibit with only a small donation of 0.5 or less extra e- density per formula unit. These plots suggest
that the carrier concentration could be further reduced to obtain peak zT.Materials 2019, 12, x FOR PEER REVIEW 10 of 13 
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Table 3. Values used in generating the Pisarenko plots shown in Figure 7.

Sample T (K) m* (m0) µ0 (cm2/V·s) κL (mW/cm·K)

Yb13.5Y0.5ZnSb11

400 1.40 18.95 2.4
800 1.47 7.61 3.2

1200 2.07 2.11 3.8

Yb13.5La0.5ZnSb11

400 1.18 24.44 3.4
800 1.15 9.3 3.4

1200 2.07 2.08 3.5
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4. Conclusions

The addition of the rare earths, Y and La, to the Yb14ZnSb11 system has a profound but complex
effect on the carrier concentration and presumably the density of states (DOS) as a function of
temperature. The large improvement in zT observed in the Yb13.5RE0.5ZnSb11 (RE = Y, La) samples
over Yb14ZnSb11 is unexpected because these RE3+ ions are simply replacing Yb3+. These remarkable
results suggest that better modeling/theoretical understanding of complex systems is important to
further advance the field. Renewed interest in the nuanced system of Yb14ZnSb11 may lead to a more
complete understanding of the electronic and structural factors affecting the 14-1-11 compounds and
aid in the future design of optimized materials. Further improvement to the zT of these compounds
might be achieved by reducing carrier concentration further by means of increasing x or by substitution
of Ca on the Yb site or Al on the Zn site. Yb14-xCaxMnSb11 and Yb14Mn1-xAlxSb11 solid solutions show
reduced carrier concentration with increasing x and higher zT’s than Yb14MnSb11. While x has been
shown to be limited in the case of Yb14-xRExMnSb11 to x ~0.5, it might be possible to increase x to 1 for
the Zn 14-1-11 phase, as is the case for Ca14-xRExMnSb11. Overall, these results for Yb13.5RE0.5ZnSb11

(RE = Y, La) suggest that there is significant room for improvement of zT with new compositions of
this structure type.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/5/731/s1,
Figure S1: Microprobe backscatter electron images of (a) Yb13.5Y0.5ZnSb11 and (b) Yb13.5La0.5ZnSb11, Figure S2:
Powder X-Ray diffraction patterns from samples of Yb13.5Y0.5ZnSb11 and Yb13.5La0.5ZnSb11, Figure S3. Electrical
resistivity as a function of temperature for samples of Yb13.5Y0.5ZnSb11, Yb13.5La0.5ZnSb11 and Yb14ZnSb11 (data
from Ref. 9). Figure S4. Seebeck as a function of temperature for samples of Yb13.5Y0.5ZnSb11, Yb13.5La0.5ZnSb11
and Yb14ZnSb11 (data from Ref. 9). Figure S5. Total thermal conductivity and calculated lattice thermal
conductivity as a function of temperature for samples of Yb13.5Y0.5ZnSb11, Yb13.5La0.5ZnSb11 and Yb14ZnSb11
(taken from Ref. 9).
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