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Abstract: Porous liquid-phase-sintered SiC (L-SiC) ceramics were successfully fabricated by hot
press sintering (HP) at 1800 ◦C in argon, using Al2O3 and Y2O3 as oxide additions. By varying
the starting coarse SiC particle size, the relationships between pore microstructures and flexural
strength as well as gas permeability of porous L-SiC were examined. All the as-sintered samples
possessed homogeneous interconnected pores. The porosity of porous L-SiC decreased from 34.0% to
25.9%, and the peak pore size increased from 1.1 to 3.8 µm as the coarse SiC particle sizes increased.
The flexural strengths of porous L-SiC ceramics at room temperature and 1000 ◦C were as high
as 104.3 ± 7.3 MPa and 78.8 ± 5.1 MPa, respectively, though there was a decrease in accordance
with their increasing pore sizes and particle sizes. Moreover, their gas permeability increased from
1.4 × 10−14 m2 to 4.6 × 10−14 m2 with the increase of pore size in spite of their decreased porosity.

Keywords: silicon carbide; liquid phase sintering; porosity; microstructure; strength

1. Introduction

Porous SiC ceramics have been wildly investigated because of their excellent flexural strength,
superior chemical and thermal stability, outstanding thermal conductivity, low thermal expansion
coefficient, large specific surface area, excellent corrosion resistance, and so on [1–5]. Therefore, porous
SiC ceramics are potential materials to be applied in the energy and environment fields for uses such
as catalyst supports, gas burner media, high-temperature filters for flue-gas, and volumetric absorbers
of solar radiation [1,6–8], etc. In the previous reports, there are various studies on the fabrication
methods of porous SiC ceramics, including the recrystallization [9], foaming-gel casting [4,10–12],
gelation-freezing [13–15], in-situ reaction [16,17], sacrificing template [18], and sol-gel methods [19,20].
In these fabrication methods, most of the reported porous SiC ceramics were solid-state sintered
because of their better heat stability and corrosion resistance as a result of clear grain boundaries
and the strong bonding interface between SiC grains [4,10–12,14,15]. However, high sintering
temperature (up to 2200 ◦C) and high purity raw materials are the minimum requirements for the
fabrication of solid-state-sintered SiC (S-SiC), which directly increase production costs. Compared
with S-SiC ceramics, liquid-phase-sintered SiC (L-SiC) ceramics with oxide additions show lower
sintering temperatures and better mechanical strength. The liquid phase formed by the oxide
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between SiC particles can accelerate the sintering rate and effectively reduce sintering temperature to
1800–2000 ◦C [21].

In porous L-SiC ceramics, the liquid phase is formed around the low eutectic points of the oxide
additives and diffuses into the space between the grains [22]. During this process, small SiC particles
dissolving into the liquid phase quickly spread and are deposited on large particles. Subsequently,
the surface of SiC grains is covered and connected by the liquid phase [1,22]. Thanks to the partial
sintering and a tiny bit of oxide additions, the densification of sintered bodies is inadequate, and then
pores are successfully formed [23]. Earlier studies about porous L-SiC ceramics have mostly focused on
the types of additions such as silica [24,25], alumina [21], yttria [26], silicon nitride [27], mullite [28–30],
glass frit, cordierite [31], CeO2 [16], V2O5 [32], and so on. They have summarized the effects of starting
powders, additive amount, and sintering temperature on the microstructure of porous L-SiC ceramics,
which were all prepared by pressureless sintering. Hot press sintering (HP) of porous L-SiC ceramics
has not been studied yet.

In our work, porous L-SiC ceramics were prepared by HP using Al2O3 and Y2O3 as sintering aids.
Pore microstructures of the sintered samples were tailored through varying the size of introduced
coarse SiC powder. The dependence of key properties including flexural strength at room temperature
and high temperature as well as gas permeability on the porosity, pore size, and microstructure of
porous L-SiC ceramics were systematically investigated.

2. Experimental Details

2.1. Raw Materials

Commercial fine and coarse α-SiC powders (purity > 99%, Pingdingshan Yicheng New Material
Co., Henan, China) were graded and used as the main materials: Fine ones with average particle
sizes of ~0.5 µm, and three types of coarse ones with average particle sizes of ~7, ~15 and ~41 µm
respectively. The particle size distribution curves of coarse α-SiC powders are shown in Figure 1.
The Commercial Al2O3 powder (~1.5 µm, Fenghe Ceramic Co., Ltd., Shanghai, China) and Y2O3

powder (~0.8 µm, Dafeng Yuelong Chemical Co., Ltd., Yancheng, China) were added as sintering aids
for the porous L-SiC ceramic. Al2O3/Y2O3 powders were directly used without any treatment and
pre-mixed according to the mass ratio of 78:97 before the preparation of porous L-SiC ceramics.
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Figure 1. Particle size distribution curves of ~7, ~15, and ~41 µm α-SiC powders.

2.2. Processing

Fine SiC powders, coarse SiC powders, and the mixture of Al2O3 and Y2O3 powders were mixed
at the mass ratio of 10:90:6 in ethanol and milled with SiC balls for 4 h at 300 r·min−1 to prepare the
homogeneous suspension. After milling, the suspension was dried using an oven at 60 ◦C for more
than 12 h, crushed, and screened with a 100-mesh sieve. At last, the dried powder was placed in a
carbon mold and hot press sintered at 1800 ◦C for 2 h under a pressure of 30 MPa in argon. In the
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experiment, the particle size of coarse SiC powder was changed to control the microstructures of
prepared porous L-SiC ceramics. The samples containing ~7, ~15, and ~41 µm of coarse SiC powder
were marked as L7, L15, and L41, respectively.

2.3. Characterization

The immersion densities were measured using the Archimedes method in deionized water,
and the relative densities, porosities, and apparent porosities of samples were calculated according to
theoretical density. In addition, closed porosity can be gained by subtracting apparent porosity from
total porosity. The microstructure and morphology of porous L-SiC ceramics were observed with a
scanning electron microscopy (SEM, Phenom ProX, Phenom-World, Eindhoven, The Netherlands),
and pore size distribution was measured using mercury intrusion porosimetry (MIP, AutoPoreIV
9510, Micromeritics, Norcross, GA, USA). The Darcy nitrogen permeability was evaluated by a
Pore-size Distribution Analyzer (PSDA-20, GaoQ Functional Materials Co., Ltd., Nanjing, China),
and the specimens were processed into sheets with the thickness of 3 mm. The flexural strengths of
samples at normal temperature and 1000 ◦C were evaluated by a three-point bending test using a
computer-controlled electric universal testing machine (AGS-X, Shimadzu Corp., Kyoto, Japan) with a
cross-head speed of 0.5 mm·min−1 and a rising temperature rate of 200 ◦C·min−1. The geometrical
sizes of samples were 3 mm × 4 mm × 36 mm, and five samples of each composition were tested to
determine strength.

3. Results and Discussion

3.1. Pore Microstructures of Porous L-SiC Ceramics

Pore microstructure is a key influence factor of the properties of porous material. To study
the properties of porous L-SiC ceramics, it is necessary to consider the porosity, pore size,
and microstructure in advance.

The relative densities and porosities of porous L-SiC ceramics are listed in Table 1, and the pore
size distribution curves of porous L-SiC ceramics are shown in Figure 2. As the coarse particle size
increased from ~7 to ~41 µm, the total porosity decreased from 34.0% to 25.9%, and the apparent
porosity decreased from 33.5% to 25.8%. This could be ascribed to the filling of space between SiC
particles by fine particles owing to the wider size distribution of starting coarse SiC powder. As shown
in Figure 2, the peak pore size of the porous L-SiC ceramic increased from 1.1 to 3.8 µm with the
increasing size of coarse SiC particles from ~7 to ~41 µm. It indicated that pores with bigger sizes were
more likely to be filled or narrowed by the liquid phase during sintering. Moreover, the reduction in
the number of pores led to a decrease of total porosity. With the same weight ratio of coarse and fine
SiC particles, the samples with smaller sizes of coarse SiC particles had more pores because of the
greater number of formed interspaces between particles. Besides, all as-sintered samples exhibited low
closed porosities of ≤ 0.5%, illustrating excellent connectivity between the formed pores. In Figure 2,
the pore size distribution of the samples with bigger pore sizes was wider and presented two peaks,
which was probably induced as well by the wider particle size distribution of the raw coarse SiC
powder in Figure 1.

Table 1. The relative densities and porosities of porous L-SiC ceramics with different particle sizes of
initial coarse SiC powder.

Sample Relative Density (%) Total Porosity (%) Apparent Porosity (%) Closed Porosity (%)

L7 66.0 34.0 33.5 0.5
L15 70.1 29.9 29.8 0.1
L41 74.1 25.9 25.8 0.1
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coarse SiC powder.

Figure 3 shows the microstructures on the cross section of as-acquired samples. Uniformly
distributed pores were successfully formed in the porous L-SiC ceramic. With the increase of the coarse
SiC particle size, an increase in pore size could be observed apparently in Figure 3a–c, which coincided
well with the result of the pore size distribution in Figure 2. At 1800 ◦C, Al2O3 and Y2O3 were melted
into a liquid state and accumulated around the SiC particles, especially near the point of contact
between the two particles. In Figure 3d–f, the necks between the SiC grains were formed in all the
samples which contributed to the mechanical properties of the porous ceramics. It was commonly
observed that the samples with small pores possessed relatively smooth pore walls while the samples
with big pores had a large number of irregular pores. Accordingly, it was possible to control the
pore microstructure of the porous L-SiC ceramic by changing the particle size of the initial coarse
SiC powder.
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3.2. Flexural Strengths of Porous L-SiC Ceramics

Figure 4 shows the flexural strength of porous L-SiC ceramics introduced by different particle sizes
of coarse SiC powder at normal temperature and at 1000 ◦C in argon. For sample L7 with a porosity of
34.0%, its flexural strength at normal temperature was as high as 104.3 ± 7.3 MPa and pretty close to
Zhao’s result (103 MPa) with the porosity of 35.7% [1], which has the highest flexural strength under the
conditions of almost the same porosity compared to the previous studies. Moreover, with the increase
of coarse particle sizes, there is a decrease in flexural strength due to the small interparticle-bonding
area and irregularity in the pore shape. According to Bukhari’ study [33], small bonding areas between
SiC grains formed by the initial powder with the larger particle size reduced the flexural strength of
the porous L-SiC ceramic. Figure 5 shows the difference of the neck structures of the porous L-SiC
ceramics respectively from small and big SiC particles. Using the same amount of additions, the pores
formed between the small particles had smooth continuous pore walls and were shaped like spherical
spaces (seen in Figure 3a,c). However, the irregular pores formed between the big particles possessed
many points of contact where the concentration of stress appeared during the deformation under the
bending test, directly leading to a decrease in flexural strength. Moreover, an increase in pore size
would also decrease the strength of the porous L-SiC ceramics [4].
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Figure 5. Schematic illustration of the sintering neck in porous L-SiC ceramics from (a) small particles
and (b) large particles.

At the temperature of 1000 ◦C, the flexural strengths of porous L-SiC ceramics also decreased
with the increase of coarse particle size. The flexural strengths of L7 (78.8 ± 5.1 MPa), L15 (59.0 ±
15.2 MPa), and L41 (35.0 ± 7.7 MPa) at 1000 ◦C were about 76%, 69%, and 78% of those at room
temperature, respectively. A slight decline in high-temperature strength was mainly attributed to the
softening of the neck between particles formed by liquid phase sintering and probably the rapidly
rising temperature rate (200 ◦C·min−1) during the test procedure.
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3.3. Gas Permeability of Porous L-SiC Ceramics

Considering the above-mentioned applications of porous SiC ceramics, such as catalyst supports,
gas burner media, high-temperature filters and so on, gas permeability is the key property used to
measure their work efficiency. Figure 6 shows the dependence of flow-rate on nitrogen pressure and
coarse particle size. The porous L-SiC ceramic with the coarse particle size of ~41 µm presented the
sharpest increase in flow rate with the rising of nitrogen pressure, indicating that it had relatively
high gas permeability (4.6 × 10−14 m2). The slopes of the flow-rate indicated a gradual decrease in
gas permeability of the porous L-SiC ceramic with a decreased particle size of the coarse SiC. The gas
permeabilities of L7 (1.4 × 10−14 m2) and L15 (2.5 × 10−14 m2) were 70% and 46% lower than that of
L41. The gas permeabilities of porous L-SiC ceramics were associated with pore microstructures and
their relationship can be described according to the following Carman-Kozeny’s equation:

µ =
PeD2

16 fCKτ2 (1)

where Pe is effective porosity, D is pore size, f CK is Carman-Kozeny coefficient, and τ is the tortuosity
of the pore. According to Equation (1), gas permeability is in direct proportion to the square of the pore
size and the efficient porosity. In other words, the gas permeability was enhanced by the increased pore
size and reduced by decreased efficient porosity. In this study, pore size and apparent porosity were
the main influence factors on gas permeability of porous L-SiC ceramics due to their small difference
in tortuosity. The result suggested that the gas permeability of porous L-SiC ceramics were in the order
of µL41<µL15<µL7, owing to the bigger numerical change ratio of the peak pore size from 3.8 µm to
1.1 µm than that of apparent porosity from 33.5% to 25.8%.
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4. Conclusions

Porous L-SiC ceramics with excellent flexural strengths at normal and high temperature were
fabricated using hot press sintering with Al2O3 and Y2O3 powder as the oxide additions. The pore
microstructures and properties of porous L-SiC ceramics were tailored by altering the particle sizes
of coarse SiC powders. Porous L-SiC ceramics with interconnected pores exhibited the total porosity
of 25.9%–34.0%. The peak pore size of samples ranged from 1.1–3.8 µm with the increased coarse
particle size. For the porous L-SiC ceramic with the coarse particle size of ~7 µm, the flexural strength
was as high as 104.3 ± 7.3 MPa at normal temperature and 78.8 ± 5.1 MPa at 1000 ◦C. The decrease
in flexural strength with the increase of coarse particle size was attributed to the bigger pore size
and the concentration of stress around the contact point of the irregular pores. Moreover, the porous
L-SiC ceramic with the bigger peak pore size of 3.8 µm presented outstanding gas permeability of
4.6 × 10−14 m2, even though the apparent porosity was only 25.8%. Owing to the good strength and
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high permeability of the as-prepared porous L-SiC ceramics, they showed commercial application
potential as filters, membrane supports, and so on.
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