
materials

Article

Adaptivity in Bayesian Inverse Finite Element
Problems: Learning and Simultaneous Control of
Discretisation and Sampling Errors

Pierre Kerfriden 1,2,* , Abhishek Kundu 1 and Susanne Claus 1,3

1 School of Engineering, Cardiff University, The Parade, Cardiff CF243AA, UK;
KunduA2@cardiff.ac.uk (A.K.); ClausS2@cardiff.ac.uk (S.C.)

2 MINES ParisTech, PSL University, Centre des Matériaux, BP87 91003 Evry, France
3 Department of Computer Science, University of Copenhagen, Universitetsparken 1,

2100 Copenhagen, Denmark
* Correspondence: KerfridenP@cardiff.ac.uk or Pierre.Kerfriden@mines-paristech.fr

Received: 23 December 2018; Accepted: 5 February 2019; Published: 20 February 2019
����������
�������

Abstract: The local size of computational grids used in partial differential equation (PDE)-based
probabilistic inverse problems can have a tremendous impact on the numerical results. As a
consequence, numerical model identification procedures used in structural or material engineering
may yield erroneous, mesh-dependent result. In this work, we attempt to connect the field of adaptive
methods for deterministic and forward probabilistic finite-element (FE) simulations and the field
of FE-based Bayesian inference. In particular, our target setting is that of exact inference, whereby
complex posterior distributions are to be sampled using advanced Markov Chain Monte Carlo
(MCMC) algorithms. Our proposal is for the mesh refinement to be performed in a goal-oriented
manner. We assume that we are interested in a finite subset of quantities of interest (QoI) such
as a combination of latent uncertain parameters and/or quantities to be drawn from the posterior
predictive distribution. Next, we evaluate the quality of an approximate inversion with respect
to these quantities. This is done by running two chains in parallel: (i) the approximate chain and
(ii) an enhanced chain whereby the approximate likelihood function is corrected using an efficient
deterministic error estimate of the error introduced by the spatial discretisation of the PDE of interest.
One particularly interesting feature of the proposed approach is that no user-defined tolerance is
required for the quality of the QoIs, as opposed to the deterministic error estimation setting. This is
because our trust in the model, and therefore a good measure for our requirement in terms of accuracy,
is fully encoded in the prior. We merely need to ensure that the finite element approximation does
not impact the posterior distributions of QoIs by a prohibitively large amount. We will also propose a
technique to control the error introduced by the MCMC sampler, and demonstrate the validity of the
combined mesh and algorithmic quality control strategy.

Keywords: finite element inverse problems; Bayesian statistics; Data-driven modelling; error
estimation; MCMC; machine learning

1. Introduction

The Bayesian statistical framework has been used extensively in the problem of system
identification [1] or model updating based on experimental test data [2,3]. The objective of using inverse
problems to learn or calibrate model or latent parameters, including model error terms, lies in the fact
that underlying parametrised computational models are uncertain, or erroneous [4]. The experimental
data when assimilated into the model, using the Bayesian inference framework, is expected to provide
joint estimates of the model parameters conditional on the data and compensate for uncertainty/bias
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in the model predictions. However, operating only in the field of model parameters is problematic
for a number of reasons. Firstly, the underlying computational models for any practical application
is expensive. As a result working with a very high resolution numerical model at every stage is
prohibitively expensive. Secondly, when using surrogate models in the parameter space in conjunction
with a simulator, adaptive enrichment of the response surface does not take adaptive mesh refinement
within its purview. This is not optimal since ensuring that the model error in the energy norm is
bounded in the parameter space requires a uniformly high resolution and increases the associated
computational overhead. Lastly the advanced adaptive mesh refinement techniques are rarely used
in conjunction with parametric learning using Bayesian inference. There is significant room for
improvement in this regard since a simultaneous control of both statistical and discretisation error
would lead to substantially improved predictive numerical models both in terms of accuracy and
computational efficiency.

At the root or our methodology is the estimation of errors due to the finite element approximation
of the partial differential equation (PDE) of interest. Classically, spatial resolution of finite element
models can be adaptively refined (also known as local h-refinement) based on a posteriori error
estimation techniques [5–7], combined with re-meshing strategies. Within this, methods focussing on
errors estimated in terms of specific quantities of interest (QoI), rather than the classical energy norm,
constitute the goal-oriented adaptivity scheme [8–12], which is of particular interest in the present
study. Numerical studies have shown that these give better convergence in the local features of the
solution compared to traditional approaches.

Integrating model reduction techniques with finite element model updating techniques has
received some attention in recent years [13], where the motivation is to use Bayesian model updating
framework with an adaptive scheme of enriching the surrogate response surface. Multistage Bayesian
inverse problems are quite important in this respect [14,15] and have important applications for system
identification of vibrating systems. The prediction error is an important parameter to be calibrated in
such cases, as the authors point out. But the improvement in model predictions, if solely focussed on
obtaining the posterior probabilistic parameter estimates or for adaptive enrichment of the response
surface in the parameter space, without considering simultaneous enhancement of the resolution of
the numerical simulator would be unsatisfactory both from the standpoints of computational accuracy
and efficiency.

The forward problem of uncertainty propagation has been investigated extensively for the
solution of stochastically parametrised partial differential equations. These range from efficient
stochastic Galerkin methods using polynomial chaos basis functions [16–19], stochastic collocation
techniques [20,21], Monte-Carlo sampling based methods (and its various improvements) [22–24] and
other deterministic sampling methods [25–27]. The main challenge is to obtain a good approximation
of the lower order statistical moments of the state vector or specific quantities of interest. On the other
hand, advances in the resolution of stochastic inverse problems has become a very active topic in
engineering and mathematical research (see e.g., [28]). Scalable Bayesian inversion algorithms for
large-scale problems have been investigated [29] and as well as Bayesian inversion to probabilistic
robust optimization under uncertainty [30]. The use of adaptive sparse-grid surrogates unified with
Bayesian inversion for posterior density estimates of the model or design has also been studied
parameters [3,31,32]. This research focuses mostly on the definition of surrogates of the numerical
model and having adaptive methods to control the statistical sampling error in the definition of
the response surface. Lately there has been some research [33] that defines adaptivity as the local
enrichment of the surrogate model and uses error estimation to bound this error, with no mention
of spatial discretisation. However, coupling engineering uncertainty quantification (UQ) with an
adaptive scheme for goal-oriented finite element model refinement remains a sparsely studied domain
and presents significant challenges. It is so both from the problem formulation perspective, owing
to the choice of appropriate candidate estimates based on which adaptive model enrichment can be
performed, as well as incorporating it into the general formulation of Bayesian inversion.



Materials 2019, 12, 642 3 of 24

The main focus of the paper is to develop a robust methodology for the simultaneous control
of errors from multiple sources—the goal-oriented finite element error and the uncertainty-driven
statistical error—in a Bayesian identification framework for identification system parameters
conditional on data (experimental or otherwise). The novel algorithmic approach proposed in this
paper consists in running two Markov Chain Monte Carlo algorithms simultaneously to sample
the posterior densities of the quantities of interest (component-wise MCMC). The first chain utilises
the current finite element model, whilst the second chain runs with a corrected likelihood function
that takes into account the discretisation error. The latter quantity may be constructed by making
use of a posteriori finite element error estimates available in the literature. At any time during
the sampling process, two empirical densities are available and may be compared to evaluate
the effect of the discretisation error onto posterior densities. The second building block of our
algorithmic methodology allows us to determine whether enough samples have been drawn by
the component-wise MCMC. Using multiple parallel chains combined with bootstrap-based estimates
of sampling errors, we automatically stop the MCMC algorithms when either (i) the required level
of accuracy is achieved or (ii) we have generated enough statistical confidence in the fact that the
discretisation error is too large for our purpose, and therefore that mesh refinement is necessary.
While any available error estimate of the discretisation error may be used within the general strategy
outlined above (a goal-oriented residual or recovery-based error estimate, for instance [8,9,11,34]),
we choose instead to construct this estimate via a dedicated machine learning approach. This interesting
feature, inspired by previous work in data-driven error modelling [35–38], will be briefly outlined in
the paper.

The paper is organised as follows. Section 2 introduces the Bayesian inverse problem based on a
finite element model of a parametrised vibrating structure. This section also includes discussions on
discretisation error. Some numerical examples are presented in Section 3, which aims to demonstrate
the convergence of the joint posterior distributions on the model parameters through successive stages
of mesh refinement. Section 4 discusses the total error as a combination of statistical and discretisation
error that results from the MCMC algorithm used for sampling from posterior distributions. Section 5
gives the methodology for robust, simultaneous control of all error sources within the adaptive inverse
problem solver using a component-wise MCMC algorithm in conjunction with bootstrap-aggregated
regression model for model parameters. Numerical examples are presented and discussed in Section 6
to demonstrate the capabilities of the proposed methodology.

2. Finite Element Bayesian Inverse Problems

Although the methodology proposed in this paper is general, we will apply it to the verification
of popular inverse finite element procedures used to monitor the integrity of structures during service.
We will assume that the structure can be modelled as an elastic body, and that potential structural
damage can be modelled by the evolution of a field of elastic constants characterised by a finite number
of uncertain parameters. Assuming that the resonance frequencies of the structure have been measured
physically, we attempt to identify this set of mathematical parameters, through the solution of an
inverse problem. Significant deviations from the parameter values corresponding to an undamaged
structural state may reveal structural failure. This is a typical condition monitoring method used for
non-destructive structural testing.

In order to clarify the proposed study, we will assume that we have measured the nd first dynamic

eigenfrequencies d =
(

ln(ω1) ... ln(ωnd)
)T

of the structure represented in Figure 1. The purpose

of the model inversion is to identify the values of nµ parameters µ =
(

µ1 ... µnµ

)T
of the structural

dynamics model, here the log of the elastic modulii of the subdomains represented in Figure 1.

We will also aim to predict the remaining np − nd frequencies p =
(

ln(ωnd+1) ... ln(ωnd+np)
)T

.
The relationships µ → d(µ) and µ → p(µ), i.e., the computational model, are defined
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implicitly through the evaluation of a standard finite element model of the steady-state, undamped
structural vibrations.
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Figure 1. (a) Structure undergoing structural vibrations. The grey area have a known, deterministic
Young modulus. This property is piecewise constant in the coloured areas, and Gaussian distributed.
(b) The corresponding marginal probability density function for two of the 6 parameters is represented
in the top-left corner. (c) Standard Monte-Carlo finite element process is employed to compute the
distribution of the 10 first free vibration frequencies and represent the marginal distribution of each of
these quantities.

2.1. Bayesian Inverse Problem

We assume that the quantities d that are measured experimentally are described by the
mathematical model, up to an error, which is modelled in a probabilistic manner. Following standard
Bayesian procedures, this error is modelled as a white Gaussian noise,

d = dm + ε , ε ∼ N (0, Σ−1
n ) (1)

with Σ0 a positive definite covariance matrix. Ad : µ→ dm := Ad(µ) is the mathematical prediction
that corresponds to the experimental observation. Model Ad is a deterministic function of nµ uncertain
model parameters that we organise in a nµ-dimensional vector µ. Bayesian inversion requires to
associate a prior probability density with the model parameters µ. This prior probability density,
denoted by πµ(µ) in the following, encodes the knowledge that we possess about µ before making
any physical observations.

Seen from a different point of view, the probabilistic inversion setting amounts to the definition of
a joint probability distribution for µ and d:

πµ,d(µ, d) = πd|µ(µ, d)πµ(µ) (2)

The formal expression of likelihood function L(µ; d) := πd|µ(µ, d) is a direct consequence of
assumption (1), namely

L(µ; d) =
1√

(2π)nd |Σn|
e
−1

2

(
(d−Ad(µ))

T Σ−1
n (d−Ad(µ))

)
(3)
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It is now possible to formally proceed to the inversion itself by conditioning the joint distribution
to actually observed quantities. Applying Bayes’ formula, the posterior probability density of the
model parameters is

πµ|d(µ; d) =
L(µ; d)πµ(µ)

πd(d)
(4)

where πd(d) is a normalising constant, whose computation requires a usually intractable integration.
Bayes formula provides us with an updated knowledge about the uncertain part of our mathematical
model. It is now possible to predict unobserved quantities i.e.,

p = Ap(µ) , µ ∼ πµ|d(µ; d) (5)

by formally propagating the posterior uncertainty through model Ap : µ→ pm := Ap(µ). The posterior
predictive probability density of p will be denoted by symbol πp|d(µ; d).

2.2. Finite Element Modelling of Inverse Structural Vibration Problems

2.2.1. Direct Finite element Procedure for Frequency-Domain Vibrations

The numerical model

µ→ A(µ) :=

(
Ad(µ)

Ap(µ)

)
(6)

is implicitly defined through the solution of a continuum mechanics problem. The components of dm

and p are the logarithm of the eigenvalues corresponding to the following parametrised eigenvalue
problem: Find u ∈ H1(Ω) and ω ∈ R+ such that ∀v ∈ H1(Ω)

∫

Ω
∇su : D(x; µ) : ∇sv dΩ−ω2

∫

Ω
ρ u · v dΩ = 0 (7)

In the previous variational statement, Ω is the domain occupied by the structure of interest,
H1(Ω) is the space of functions defined over Ω, with values in R2, that are zero on part ∂uΩ of the
boundary of the domain, and whose derivatives up to order one are square integrable. ∇s denotes the
symmetric part of the gradient operator. D is the fourth order Hooke tensor and ρ is the mass density
of the solid material. The problem possesses an infinite number of solutions (ω, u) called free vibration
modes. We order the free vibration frequencies in increasing order ω1 < ω2 < ... < ωnd+np . The free
vibration modes are functions of uncertain material parameters µ through the definition of the Hooke
tensor. Specifically,

D(x; µ) : ∇s . = λ(x; µ)Tr(∇s . ) I+ 2 G(x; µ)(∇s . ) (8)

with the parametrised Lamé constants

λ(x; µ) =
0.3× E(x; µ)

2(1 + 0.3)(1− 2× 0.3)
and G(x; µ) =

E(x; µ)

2(1 + 0.3)
(9)

Solving the continuum mechanics model is equivalent to evaluating the mapping

µ→
(

Ad(µ)

Ap(µ)

)
=




ln
(

ω1(µ) ... ωnd(µ)
)T

ln
(

ωnd+1(µ) ... ωnd+np(µ)
)T


 . (10)

There is, in general, no analytical solution to the continuous vibration problem, and a standard way
to obtain approximate solutions is to substitute a finite element space U h(Ω) for infinite dimensional
search space H1(Ω) ⊃ U h(Ω) [39]. Too coarse a finite element discretisation may result in poorly
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predictive results, while too fine a mesh will lead to numerically intractable results, or, in any case, to a
waste of computing resources.

2.2.2. Finite Element Approximation of the Bayesian Inverse Problem

Whilst using the continuum mechanics model exactly would deliver the posterior density
πµ|d(µ; d) as solution of the Bayesian inverse problem, we now have an approximate posterior density

π̄µ|d(µ; d) =
L̄(µ; d)πµ(µ)

π̄(d)
(11)

where the finite element likelihood L̄ is obtained by substituting finite element mapping Ād for
Ad in Equation (3). Similarly, the approximate posterior density of p is denoted by π̄p|d(µ; d) and
obtained by evaluating finite element mapping Āp instead of Ap when propagating the posterior
uncertainties forward.

2.2.3. Discretisation Error

The finite element error is the mismatch between π̄µ|d(µ; d) and πµ|d(µ; d) on the one hand, and
π̄p|d(µ; d) and πp|d(µ; d) on the other hand. Various measures can be used to quantify this mismatch,
amongst which the Hellinger distance, defined by

Dh(πµ|d(µ), π̄µ|d(µ)) =
∥∥∥
√

πµ|d(µ)−
√

π̄µ|d(µ)
∥∥∥

2
(12)

the Kullback-Leibler divergence, the total variation distance and the Kolmogorov-Smirnov (KS)
distance, defined by

Dks(πµ|d(µ), π̄µ|d(µ)) = sup
µ

(∣∣∣(Πµ|d(µ)− Π̄µ|d(µ))
∣∣∣
)

(13)

where the capital symbols Π. denotes the cumulative probability density corresponding to π., and Π̄.

is the finite element approximation of Π.. This contribution will make use of the latter measure, in a
one-dimensional setting (i.e., it will be applied to control the accuracy of the posterior density of one of
the elements of µ or one of the elements of p). The attractiveness of the Kolmogorov–Smirnov distance
is its straightforward application in the context of Monte-Carlo procedures, where only empirical
densities are available, and its closeness to confidence intervals (CIs), which makes its values relatively
easy to interpret within the context of a posteriori error estimation. Notice that the Dks is lower
bounded by 0 (identical density functions) and upper bounded by 1 (non-overlapping support for the
probability density functions).

3. Numerical Examples—Part I: Effect of Discretisation Errors Onto Posterior Densities

This section introduces the numerical examples that will be investigated in this paper, and aims to
provide a first qualitative understanding of the effect of mesh refinement onto the quality of posterior
probability densities.

3.1. Forward Stochastic Model

The stochastic field of Young’s modulus that will be used to exemplify the error control approach
proposed in this paper is defined via a decomposition of domain Ω into nµ + 1 = 7 non-overlapping
subdomains {Ωi}J1 nµ+1K such that

⋃

i∈J1 nµ+1K
Ωi = Ω and Ωi ∩ Ωj = { } for i 6= j. The domain

decomposition is represented in Figure 1. Then, the proposed model is such that

E(x; µ) = eµi if x ∈ Ωi and i 6= 1, E(x; µ) = 1 otherwise . (14)
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Hence, the scalar parameters contained in vector µ ∈ Rnµ are the logarithms of the Young’s
modulii corresponding to each of the subdomains.

The prior density is a multivariate Gaussian, and is given by equation

πµ(µ) =
1√

(2π)nµ |Σ0|
e
−1

2

(
(µ− µ0)

T Σ−1
0 (µ− µ0)

)
(15)

The prior mean µ0 is the null vector, and the prior variance Σ0 = σ2
0 Id, where Id ∈ Rnµ ×Rnµ is

the identity matrix, is diagonal and isotropic. The prior density is represented in dimensions (µ1, µ3)

in Figure 1.
Finally, we model the error ε as a zero-mean multivariate Gaussian (consistently with what was

described in previous section), with independent components and isotropic variance, i.e., Σn = σ2
n Id.

3.2. Computational Meshes

The evaluation of the likelihood function appearing in solution (11) of the Bayesian inverse
problem requires solving the continuum mechanics problem using the finite element method. In this
example, we use a sequence of meshes {Mi}i∈J nmK associated with a monotonically increasing number
of degrees of freedom. These meshes are represented in Figure 2. Although the sequence of meshes is
not strictly hierarchical, we see that the typically uniform element size is divided by ≈ 2 when moving
from meshMi to meshMi+1. The intermediate meshes {Mi+ 1

2
}i∈J1 ñmK represented in Figure 2 will

be used later on.
Applied  & Computational 

Mechanics Group

Figure 2. Hierarchy of computational meshes used in the study. We aim at selecting the coarsest mesh
that delivers the targeted distributions up to a user-defined numerical accuracy. The second line of
meshes is only used for error estimation purposes.

3.3. Inverse Problems and First Results

Two tests will now be investigated:

• Test 1(weakly informative data): only the first eigenvalue is measured, i.e., d is scalar. This can be
interpreted as a task of model updating, where new data is used to update an existing knowledge.
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• Test 2 (strongly informative data): the first three eigenvalues of the structure are measured.
This can be interpreted as an inverse problem, where rich information is used to identify all the
unknown of the model, and the probabilistic setting acts as a regulariser.

The two corresponding marginal posterior density π̂µ1,µ3|d obtained when using meshM3 are
represented in Figure 3. Samples from this density are obtained by a Monte-Carlo sampler, as presented
in next section. A Kernel Density Estimate (KDE) is used as a smoother for illustration purposes only.
Notice that for the predictive posterior densities, the histograms correspond to the marginal densities
of each individual eigenvalue, which explains their overlap.
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Figure 3. (a) Joint posterior probability distribution for two of the 6 unknown elastic modulii and
(c) marginal posterior predictive distributions of the first 10 free vibration frequencies. The data
set consists of a noisy measurement of the first frequency only, resulting in fat posterior densities.
(b) Posterior distribution of the two unknown elastic modulii when the first 3 vibration frequencies
are used as dataset, which results as in much thinner posterior densities. (d) Corresponding posterior
predictive densities.

It is interesting to notice that the posterior densities observed in Test 2 are much sharper than that
of Test 1, owing to the quality of the data. The symmetry in the results are a consequence of structural
and probabilistic symmetries (see Figure 1 and the definition of the prior probability density).

Synthetic data for this problem is generated by computing the average of the spectra delivered by
meshesM2 andM2+ 1

2
, for a reference parameter vector µd 6= µ0 but situated in the vicinity of the

prior mode. The model averaging, together with selecting relatively coarse finite element meshes in
sequence {Mi}i∈J nmK, is meant to circumvent the “inverse crime" problem.

3.4. Convergence with Mesh Refinement

The posterior densities corresponding to Test 2 and to various level of mesh refinement are
displayed in Figure 4. The difference between the modes of the predicted eigenvalues that are obtained
with coarse and fine meshes are very large. The fact that this discrepancy increases with the mode
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number is to be expected as the spatial wave length of the deformations in the continuum can be
shown to increase linearly with the eigenfrequency. As a consequence, a good mesh for the first
range of frequencies might be unable to capture the faster spatial variations associated with higher
vibration mode.
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Figure 4. Evolution of the joint posterior density of two of the unknown elasticity parameters as the
computational mesh is progressively refined fromM1 toM4.

The difference between the posteriori densities corresponding to meshes M3 and M4 is
qualitatively small. The solution of the Bayesian inverse problem converges with mesh refinement.
Notice that the posterior distribution for the model parameters goes from mono-modal to multi-modal,
which may prove a stumbling block when selecting an appropriate Monte-Carlo sampler.

4. Monte-Carlo Sampler and Combined Effect of Statistical and Discretisation Errors

4.1. Tempered Metropolis-Hastings Markov Chain Monte Carlo Algorithm

The approximate posterior density described by Equation (11) is an arbitrarily complex function
of µ, as it depends on the nonlinear computational model (Ad(µ)

T Ap(µ)T)T . In particular, standard
random number generators cannot be used to draw samples from this distribution. Importance
Monte-Carlo procedures whereby the prior distribution is used as proposal density, will also fail.
This is because the posterior density may be arbitrarily different from the prior density, resulting in
unacceptably large variances of importance sampling estimates. Designing better proposal densities
a priori is impossible and a successful importance sampling approach would require generating the
proposal density using advanced methods such as sequential Monte-Carlo samplers.

One of the simplest and generic generator of samples from posterior densities is the
Metropolis-Hastings (MH) Markov Chain Monte Carlo (MCMC) algorithm (see Figure 5).
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The algorithm works as follows. Starting from sample µn, the next sample µn+1 is drawn from
transitional distribution

Tµn+1←µn(µn+1; µn) ∝ min

(
1,

π̄µ|d(µn+1)

π̄µ|d(µn)

)
N (µn+1; µn, Σ̃) (16)
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Figure 5. Three independent MCMC chains sampling a multivariate Gaussian distribution.

This is done by first drawing a random move from µk using the multivariate Gaussian
(any proposal can be used, but the expressions exposed in this section are only valid for symmetric
proposals), and then accepting or rejecting the move in order to account for the first term of the
transition. Typically, a move ending up in a state of higher posterior density is always accepted, whilst
a move ending up in a state of lower density may be accepted or not, depending on the result of a die
and the ratio of posterior densities between current and proposed states.

This particular transition is designed such that the following ergodic property holds:
∫

µn+1

Tµn+1←µn(µn+1; µn) dµn = π̄µ|d(µn+1) (17)

As a result, under some assumptions, the Markov chain is guaranteed to have π̄µ|d as its stationary
distribution, which means that µn ∼ π̄µ|d as n→ ∞. Each sample, taken individually, is distributed
according to the posterior density, if the chain is run long enough. Due to the Markov process, the
samples are not independent, which makes frequentist error estimation and convergence diagnosis
more difficult than in the context of traditional Monte-Carlo algorithm, where tools such as standard
error and bootstrap apply without particular difficulty. Practically, a burn-in phase is first observed,
whereby the chain “seeks” the regions of high probability densities (see Figure 5). Once found, samples
become progressively distributed according to the target posterior density.

Notice that Σ̃ is difficult to choose a priori. Adaptive proposal MCMC have been proposed
in [40,41]. Alternative solutions to choose good proposal are methods based on particle mechanics (e.g.,
Langevin diffusion, Hamiltonian dynamics) (see e.g., [42]). In this particular contribution, the proposal
densities have been calibrated “by hand”. We use a tempered version of the MCMC algorithm, whereby
we simultaneously sample multiple tempered replicates of the posterior density, with proposed state
exchange between replicates that are subsequently Metropolis corrected [43,44] (see also [45] for an
interesting application in the context of structural damage assessment). This relatively classical MCMC
algorithm allows us to sample from; densities that are multi-modal or become multi-modal with
mesh refinement (at least in the low-dimensional parametric settings that is investigated in this paper,
as multi-modality in high-dimensions remains an open problem).

The call to the finite element solver is hidden in the acceptance/rejection test, which requires
the evaluation of the finite element likelihood at the proposed state. Therefore, as for a standard MC
algorithm, one iteration means one evaluation of the computational model.
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4.2. Empirical Posterior Densities

Once n samples M̃ = {µ1 , µ2, ... , µn} have been computed (n larger than 10) by the MH
algorithm, we discard the first 25% (burn-in) of these samples, resulting in ñ samples that we hope are
located in the ergodic part of the Markov chain. The resulting empirical probability density is given by

π̄µ|d(µ) ≈ π̄(n)
µ|d(µ) :=

1
ñ

n

∑
k=n−ñ+1

δ(µ− µk) (18)

where δ is the Dirac delta function. Accordingly, the empirical predictive posterior density is

π̄p|d(p) ≈ π̄(n)
p|d(p) :=

1
ñ

n

∑
k=n−ñ+1

δ(p−Ap(µk)) (19)

The cumulative empirical predictive posterior density may be expressed as

Π̄µ|d=d(µ) :=
1
ñ

n

∑
k=n−ñ+1

I(µ; µk ≤ µ) (20)

where I is the indicator function, and the inequality is to be understood in a component-by-component
manner. A similar definition holds for the cumulative posterior density of p.

4.3. Total Error Measure

It is now clear that both the finite element discretisation and the Monte-Carlo approximate
sampling affect the quality of the resulting posterior densities. The total error, for the marginal
distribution of a single element µi of µ, reads as

Dks(πµi |d(µi), π̄(n)
µi |d(µi)) = sup

µi

(∣∣∣(Πµi |d(µi)− Π̄(n)
µi |d(µi))

∣∣∣
)

(21)

which can be formally decomposed as follows

Dks(πµi |d(µi), π̄(n)
µi |d(µi)) = sup

µi

(∣∣∣(Πµi |d(µi)− Π̄µi |d(µi)) + Π̄µi |d(µi)− Π̄(n)
µi |d(µi))

∣∣∣
)

≤ Dks(πµi |d(µi), π̄µi |d(µi)) +Dks(π̄µi |d(µi), π̄mc
µi |d(µi))

(22)

In the last expression, the first term is the pure finite element error, which would occur if we
could run the Markov process for an infinite number of iterations, while the second term is a pure
statistical error.

We also define the error of an element pi of p as follows:

Dks(πpi |d(pi), π̄(n)
pi |d(µi)) = sup

pi

(∣∣∣(Πpi |d(pi)− Π̄(n)
pi |d(pi))

∣∣∣
)

(23)

5. Robust, Automatised and Comprehensive Error Control

5.1. Simulation of the Discretisation Error
The finite element method introduces an error in computational mapping A(µ) =(

Ad(µ)
T Ap(µ)T

)T
. Mapping A contains all the scalar quantities that need to be evaluated through

calls to the finite element solver, namely the numerical predictions of the physical measurements d,
and the posterior predictions p. We define the error in the simulated data as

∆Ad(µ) = Ad(µ)− Ād(µ) (24)
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and the error in the posteriori predictions as

∆Ap(µ) = Ap(µ)− Āp(µ) (25)

For now, we assume that both these quantities can be estimated, at affordable numerical cost and
in a reliable manner. Therefore, for any value of parameter µ, a corrected computational model is
available, which reads as

(
Ad(µ)

Ap(µ)

)
≈

very close to

(
Âd(µ)

Âp(µ)

)
:=

(
Ād(µ)

Āp(µ)

)
+

(
∆̂Ad(µ)

∆̂Ap(µ)

)
(26)

where symbol .̂ denotes computable estimates.

5.2. Component-Wise MCMC

It is now posible to sample the corrected posterior distribution

π̂µ|d(µ; d) =
L̂(µ; d)πµ(µ)

π̂(d)
(27)

using MCMC. It should be clear that the corrected posterior distribution is simply obtained by replacing
the corrected computational model (26) into the expression of the likelihood function, Equation (3).
Notice that the normalising constant is affected by modifications of the computational model. This is of
no practical consequence as MCMC samplers work with unnormalised densities, and the KS distance
uses empirical cumulative distributions directly, without the need for smoothing or marginalisation.

We formally define a component-wise MCMC were the uncorrected and corrected computational
models are sampled at the same time. This will yield an estimate of the effect of the discretisation error
on posteriori densities at any stage of the Markov process, which, in turn, will allow us to develop
an early-stopping methodology. The Component-wise MCMC iteration proceeds as follows, given a
current sample (µ̄n, µ̂n) of the uncorrected/corrected finite element posteriori densities,

• Draw (µ̄n+1, µ̂n+1) such that

µ̄n+1 ∼ N ( . ; µ̄n, Σ̃) and µ̂n+1 ∼ N ( . ; µ̂n, Σ̃) (28)

• draw (u, v) such that
u ∼ U ([0 1]) and v ∼ U ([0 1]) (29)

• Accept µ̄n+1 if and only if

u ≤ min

(
1,
L̄(µ̄n+1; d)πµ(µ̄n+1)

L̄(µ̄n; d)πµ(µ̄n)

)
(30)

set µ̄n+1 = µ̄k otherwise.
• Accept µ̂n+1 if and only if

v ≤ min

(
1,
L̂(µ̂n+1; d)πµ(µ̂n+1)

L̂(µ̂n; d)πµ(µ̂n)

)
(31)

set µ̂n+1 = µ̂k otherwise.

The MCMC algorithm is initialised by state (µ̄0, µ̂0), where both (µ̄0 and µ̂0) are drawn from
distribution π0.

In the field of a posteriori finite element error estimation, the error estimate is usually
a post-processing operation of the coarse finite element solution. This adapts seamlessly to



Materials 2019, 12, 642 13 of 24

non-Markovian Monte-Carlo samplers, by post-processing each of the independent samples. Here,
unfortunately, the finite element model has to be called twice at every iteration of the Markov process.
Whether this can be avoided or not, for instance by making use of elements of sequential Monte-Carlo
samplers, is unclear to us at this stage.

5.3. Machine Learning-Based Simulation of the Discretisation Error

At this stage, any numerical error estimator can be used, provided that it is goal-oriented.
A method of choice could be a residual-based [5,6] or smoothing-based a posteriori error
estimator [12,46] in conjunction with the adjoint methodology [8,9,11]. In addition, nothing prevents
us from using a meta-modelling approach, such as projection-based reduced order modelling [47–52]
or polynomial chaos expansions [16,17] to approximate the variations of the computed quantities of
interest with parameter variation. Error estimates also exist for such two-level approximations.

In this contribution, we develop and use a feature-based method, that finds its roots in data-science
methodologies and is much more “black-box” than the previously mentioned strategies. The proposed
technique is inspired by the work of [35–37].

The exact continuum mechanics model is well approximated by a very refined numerical strategy
(e.g., no meta-modelling and a very fine mesh). However, this very refined numerical model cannot be
used at every iteration of MCMC as its evaluation is very costly. We propose to train a model that will
map parameter µ to the output of the generally intractable very fine model through the combination of
(i) a dedicated feature extractor and (ii) a weakly parametric regression model. This combination is
defined as (

A?
d(µ)

A?
p(µ)

)
−
(

Ād(µ)

Āp(µ)

)
=

wished

(
∆̂Ad(µ)

∆̂Ap(µ)

)
=

constructed
R(F (µ); θ) (32)

where the .? denote quantities that are delivered by the overkill (but computable) numerical model and
R is a weakly parametrised regression model, here a neural network regression (a Gaussian process
could be used as well, but a random forest would probably have been the most efficient choice, given
the way we bootstrap the regression model to generate estimates of generalisation errors), parametrised
by a set of parameters θ ∈ Rnθ (we do not explicitly distinguish parameters and hyper-parameters
in our notations). F is a mapping from input µ to a feature space. Its careful design is critical to the
success of the machine learning procedure. We choose to construct the following features:

F (µ) =




Ãd(µ)− Ād(µ)

Ād(µ)

Ãp(µ)− Āp(µ)

Āp(µ)


 (33)

where Ãd(µ) are slighlty corrected computational models, here generated by refining the mesh by a
moderate factor. In our examples, the typical mesh size is divided by 1.5 (see Figures 2 and 6 where
we use meshMi+ 1

2
to correct meshMi, whilst the overkill solution is computed usingMi+2). In this

fashion, the generation of features will remain of the order of the computation of the finite element
solution itself.



Materials 2019, 12, 642 14 of 24Applied  & Computational 
Mechanics Group

O
ffl

in
e: 

M
ac

hi
ne

 le
ar

ni
ng

Online feature 
evaluation

-0.075 -0.07 -0.065 -0.06 -0.055 -0.05
-0.27

-0.26

-0.25

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

-2
-4

0

2

4

-2

6

8

40

10

2
02

-2
4 -4

-0.26

-0.25

-1.8

-0.24

-0.23

-0.22

-0.21

-2

-0.2

-0.19

-2.2 -0.05-0.055-2.4 -0.06-0.065-0.07-2.6 -0.075

eT
1 �A?

p
<latexit sha1_base64="lerOz5cyhkDktY2tS+drNnLevHU=">AAACIHicbVDLTgIxFO3gC/GFunTTSExckRljgkt8LFxqImDCwKRTLtDQeaS9YyST+RQ3/oobFxqjO/0ay8BCxZM0PT3n3vTe48dSaLTtT6uwsLi0vFJcLa2tb2xulbd3mjpKFIcGj2Skbn2mQYoQGihQwm2sgAW+hJY/Op/4rTtQWkThDY5j6ARsEIq+4AyN5JVrrh/JXgqZ53RvaP7Q48BcqXsBElk29U8zz0W4xzTOuq5Gprxyxa7aOeg8cWakQma48sofbi/iSQAhcsm0bjt2jJ2UKRRcQlZyEw0x4yM2gLahIQtAd9J8wYweGKVH+5EyJ0Saqz87UhboydimMmA41H+9ifif106wf9JJRRgnCCGfftRPJMWITtKiPaGAoxwbwrgSZlbKh0wxjibTkgnB+bvyPGkeVR276lwfV+pnsziKZI/sk0PikBqpk0tyRRqEkwfyRF7Iq/VoPVtv1vu0tGDNenbJL1hf31DKpPA=</latexit><latexit sha1_base64="lerOz5cyhkDktY2tS+drNnLevHU=">AAACIHicbVDLTgIxFO3gC/GFunTTSExckRljgkt8LFxqImDCwKRTLtDQeaS9YyST+RQ3/oobFxqjO/0ay8BCxZM0PT3n3vTe48dSaLTtT6uwsLi0vFJcLa2tb2xulbd3mjpKFIcGj2Skbn2mQYoQGihQwm2sgAW+hJY/Op/4rTtQWkThDY5j6ARsEIq+4AyN5JVrrh/JXgqZ53RvaP7Q48BcqXsBElk29U8zz0W4xzTOuq5Gprxyxa7aOeg8cWakQma48sofbi/iSQAhcsm0bjt2jJ2UKRRcQlZyEw0x4yM2gLahIQtAd9J8wYweGKVH+5EyJ0Saqz87UhboydimMmA41H+9ifif106wf9JJRRgnCCGfftRPJMWITtKiPaGAoxwbwrgSZlbKh0wxjibTkgnB+bvyPGkeVR276lwfV+pnsziKZI/sk0PikBqpk0tyRRqEkwfyRF7Iq/VoPVtv1vu0tGDNenbJL1hf31DKpPA=</latexit><latexit sha1_base64="lerOz5cyhkDktY2tS+drNnLevHU=">AAACIHicbVDLTgIxFO3gC/GFunTTSExckRljgkt8LFxqImDCwKRTLtDQeaS9YyST+RQ3/oobFxqjO/0ay8BCxZM0PT3n3vTe48dSaLTtT6uwsLi0vFJcLa2tb2xulbd3mjpKFIcGj2Skbn2mQYoQGihQwm2sgAW+hJY/Op/4rTtQWkThDY5j6ARsEIq+4AyN5JVrrh/JXgqZ53RvaP7Q48BcqXsBElk29U8zz0W4xzTOuq5Gprxyxa7aOeg8cWakQma48sofbi/iSQAhcsm0bjt2jJ2UKRRcQlZyEw0x4yM2gLahIQtAd9J8wYweGKVH+5EyJ0Saqz87UhboydimMmA41H+9ifif106wf9JJRRgnCCGfftRPJMWITtKiPaGAoxwbwrgSZlbKh0wxjibTkgnB+bvyPGkeVR276lwfV+pnsziKZI/sk0PikBqpk0tyRRqEkwfyRF7Iq/VoPVtv1vu0tGDNenbJL1hf31DKpPA=</latexit><latexit sha1_base64="lerOz5cyhkDktY2tS+drNnLevHU=">AAACIHicbVDLTgIxFO3gC/GFunTTSExckRljgkt8LFxqImDCwKRTLtDQeaS9YyST+RQ3/oobFxqjO/0ay8BCxZM0PT3n3vTe48dSaLTtT6uwsLi0vFJcLa2tb2xulbd3mjpKFIcGj2Skbn2mQYoQGihQwm2sgAW+hJY/Op/4rTtQWkThDY5j6ARsEIq+4AyN5JVrrh/JXgqZ53RvaP7Q48BcqXsBElk29U8zz0W4xzTOuq5Gprxyxa7aOeg8cWakQma48sofbi/iSQAhcsm0bjt2jJ2UKRRcQlZyEw0x4yM2gLahIQtAd9J8wYweGKVH+5EyJ0Saqz87UhboydimMmA41H+9ifif106wf9JJRRgnCCGfftRPJMWITtKiPaGAoxwbwrgSZlbKh0wxjibTkgnB+bvyPGkeVR276lwfV+pnsziKZI/sk0PikBqpk0tyRRqEkwfyRF7Iq/VoPVtv1vu0tGDNenbJL1hf31DKpPA=</latexit>

eT
1
d�Ap

<latexit sha1_base64="jc3XBQtHX0sOcN/4Cc4xObSGJdc=">AAACJHicbVDLSsNAFJ34tr6qLt0MFsFVSURQcONr4bJCq4Umhsnk1g5OHszcqCXkY9z4K25c+MCFG7/FaZuFWi8MczjnXO69J0il0Gjbn9bE5NT0zOzcfGVhcWl5pbq6dqGTTHFo8UQmqh0wDVLE0EKBEtqpAhYFEi6Dm5OBfnkLSoskbmI/BS9i17HoCs7QUH71wA0SGeZQ+M5Vk7p3IoQew3zI6n5kvtw9BYmsGBmPisJ3Ee4xTwu/WrPr9rDoOHBKUCNlNfzqmxsmPIsgRi6Z1h3HTtHLmULBJRQVN9OQMn7DrqFjYMwi0F4+PLKgW4YJaTdR5sVIh+zPjpxFerCxcUYMe/qvNiD/0zoZdve9XMRphhDz0aBuJikmdJAYDYUCjrJvAONKmF0p7zHFOJpcKyYE5+/J4+Bip+7Yded8t3Z4XMYxRzbIJtkmDtkjh+SMNEiLcPJAnsgLebUerWfr3foYWSessmed/Crr6xvyj6be</latexit><latexit sha1_base64="jc3XBQtHX0sOcN/4Cc4xObSGJdc=">AAACJHicbVDLSsNAFJ34tr6qLt0MFsFVSURQcONr4bJCq4Umhsnk1g5OHszcqCXkY9z4K25c+MCFG7/FaZuFWi8MczjnXO69J0il0Gjbn9bE5NT0zOzcfGVhcWl5pbq6dqGTTHFo8UQmqh0wDVLE0EKBEtqpAhYFEi6Dm5OBfnkLSoskbmI/BS9i17HoCs7QUH71wA0SGeZQ+M5Vk7p3IoQew3zI6n5kvtw9BYmsGBmPisJ3Ee4xTwu/WrPr9rDoOHBKUCNlNfzqmxsmPIsgRi6Z1h3HTtHLmULBJRQVN9OQMn7DrqFjYMwi0F4+PLKgW4YJaTdR5sVIh+zPjpxFerCxcUYMe/qvNiD/0zoZdve9XMRphhDz0aBuJikmdJAYDYUCjrJvAONKmF0p7zHFOJpcKyYE5+/J4+Bip+7Yded8t3Z4XMYxRzbIJtkmDtkjh+SMNEiLcPJAnsgLebUerWfr3foYWSessmed/Crr6xvyj6be</latexit><latexit sha1_base64="jc3XBQtHX0sOcN/4Cc4xObSGJdc=">AAACJHicbVDLSsNAFJ34tr6qLt0MFsFVSURQcONr4bJCq4Umhsnk1g5OHszcqCXkY9z4K25c+MCFG7/FaZuFWi8MczjnXO69J0il0Gjbn9bE5NT0zOzcfGVhcWl5pbq6dqGTTHFo8UQmqh0wDVLE0EKBEtqpAhYFEi6Dm5OBfnkLSoskbmI/BS9i17HoCs7QUH71wA0SGeZQ+M5Vk7p3IoQew3zI6n5kvtw9BYmsGBmPisJ3Ee4xTwu/WrPr9rDoOHBKUCNlNfzqmxsmPIsgRi6Z1h3HTtHLmULBJRQVN9OQMn7DrqFjYMwi0F4+PLKgW4YJaTdR5sVIh+zPjpxFerCxcUYMe/qvNiD/0zoZdve9XMRphhDz0aBuJikmdJAYDYUCjrJvAONKmF0p7zHFOJpcKyYE5+/J4+Bip+7Yded8t3Z4XMYxRzbIJtkmDtkjh+SMNEiLcPJAnsgLebUerWfr3foYWSessmed/Crr6xvyj6be</latexit><latexit sha1_base64="jc3XBQtHX0sOcN/4Cc4xObSGJdc=">AAACJHicbVDLSsNAFJ34tr6qLt0MFsFVSURQcONr4bJCq4Umhsnk1g5OHszcqCXkY9z4K25c+MCFG7/FaZuFWi8MczjnXO69J0il0Gjbn9bE5NT0zOzcfGVhcWl5pbq6dqGTTHFo8UQmqh0wDVLE0EKBEtqpAhYFEi6Dm5OBfnkLSoskbmI/BS9i17HoCs7QUH71wA0SGeZQ+M5Vk7p3IoQew3zI6n5kvtw9BYmsGBmPisJ3Ee4xTwu/WrPr9rDoOHBKUCNlNfzqmxsmPIsgRi6Z1h3HTtHLmULBJRQVN9OQMn7DrqFjYMwi0F4+PLKgW4YJaTdR5sVIh+zPjpxFerCxcUYMe/qvNiD/0zoZdve9XMRphhDz0aBuJikmdJAYDYUCjrJvAONKmF0p7zHFOJpcKyYE5+/J4+Bip+7Yded8t3Z4XMYxRzbIJtkmDtkjh+SMNEiLcPJAnsgLebUerWfr3foYWSessmed/Crr6xvyj6be</latexit>

eT
1
g�Ap

<latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit><latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit><latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit><latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit>

eT
1
g�Ap

<latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit><latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit><latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit><latexit sha1_base64="srrMnQilGNbkc/yTNFVrcXzEl8s=">AAACJnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdCPUx8JlBatCE8NkcqtDJw9mbtQS8jVu/BU3Lioi7vwUp2kXvi4MczjnXO69J0il0GjbH1Zlanpmdq46X1tYXFpeqa+uXegkUxw6PJGJugqYBili6KBACVepAhYFEi6D/vFIv7wDpUUSn+MgBS9iN7HoCc7QUH79wA0SGeZQ+M71OXXvRQgoZAh5yetBZL7cPQGJrBhbD4vCdxEeME8Lv96wm3ZZ9C9wJqBBJtX260M3THgWQYxcMq27jp2ilzOFgksoam6mIWW8z26ga2DMItBeXp5Z0C3DhLSXKPNipCX7vSNnkR5tbJwRw1v9WxuR/2ndDHv7Xi7iNEOI+XhQL5MUEzrKjIZCAUc5MIBxJcyulN8yxTiaZGsmBOf3yX/BxU7TsZvO2W6jdTSJo0o2yCbZJg7ZIy1yStqkQzh5JM9kSF6tJ+vFerPex9aKNelZJz/K+vwCsKenxw==</latexit>

eT
1 Āp

<latexit sha1_base64="cyOdDjjWSKEBZdNaVzL6dffvCZA=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclUQEXVbduKzQFzQxTCaTduhkJsxMhBKycuOvuHGhiFu/wZ1/47TNQlsPXDiccy/33hOmjCrtON/W0vLK6tp6ZaO6ubW9s2vv7XeUyCQmbSyYkL0QKcIoJ21NNSO9VBKUhIx0w9HNxO8+EKmo4C09TomfoAGnMcVIGymwj7xQsCgnReDet6AXIpnPlKuiCNLArjl1Zwq4SNyS1ECJZmB/eZHAWUK4xgwp1XedVPs5kppiRoqqlymSIjxCA9I3lKOEKD+fvlHAE6NEMBbSFNdwqv6eyFGi1DgJTWeC9FDNexPxP6+f6fjSzylPM004ni2KMwa1gJNMYEQlwZqNDUFYUnMrxEMkEdYmuaoJwZ1/eZF0zuquU3fvzmuN6zKOCjgEx+AUuOACNMAtaII2wOARPINX8GY9WS/Wu/Uxa12yypkD8AfW5w9uQJkX</latexit><latexit sha1_base64="cyOdDjjWSKEBZdNaVzL6dffvCZA=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclUQEXVbduKzQFzQxTCaTduhkJsxMhBKycuOvuHGhiFu/wZ1/47TNQlsPXDiccy/33hOmjCrtON/W0vLK6tp6ZaO6ubW9s2vv7XeUyCQmbSyYkL0QKcIoJ21NNSO9VBKUhIx0w9HNxO8+EKmo4C09TomfoAGnMcVIGymwj7xQsCgnReDet6AXIpnPlKuiCNLArjl1Zwq4SNyS1ECJZmB/eZHAWUK4xgwp1XedVPs5kppiRoqqlymSIjxCA9I3lKOEKD+fvlHAE6NEMBbSFNdwqv6eyFGi1DgJTWeC9FDNexPxP6+f6fjSzylPM004ni2KMwa1gJNMYEQlwZqNDUFYUnMrxEMkEdYmuaoJwZ1/eZF0zuquU3fvzmuN6zKOCjgEx+AUuOACNMAtaII2wOARPINX8GY9WS/Wu/Uxa12yypkD8AfW5w9uQJkX</latexit><latexit sha1_base64="cyOdDjjWSKEBZdNaVzL6dffvCZA=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclUQEXVbduKzQFzQxTCaTduhkJsxMhBKycuOvuHGhiFu/wZ1/47TNQlsPXDiccy/33hOmjCrtON/W0vLK6tp6ZaO6ubW9s2vv7XeUyCQmbSyYkL0QKcIoJ21NNSO9VBKUhIx0w9HNxO8+EKmo4C09TomfoAGnMcVIGymwj7xQsCgnReDet6AXIpnPlKuiCNLArjl1Zwq4SNyS1ECJZmB/eZHAWUK4xgwp1XedVPs5kppiRoqqlymSIjxCA9I3lKOEKD+fvlHAE6NEMBbSFNdwqv6eyFGi1DgJTWeC9FDNexPxP6+f6fjSzylPM004ni2KMwa1gJNMYEQlwZqNDUFYUnMrxEMkEdYmuaoJwZ1/eZF0zuquU3fvzmuN6zKOCjgEx+AUuOACNMAtaII2wOARPINX8GY9WS/Wu/Uxa12yypkD8AfW5w9uQJkX</latexit><latexit sha1_base64="cyOdDjjWSKEBZdNaVzL6dffvCZA=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclUQEXVbduKzQFzQxTCaTduhkJsxMhBKycuOvuHGhiFu/wZ1/47TNQlsPXDiccy/33hOmjCrtON/W0vLK6tp6ZaO6ubW9s2vv7XeUyCQmbSyYkL0QKcIoJ21NNSO9VBKUhIx0w9HNxO8+EKmo4C09TomfoAGnMcVIGymwj7xQsCgnReDet6AXIpnPlKuiCNLArjl1Zwq4SNyS1ECJZmB/eZHAWUK4xgwp1XedVPs5kppiRoqqlymSIjxCA9I3lKOEKD+fvlHAE6NEMBbSFNdwqv6eyFGi1DgJTWeC9FDNexPxP6+f6fjSzylPM004ni2KMwa1gJNMYEQlwZqNDUFYUnMrxEMkEdYmuaoJwZ1/eZF0zuquU3fvzmuN6zKOCjgEx+AUuOACNMAtaII2wOARPINX8GY9WS/Wu/Uxa12yypkD8AfW5w9uQJkX</latexit>

M3+ 1
2

<latexit sha1_base64="iI1BZw+j0AXuXOx68dFZiqUWRj0=">AAACBHicbVDLSsNAFJ3UV62vqMtuBosgCCWpgi6LbtwIFewDmlAm00k7dDIJMxOhDFm48VfcuFDErR/hzr9x0mahrQcuHM65l3vvCRJGpXKcb6u0srq2vlHerGxt7+zu2fsHHRmnApM2jlksegGShFFO2ooqRnqJICgKGOkGk+vc7z4QIWnM79U0IX6ERpyGFCNlpIFd9SKkxhgxfZsN9NmpFwqEtZvpRpYN7JpTd2aAy8QtSA0UaA3sL28Y4zQiXGGGpOy7TqJ8jYSimJGs4qWSJAhP0Ij0DeUoItLXsycyeGyUIQxjYYorOFN/T2gUSTmNAtOZnywXvVz8z+unKrz0NeVJqgjH80VhyqCKYZ4IHFJBsGJTQxAW1NwK8RiZGJTJrWJCcBdfXiadRt116u7dea15VcRRBlVwBE6ACy5AE9yAFmgDDB7BM3gFb9aT9WK9Wx/z1pJVzByCP7A+fwDXOZg0</latexit><latexit sha1_base64="iI1BZw+j0AXuXOx68dFZiqUWRj0=">AAACBHicbVDLSsNAFJ3UV62vqMtuBosgCCWpgi6LbtwIFewDmlAm00k7dDIJMxOhDFm48VfcuFDErR/hzr9x0mahrQcuHM65l3vvCRJGpXKcb6u0srq2vlHerGxt7+zu2fsHHRmnApM2jlksegGShFFO2ooqRnqJICgKGOkGk+vc7z4QIWnM79U0IX6ERpyGFCNlpIFd9SKkxhgxfZsN9NmpFwqEtZvpRpYN7JpTd2aAy8QtSA0UaA3sL28Y4zQiXGGGpOy7TqJ8jYSimJGs4qWSJAhP0Ij0DeUoItLXsycyeGyUIQxjYYorOFN/T2gUSTmNAtOZnywXvVz8z+unKrz0NeVJqgjH80VhyqCKYZ4IHFJBsGJTQxAW1NwK8RiZGJTJrWJCcBdfXiadRt116u7dea15VcRRBlVwBE6ACy5AE9yAFmgDDB7BM3gFb9aT9WK9Wx/z1pJVzByCP7A+fwDXOZg0</latexit><latexit sha1_base64="iI1BZw+j0AXuXOx68dFZiqUWRj0=">AAACBHicbVDLSsNAFJ3UV62vqMtuBosgCCWpgi6LbtwIFewDmlAm00k7dDIJMxOhDFm48VfcuFDErR/hzr9x0mahrQcuHM65l3vvCRJGpXKcb6u0srq2vlHerGxt7+zu2fsHHRmnApM2jlksegGShFFO2ooqRnqJICgKGOkGk+vc7z4QIWnM79U0IX6ERpyGFCNlpIFd9SKkxhgxfZsN9NmpFwqEtZvpRpYN7JpTd2aAy8QtSA0UaA3sL28Y4zQiXGGGpOy7TqJ8jYSimJGs4qWSJAhP0Ij0DeUoItLXsycyeGyUIQxjYYorOFN/T2gUSTmNAtOZnywXvVz8z+unKrz0NeVJqgjH80VhyqCKYZ4IHFJBsGJTQxAW1NwK8RiZGJTJrWJCcBdfXiadRt116u7dea15VcRRBlVwBE6ACy5AE9yAFmgDDB7BM3gFb9aT9WK9Wx/z1pJVzByCP7A+fwDXOZg0</latexit><latexit sha1_base64="iI1BZw+j0AXuXOx68dFZiqUWRj0=">AAACBHicbVDLSsNAFJ3UV62vqMtuBosgCCWpgi6LbtwIFewDmlAm00k7dDIJMxOhDFm48VfcuFDErR/hzr9x0mahrQcuHM65l3vvCRJGpXKcb6u0srq2vlHerGxt7+zu2fsHHRmnApM2jlksegGShFFO2ooqRnqJICgKGOkGk+vc7z4QIWnM79U0IX6ERpyGFCNlpIFd9SKkxhgxfZsN9NmpFwqEtZvpRpYN7JpTd2aAy8QtSA0UaA3sL28Y4zQiXGGGpOy7TqJ8jYSimJGs4qWSJAhP0Ij0DeUoItLXsycyeGyUIQxjYYorOFN/T2gUSTmNAtOZnywXvVz8z+unKrz0NeVJqgjH80VhyqCKYZ4IHFJBsGJTQxAW1NwK8RiZGJTJrWJCcBdfXiadRt116u7dea15VcRRBlVwBE6ACy5AE9yAFmgDDB7BM3gFb9aT9WK9Wx/z1pJVzByCP7A+fwDXOZg0</latexit>

M3
<latexit sha1_base64="g9lgySu0udwuvsBuSQ8rsNLNeDM=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQq6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72Xnu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9v6g3r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f97KTRg==</latexit><latexit sha1_base64="g9lgySu0udwuvsBuSQ8rsNLNeDM=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQq6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72Xnu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9v6g3r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f97KTRg==</latexit><latexit sha1_base64="g9lgySu0udwuvsBuSQ8rsNLNeDM=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQq6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72Xnu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9v6g3r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f97KTRg==</latexit><latexit sha1_base64="g9lgySu0udwuvsBuSQ8rsNLNeDM=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQq6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72Xnu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9v6g3r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f97KTRg==</latexit>

M5
<latexit sha1_base64="eA5AHu9BzKjAbiiBkSX0DGSGwfE=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiSi6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72UXu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9P683r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f+ryTSA==</latexit><latexit sha1_base64="eA5AHu9BzKjAbiiBkSX0DGSGwfE=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiSi6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72UXu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9P683r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f+ryTSA==</latexit><latexit sha1_base64="eA5AHu9BzKjAbiiBkSX0DGSGwfE=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiSi6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72UXu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9P683r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f+ryTSA==</latexit><latexit sha1_base64="eA5AHu9BzKjAbiiBkSX0DGSGwfE=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiSi6LLoxo1QwT6gDWEynbRDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBAlnSjvOt7Wyura+sVnZqm7v7O7V7P2DjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyU3hdx+pVCwWD3qaUC/CI8FCRrA2km/XBhHWY4J5dpf72UXu23Wn4cyAlolbkjqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmwXP0YlRhiiMpXlCo5n6eyPDkVLTKDCTRUy16BXif14/1eGVlzGRpJoKMj8UphzpGBUtoCGTlGg+NQQTyUxWRMZYYqJNV1VTgrv45WXSOWu4TsO9P683r8s6KnAEx3AKLlxCE26hBW0gkMIzvMKb9WS9WO/Wx3x0xSp3DuEPrM8f+ryTSA==</latexit> eT

1
d�Ap
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Figure 6. Machine-learning-based error estimation procedure. The overkill error (difference between
the current mesh and a much finer mesh as shown in (a)) is postulated as being an unknown function
of an error estimate. The inexpensive error estimate is the distance between the results obtained
when using the current mesh and those obtained when using a slightly refined mesh as shown in.
(b) The statistical learning is done offline via a Monte-Carlo sampling of the true error (using the
prior as sampling density) and the adaptive fitting of a Neural Network regression. The regression is
bootstrapped to provide enhanced stability, and derive confidence interval estimates for the overall
error estimation procedure which is shown in (c). Both the size of the dataset and the hyperparameters
of the network are found automatically via a Greedy process that is not detailed in this paper.

Now, we train nd + np multivariate neural network regression models

(
∆̂Ad(µ)

∆̂Ap(µ)

)
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T
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end
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)
, θd,1

)
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)
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)
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e
np
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T
Ãp(µ)


 , θp,np







(34)

where em
j denotes the jth canonical vector of Rm.
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Each of the regressionRl,i is a single-hidden layer bootstrap-aggregated neural network model
with nn neurons and nnbs bootstrap replicates.

Rl,i

((
x
y

)
, θl,i

)
=

1
k

nnbs

∑
k=1

nn

∑
j=1

a(k)j tanh
(

a(k)x,j x + a(k)y,j y + o(k)j

)
+ o(k) (35)

Training

We sample artificial “data” by running the overkill computational model nml times, after sampling
the training set parameters {µml

1 , µml
2 , ... , µml

nml
} from prior πµ. The number of neurons and the

cardinality of the training set is chosen automatically by making use of an automatised early-stopping
methodology that aims to maximise the predictive coefficient of determination. We will not detail
this procedure here. Fitting of the nonlinear regression coefficients is performed by employing
standard least-squares method, solved by a gradient descent algorithm with randomised initialisation.
Outliers of the set of bootstrap replicates are identified and eliminated to decrease the variance of the
boostrap-aggregated regression model.

An example of fitted regression model is represented in Figure 6, where the output is the
discretisation error in the first free vibration circular frequency (i.e., regression modelRd,1).

5.4. Bootstrap Confidence Intervals for the MCMC Sampler

At any iteration n of the MCMC sampler, a Monte-Carlo estimate of the discretisation error for
the posterior density of the ith component of µ is given by

D(n)
ks := Dks(π̂

(n)
µi |d(µi), π̄(n)

µi |d(µi)) = sup
µi

(∣∣∣(Π̂(n)
µi |d(µi)− Π̄(n)

µi |d(µi))
∣∣∣
)

(36)

where

Π̄(n)
µi |d=d(µi) :=

1
ñ

n

∑
k=n−ñ+1

I(µi; µ̄k,i ≤ µi) , (37)

and

Π̂(n)
µi |d=d(µi) :=

1
ñ

n

∑
k=n−ñ+1

I(µi; µ̂k,i ≤ µi) . (38)

Crucially, D(n)
ks is a random variable whose statistics, and in particular its bias and variance,

strongly depend on the length of the Markov chain. Unfortunately, evaluating the convergence of
any statistics provided by MCMC is difficult, due to the statistical dependency between successively
drawn samples.

Following standard diagnostic approaches for MCMC samplers (e.g., the Gelman-Rubin
convergence test [53,54]), we will run nc ≥ 10 independent (tempered) MCMC chains in parallel
and pool all the resulting samples, after discarding the first 25% of every individual chain as burn-in
(see Figure 7 as a visual aid). The pooled samples at iteration n of the multiple-chain MCMC (MC3)
algorithm are

S̄ (n) =
nc

∏
i=1
S̄ (n)i Ŝ (n) =

nc

∏
i=1
Ŝ (n)i (39)

where ∏ denotes the cartesian product. In the previous expression, the sample set from chain i
(at ambient temperature) is

S̄ (n)i = {µ̄i,n−ñ+1, ... , µ̄i,n} Ŝ (n)i = {µ̂i,n−ñ+1, ... , µ̂i,n} (40)
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D(n)
ks is now the pooled KS distance estimate provided by the MC3 algorithm (we will keep the same

notation for the sake of simplicity). Formally, we simply replace Equation (37) by

Π̄(n)
µi |d=d(µi) :=

1
nc

1
ñ

nc

∑
l=1

n

∑
k=n−ñ+1

I(µi; µ̄l,k,i ≤ µi) , (41)

and perform a similar operation to define the pooled corrected empirical distribution.
The independence of the nc MCMC chains allows us to compute confidence intervals for

D(n)
ks by making use of the non-parametric bootstrap. This is done by resampling S̄ (n) and Ŝ (n)

with replacement, generating bootstrap replicates of the pooled sample sets {S̄ (n)k }k∈J1 nbsK and

{Ŝ (n)k }k∈J1 nbsK,

S̄ (n)k = ∏
i=∈Bk

S̄ (n)i Ŝ (n)k = ∏
i=∈Bk

Ŝ (n)i , (42)

where Bk ∈ (J1 ncK)nbs is such that each element of this set is drawn uniformly over J1 ncK and k varies
between 1 and a large number nbs, typically set to 1000. For each replicate, statistics D(n)

ks , denoted by

D(n)
ks,k, can be computed in a straightforward manner by using the bootstrap replicates of the pooled

empirical distributions

Π̄(n)
µi |d=d,k(µi) :=

1
nc

1
ñ ∑

µ̄?
i ∈S̄

(n)
k

I(µi; µ̄?
i ≤ µi) , (43)

Π̂(n)
µi |d=d,k(µi) :=

1
nc

1
ñ ∑

µ̂?
i ∈Ŝ

(n)
k

I(µi; µ̂?
i ≤ µi) , (44)

which reads as

D(n)
ks,k := Dks(π̂

(n)
µi |d,k(µi), π̄(n)

µi |d,k(µi)) = sup
µi

(∣∣∣(Π̂(n)
µi |d,k(µi)− Π̄(n)

µi |d,k(µi))
∣∣∣
)

, (45)

Finally, the bootstrap confidence intervals are calculated by calculating the Xth and (100− X)th
bootstrap percentiles such that the Xth percentile reads as

q(n)
X =

(
QX

(
{D(n)

ks,k}k∈J1 nbsK

)
−median

(
{D(n)

ks,k}k∈J1 nbsK

))
+D(n)

ks (46)

where QX is an operator that extracts the Xth and Yth percentile of the set passed as argument.
It is important to understand that the derived bootstrap confidence interval stands for a chain

of finite length n, and not for the asymptotic limit. In fact, estimate D(n)
ks of Dks is strongly biased

(upward for small asymptotic errors Dks and typically downward for large asymptotic errors), which
is due to two factors:

• the existence of the burn-in phase. For small n, each individual chain will be strongly affected
by the initialisation of the chains. For small asymptotic errors, this can be expected to have a
strong upward bias effect providing that the initialisation is disperse, which is often the case in
practice (e.g., initialisation from the prior, sequential MC approaches with decreasing levels of
noise). This can be visualised in Figure 7. Two incomplete chains running on the same probability
density may be exploring completely different regions of space, yielding values of Dks that are
large, even in the case where the corrected and uncorrected densities are close to one another.

• the discrete evaluation of the KS distance itself, which generates an additional (upward) bias.

The variance of D(n)
ks decreases with the number of chains of the MC3 algorithm (which is not a

free parameter as overall CPU cost increases linearly with nc). Of course, bias and variance are both
expected to decrease with the length n of the run.
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Figure 7. Multiple MCMC routines were run in parallel, for both the coarse likelihood function
(coarse mesh) as shown in (a) and the enhanced likelihood function obtained after correction by
the goal-oriented finite element error estimate, as shown in (b). The results are pooled, and will be
boostrapped to derive confidence intervals for the summary statistics of the posterior densities.

5.5. Simultaneous Control of All Sources of Errors

We now make use of the CI derived for D(n)
ks to construct an adaptive inverse problem solver that

jointly controls the quality of the mesh, and that of the statistical evaluation of the posterior densities.
The algorithm is as follows. Given a current meshMi and number of iterations n of the Monte-Carlo
solver, do:

• If n = 0, perform m0 iterations of the MC3 algorithm and set n← n + m0.
• Evaluate mesh convergence criterion Cm. If this criterion is satisfied, exit the adaptation procedure;
• If Cm is not satisfied, evaluate statistical convergence criterion Cs

– If Cs is satisfied, set i← i + 1, reinitialise the MC3 algorithm and set n = 0;
– otherwise perform m(n) iterations of the MC3 algorithm and set n← n + m(n) (m should

be an exponentially increasing function).

5.5.1. Criterion Cm

Convergence of the finite element-based Bayesian inverse problem is achieved when Dks ≤ γ,
where γ is a numerical tolerance that will typically be chosen between 0.01 and 0.2. As we only have
Monte-Carlo estimates of Dks, we require instead that

Cm : q(n)
100−X ≤ γ (47)

Criterion Cm is an indicator of the combined effect of the discretisation and statistical errors onto
the posterior densities. The discretisation error is evaluated through the choice of measure Dks as
reliability indicator, whilst the statistical error is taken into account by making use of the upper limit of
the bootstrap confidence interval for D(n)

ks . The risk of falsely detecting mesh convergence due to a

high statistical error is small, due to the fact that D(n)
ks is an upwardly biased estimate of Dks for small

Dks. Confidence in the result can be increased through a loose Gelman-Rubin convergence test in
order to eliminate the risk of stopping the MC3 algorithm in its non-ergodic phase. However, this has
proved to be unnecessary in our numerical tests. This is because Cm is a rather strict criterion.

5.5.2. Criterion Cs

The second criterion will help us determine whether mesh refinement is actually needed,
or whether the statistical error is too large for use to take a robust decision regarding mesh refinement.
The ideal criterion is Dks ≥ η, where η < γ. The obvious strategy that would require q(n)

X ≤ η does not
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work. This is due to the previously explained upward bias of estimator D(n)
ks , which would eventually

lead to the spurious satisfaction Cs, and consequently to systematic mesh refinement operations for
low n count even when the mesh becomes fine enough for Dks to be well below target γ. In order
to derive an appropriate criterion Cs, we remark that whilst the ideal criterion Dks ≥ η cannot be
statistically evaluated for general values of η, criterion Dks > 0 can be. More precisely, we propose
to estimate the statistical error by evaluation whether, at current n, the corrected and uncorrected
posterior distributions can be statistically distinguished.

We postulate the following null hypothesis: Hypothesis 0 (H0): the corrected and uncorrected
posterior densities are identical.

The rejection of the null hypothesis will indicate that the two densities are significantly different.
Now, the criterion for the need for mesh refinement becomes the following:

Cs : Pr
(
D(n)

ks ≥ q(n)
Z |H0

)
≤ ξ (48)

The probability density of D(n)
ks under null hypothesis H0 can be approximated by adapting the

previously described bootstrap procedure. We will estimate the density of

D(n)
ks,0 := Dks(π̄

(n),1
µi |d (µi), π̄(n),2

µi |d (µi)) = sup
µi

(∣∣∣(Π̄(n),1
µi |d (µi)− Π̄(n),2

µi |d (µi))
∣∣∣
)

(49)

where π̄(n),1
µi |d and π̄(n),2

µi |d are obtained, respectively, by pooling the result of two independent runs of nc

Markov chains of lengths n and corresponding to the uncorrected finite element model only (one can
equally choose the corrected one). Notice, to clarify the idea, that D(n)

ks,0 tends to 0 as n tends to infinity:

this is a measure of the statistical error only. The desired density can be estimated by resampling S̄ (n)
twice, computing the KS distance between the two pooled sets of samples, and repeating the operation
nbs times, which generates a sequence of real numbers {D(n)

ks,0,k}. The replicated empirical cumulative
distributions are

Π̄(n),j
µi |d=d,k(µi) :=

1
nc

1
ñ ∑

µ̄?
i ∈S̄

(n),j
k

I(µi; µ̄?
i ≤ µi) (50)

with the sampling sets
S̄ (n),jk = ∏

i=∈B j
k

S̄ (n)i (51)

where j = 1 or j = 2 and B1
k and B2

k are sets of J1 ncKnc constructed such that each element of these
two sets is drawn uniformly over J1 ncK. We can now extract the (100× (1− ξ))th percentile q(n)

Y,0

corresponding to p-value ξ, and evaluate whether q(n)
Y,0 ≤ q(n)

Y . If so, test Cs is true. If not, the statistical
sampling error is too large to allow us to decide whether mesh refinement should be performed or not.
In this case, and assuming that mesh convergence criterion Cm is not satisfied, we need to continue
sampling with MCMC.

Notice that the use of a larger percentile Z yields a less conservative indicator for the need for
mesh refinement, which can be compensated by decreasing p-value ξ. The criterion that is arguably the
easiest to interpret is Pr

(
D(n)

ks ≥ q(n)
50 |H0

)
≤ ξ, where q(n)

50 is directly the KS distanceD(n)
ks (i.e., computed

without bootstrapping).

6. Numerical Examples—Part II. Automatised Error Control and Discussion

We now come back to the numerical examples introduced in Section 3 and produce three series of
results, illustrating three difference aspects of the proposed approach.
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6.1. MCMC Iterations Only When Needed

The results reported in Figure 8 correspond to Test 1. For now, we aim to control the quality of
the posterior density of the first parameter µ1. Each of the graphs shows the evolution of various
statistics of the corresponding KS distance as a function of the number of iteration n of the tempered
MC3 algorithm. The mesh used is displayed on the left-hand side of each of the graphs. The solid black
line represents the evolution D(n)

ks itself. The 5th and and 95th bootstrap percentiles of this quantity are
also reported, in solid blue line and solid red line, respectively. We set convergence criterion Cm such
that γ = 0.2 and Y = 95 for the pure discretisation error. Therefore, convergence with respect to the
finite element discretisation is obtained when, for sufficient long chains, the red line (upper limit of the
bootstrap CI for D(n)

ks ) is below γ.

Applied  & Computational 
Mechanics GroupIteration when needed

102 103

10-1

100

102 103

10-1

100

102 103

10-1

100

�

� �

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Refinement
needed

Refinement
needed

(a) (b)

(c)

Figure 8. Convergence of the KS distance as a function of the number of Monte-Carlo samples in
each chain (black line, with confidence interval represented by the area between the blue and red
lines). The mesh used is represented schematically on the left-hand side of each of the graphs in (a–c).
The data is composed of a unique noisy measurement of the first eigenfrequency. The quantity of
interest is here the first elasticity parameter, in log scale. The grey lines are an indicator of the bias
of the KS distance estimate, which decreases with the sample size. The bias should be be small for
the estimate to be robust, but not too small so as to avoid running unnecessarily long chains using
meshes that are too coarse for our needs. Sufficiently accurate results are obtained with the third mesh.
Importantly, very few MCMC iterations are needed to determine that the two first meshes are too
coarse for our needs.

In grey colours, we report evolution of D(n)
ks,0 for the coarse scale (light grey), consistently with

the derivations of the previous section, but also, for reference, a similar statistics constructed with the
corrected finite element model (dark grey). Both curves have similar evolutions and, of course, tend to
0 as n tends to infinity. We set Z = 5, and η = 0.05. This means that the statistical error is considered
small enough once the blue line (lower limit of the bootstrap CI for D(n)

ks ) is above the 95th percentile

of D(n)
ks,0. Here, “small enough” is to be understood, as small enough for a decision regarding the need

to refine the mesh one step further to be taken.
The results are as follows. For the coarsest mesh, we detect a separation of the discretisation and

statistical errors at iteration 60 (vertical solid red line). Cs is satisfied. As Cm is not satisfied, we can
stop the MCMC sampler and refine the mesh. A similar behaviour is seen for meshM2. For the last
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mesh, convergence is achieved after 530 iterations, Cs never reaching satisfaction. The discretisation
and sampling errors remain entangled, but the sum of them is below the desired target.

We can see here that the proposed algorithm allows us to stop the MCMC sampler early, moving
directly to the level of mesh refinement that will yield the desired quality of the posterior densities.

6.2. Goal-Oriented Error Control

The second set of results correspond to Test 1, still. However, we now monitor the convergence
of the posterior predictive density of the fourth eigenvalue. This is reported in the top two graphs of
Figure 9. ForM1 Early-stopping is performed at iteration 40 of the MCMC sampler. ForM2, global
convergence is achieved after 120 iterations, and this error keeps decreasing. The MCMC is allowed
to continue generating samples, meaning that the discretisation error is actually a lot smaller than
the requested tolerance γ. It is interesting to see that the convergence is much faster than for the
first parameter, whose convergence was studied in the previous subsection. This shows that for the
same inverse problem, the algorithm may spend more or less resources depending on the engineering
quantity of interest.
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Figure 9. Convergence of the KS distance as a function of the number of Monte-Carlo samples in each
chain. The (a,b) correspond to the inverse problem where only the first eigenfrequency is observed.
(c,d) corresponds to the case where the first three eigenfrequencies are observed. The quantity of interest
is the fourth eigenvalue, which is unobserved in both cases and must be inferred. The corresponding
posterior density is illustrated above the mesh pictogram. Interestingly, the data-poor problem (a,b)
can be solved appropriately with a coarse mesh, while the data-rich case (c,d) requires a much finer
grid to be solved accurately.

6.3. Uncertainty-Driven Error Control

Finally, the last set of results concerns Test 2. Here, remember that the three first eigenvalues are
used as measurements. We control the convergence of the fourth eigenvalue, which was controlled in
the context of Test 1 in the previous subsection. We see here that for meshM2, the posterior density
of the fourth eigenvalue is still far from convergence, whilst it was evaluated in a very precise way
in Test 1. This shows that the proposed error control algorithm automatically adapts to the level of
posterior uncertainty. Qualitatively, a wide posterior density is associated with a high uncertainty
concerning the value of QoIs. Consequently, the mesh does not need to be very refined to capture the
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posterior density correctly. Conversely, for Test 2, the posterior density is sharper, and similar levels of
discretisation errors have a much stronger impact on the KS distance.

7. Concluding Remarks and Discussion

We have presented a methodology to control the various sources of errors arising in finite-element
based Bayesian inverse problems. We have focussed on a simple numerical approximation chain
consisting of (i) a finite element discretisation of the continuum mechanics problem and (ii) a MCMC
solver to draw samples from posterior density distributions. So far we did not consider further
error sources such as that engendered by meta-modelling. We have showed that it was possible
to drive the mesh refinement process in a goal-oriented manner, by quantifying the impact of the
associated error onto posterior density distributions. In order to do so, we run two independent
MCMC simultaneously, one of them using a corrected likelihood function that takes the discretisation
error. Any a posteriori error estimate available for the PDE under consideration may be used to
obtain this correction. Of course, the accuracy (effectivity) of the chosen error estimate will impact the
accuracy of the methodology developed in this paper. The study and control of this effect will require
further research to be carried out,

We have shown that by using multiple replicates of the component-wise MCMC, it was
also possible to (i) derive bootstrap-based confidence intervals for the error in posterior densities
engendered by the spatial discretisation of the underlying PDE. Importantly, this approach allows us
to stop the MCMC iteration as soon as we can be sufficiently confident in the fact that the posterior
densities obtained with the current mesh are not accurate enough for our purpose. The approach is
goal-oriented: the adaptivity is performed in the sense of the posterior distribution of either some of
the latent parameters, or in the sense of the predictive posterior density of engineering QoIs. Finally,
we have shown that the approach is uncertainty driven: it will only refine the mesh and/or request
additional samples to be drawn by the MCMC algorithm if the effect on the QoIs can be felt when
measured using a statistical distance between their posterior densities. In particular, model updating
problems with wider priors tend to require less computational effort than parameter estimation
problems with very rich observed data and/or narrow prior densities. The proposed methodology
establishes a bridge between the field of reliability estimation for the sampling-based algorithms used
to solve probabilistic inverse problems, and the field of deterministic, goal-oriented finite element
error estimation.

Although the results presented in this paper are encouraging, the proposed approach has
shortcomings that need to be addressed in future research work. The error estimation procedure is
relatively wasteful for two reasons. Firstly, multiple MCMC algorithms need to run independently for
bootstrapping to be possible. These chains all exhibit their own burn-in phase, which increases the
amount of discarded samples. Secondly, the finite element error estimation procedure is not merely a
post-processing operation any longer; one cannot post-process the finite element results corresponding
to the uncorrected chain in order to compute the corrected likelihood. This is because both chains
are independent and require running the coarse finite element simulations at different points of the
parameter domain. Finally, let us acknowledge that Bayesian finite element inverse problems should
not be solved by a MCMC solver without constructing a surrogate model first. The number of finite
element computations involved, even if the proposal distribution is well designed, is in the tens of
thousands. We are currently investigating the use of Polynomial Chaos surrogates, which adds another
layer of numerical approximation that needs to be controlled in a robust and efficient manner. In this
context, an elegant approach to separate the sources of errors (i.e., Finite Element discretisation error
and Polynomial Chaos error) may be found in [55], which may constitute a solid starting point for the
next step of our investigations.
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