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Abstract: The adhesion bonding between asphalt and aggregate significantly influences field
performance and durability of asphalt pavement. Adhesion promoters are typically used to improve
asphalt-aggregate bonding and minimize moisture-related pavement damage, such as cracking and
raveling. This study evaluated the effectiveness of plant ash byproduct as adhesion promoter to
improve asphalt-aggregate adhesion performance. Three commonly used aggregate types (granite,
basic rock, and limestone) and two asphalt binder types were used in laboratory testing. A modified
stripping test method was developed to evaluate test results with image analysis and measurement
of asphalt film thickness. The contact angle test and scanning electron microscopy (SEM) with
energy disperse spectroscopy (EDS) were conducted. Test results showed that plant ash lixivium
significantly improved asphalt-aggregate adhesion. Among three aggregate types, granite yielded
the worst asphalt-aggregate adhesion for both control and treated specimens. The effectiveness of
adhesion promotion varied depending on the type of asphalt or aggregate and temperature. The
SEM/EDS observations showed that the mesh-like crystalline was formed at the interface between
asphalt binder and aggregate in the treated specimen, which was believed to enhance the interfacial
bonding and prevent asphalt film peeling off from aggregate.

Keywords: asphalt-aggregate adhesion; plant ash lixivium; stripping test; contact angle; interfacial
transition zone

1. Introduction

The adhesion strength of asphalt binders is an important parameter for durability of asphalt
pavements. Poor bonding effect between asphalt binder and aggregate has long been identified
as a major cause leading to accelerated damage of asphalt pavement [1]. When asphalt film starts
peeling off from aggregates, the asphalt-aggregate adhesion strength is greatly reduced and results
in debonding at the asphalt-aggregate interface [2,3]. Many previous studies have found that the
damages of asphalt pavements including cracking, raveling, and permanent deformation are related to
the degradation of asphalt-aggregate adhesion strength [4–7]. Therefore, to increase asphalt-aggregate
adhesion strength and eventually improve the performance and durability of asphalt pavement
systems, better understanding of the bonding mechanism and microstructure of asphalt-aggregate
interface is needed [8,9].

The adhesion strength of asphalt-aggregate interface consists of three components: (1) physical
bonding from mechanical interlocking, (2) physicochemical adhesion caused by surface free energy, and
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(3) bonding due to interfacial chemical reactions [10]. To improve asphalt-aggregate bonding, various
adhesion promoters (also called anti-peeling agents) have been evaluated, such as fatty amines, organic
amines, and nano admixtures [6,11–13]. Previous studies have found that polymer materials such
as Styrene-Butadiene-Styrene (SBS), Ethylene-Vinyl-Acetate (EVA), and crumb rubber can improve
moisture susceptibility of asphalt mixtures [14,15]. The promotors enhance the adhesion strength by
adjusting surface energy of aggregate or forming chemical bonds between asphalt and aggregate [16].
However, most interface bonding promoters are slaked lime-based products, which are strong alkaline
materials and may have adverse effects on the performance of asphalt mixtures. The previous studies
mainly focused on application and evaluation of asphalt antistripping promoters (SBS, EVA, etc.) [17].
However, relatively few studies focused on evaluation of the effectiveness aggregate-promoters.

Plant ashes are byproducts from burning wheat straw, rice straw, wood straw, and corn cobs.
Recent literatures reported the utilization of plant ashes (e.g., rich husk ash) in asphalt [18,19], so
that the plant ash modified asphalt-based materials achieved good engineering performance. If the
plant ashes were immersed in water, a large amount of alkaline substances (i.e., KOH, Ca(OH)2) could
be released, which has the potential to enhance the asphalt-aggregate adhesion. The main chemical
compositions of plant ashes are SiO2, K2O, CaO, SO3, MgO, Na2O, Fe3O4, Al2O3, and TiO2 [20].
However, the exact chemical compositions of plant ash lixivium vary depending on different raw
materials (i.e., wheat straw, rice straw, wood straw, and corn cobs) [21–24]. The alkaline lixivium
has great potential to modify the interface between asphalt and aggregate. In this study, plant ash
lixivium was proposed to improve the asphalt-aggregate interface adhesion, which is rarely reported
in previous literatures.

The asphalt film stripping test (also called water-boiling test) is a conventional method used to
evaluate the adhesion strength of asphalt [25,26]. The test is widely used due to its simple operation
procedure. The specimens after boiling are visually classified based on five-level criteria, which are not
quantified criteria and could be subjective. Recently, image analysis method was concerned to provide
quantitative evaluation of rolling bottle test instead of visual observation only [27]. Hence, the image
analysis was combined with the traditional test in this study to investigate the effectiveness of plant
ash treatment on interface bonding. In addition, advanced tests including contact angle test, SEM, and
EDS were conducted to evaluate how the plant ash lixivium influence asphalt-aggregate adhesion by
directly observing the microstructures of asphalt-aggregate interface zone. The observations can help
explain the physicochemical adhesion mechanism of asphalt-aggregate system.

2. Testing Materials

2.1. Asphalt Binder and Aggregate

Two petroleum asphalts binders were used in this study, which were classified as #90A and #110A
according to penetration test values. The basic rheological properties of two binders are provided in
Table 1. The penetration, softening point, and ductility were measured based on ASTM-D5, ASTM-D36,
and ASTM-D113 standards, respectively [28–30].

Table 1. Basic rheological properties of two asphalt binders.

Asphalt Types Penetration at 25 ◦C/0.1 mm Softening Point/◦C Ductility at 15 ◦C/cm

#90 grade A petroleum asphalt 88.2 45.6 >100

#110 grade A petroleum asphalt 107 44.8 >200

In this study, three types of aggregates (i.e., granite, basic rock, and limestone) were selected.
For different types of aggregates, the base number and surface electrical potential related to adhesion
characteristics were reported in the literature [31], as shown in Table 2.
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Table 2. The base number and surface potential of aggregates [31].

Aggregate Types Granite Limestone Basic Rock

Base number 0.55 0.96 0.65

Surface potentials /mV −0.31 0.62 0.04

2.2. Plant Ash Lixivium

The fresh plant ash used in this study was the remnant after burning rice straw, wheat straw,
wood, or corn cob. The plant ash was sieved through 0.3-mm sieve and dried in oven. The dried
plant ash was then mixed with deionized water (pH = 6.7 at 20 ◦C) and stirred for 2 mins. In the
mixed suspension liquid, the plant ash released alkaline ions, which could change the pH value of
the suspension. In this study, five testing specimens with different ash-to-water (A/W) mass ratios
were prepared in 500-mL glass beakers, as shown in Figure 1. After 30 min defecation, the lixiviums as
presented below are filtered with filter papers.
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The pH values of suspensions were measured at 0.5, 1, 2, 5, and 10 min after stirring with the
beginning of pH = 6.7 (deionized water). Figure 2 presents the changes of suspension’s pH value from
stirring. The result indicated that the higher ash/water ratio yielded the higher final pH values as
shown in Figure 2a. The changing trends of pH values for different suspensions were found to be
similar, which showed rapid increase in the first 150 s and then remained with the relatively constant
values. However, the pH value of the suspensions with high ash-water ratio increased at a faster rate
than those with low ash-water ratios, and yielded higher final pH values.

In solutions, the H+ and OH− ions concentration can be calculated based on the pH value because
pH = −lg(H+) = 14 − lg(OH−). It seems the ions leaching from the plant ash could be calculated based
on the pH data in Figure 2. However, in this study the solution contains K2CO3, KHCO3, KOH, KCl,
and K2SO4 et al. It is hard to calculate the content of average ions released during the leaching, because
KCl and K2SO4 rarely contributes to the pH value. However, the pH increasing must be linked to ion
release, be they positive ions (K+, H+) or negative ions (OH−, Cl−, CO3

2−, HCO3
−, SO4

2−) in this
study. Hence, the increased pH values were divided by time, as shown in Figure 2b. Thereby, the
higher pH value increased means the higher ions releasing rate. The results declared that the leaching
process of ions from plant ash could be divided into three stages: (1) Stage I: 0–60 s when a large
amount of ions are released depending on the ash/water ratio; (2) Stage II: 60–300 s when the ion
releasing rate is significantly slowed; and (3) Stage III: >300 s when fewer ions could be released in
plant ash lixivium.

The relationship between the final pH values and the ash-water ratios of the suspensions was
found to be nonlinear, as shown in Figure 3. The final pH value of the suspension greatly increased
as the ash-water ratio increased from 0.02 to 0.075. Therefore, in this study, the plant ash lixivium
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was prepared using the ash/water ratio of 0.075, and the solution was defecated for 30 mins and then
filtered using filter papers with 120 µm opening.
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3. Adhesion Evaluation Using Conventional and Modified Stripping Tests

3.1. Conventional Stripping Test

The conventional stripping test (ASTM D3625) used to evaluate asphalt-aggregate adhesion
was conducted on aggregates with particle sizes ranging from 13.2 mm to 19 mm. In this study, the
stripping test was conducted on three types of aggregates (granite, limestone, and basic rock). The
specimens were soaked in the plant ash lixivium for one hour and then dried in oven at 80 ◦C for two
hours. The control specimens were prepared following the same procedure except that the aggregates
were not soaked in the plant ash lixivium solution. To reduce the effect of asphalt film thickness, all the
specimens were coated with asphalt binder by immersing aggregates in liquid asphalt for 45 seconds,
and then hanged at room temperature for 15 mins to remove extra free binder. Then the specimens
were boiled in water for 6 mins.

After boiling, the test specimens were visually classified based on the following criteria:
Level 1: The asphalt film is completely moved by water. The removed asphalt binder is floating

on water surface, and the aggregate is barely covered.
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Level 2: Most of asphalt film is moved by water. The area of exposed aggregate is more than 30%
of the total surface area of the specimen.

Level 3: The asphalt film can be moved by water, but most of the asphalt binder is preserved on
the surface of the aggregate. The area of exposed aggregate is less than 30% of the total surface area of
the specimen.

Level 4: The asphalt film is barely moved by water, but the thickness of asphalt binder is uneven.
The area of exposed aggregate is less than 10% of the total surface area of the specimen.

Level 5: The asphalt film is intact, and the area of exposed aggregate is close to 0% of the total
surface area of the specimen.

The conventional test results showed that the lixivium treatment can increased the adhesion
bonding of different types of aggregates by increasing the rating at least one level, as shown in Figure 4.
For the #90 asphalt, the adhesion performance of asphalt-limestone and asphalt-basic rock were similar,
but the asphalt-granite interface showed less adhesion bonding. For the #110 asphalt, basic rock
showed the best anti-stripping performance as compared to granite and limestone. In general, basic
rock and limestone have better anti-stripping performance as compared to granite. It is inconclusive
on the effect of asphalt type on adhesion performance due to the unknown information on chemical
components of asphalt and the complex nature of asphalt-aggregate adhesion. Regardless of the asphalt
or aggregate type, the effectiveness of lixivium treatment on anti-stripping was found significant. The
improvement in asphalt-aggregate adhesion can also be visually observed with the appearance of
aggregate after the stripping test, as shown in Figure 5.
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Figure 4. Asphalt-aggregate adhesion level based on stripping test: (a) #90 asphalt and (b) #110 asphalt
(samples without treated were marked as control group, while the ones soaked with plant ash lixivium
were marked as experimental group).
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Figure 5. Visual observation of granite aggregates after stripping test: (a) #90 asphalt (control); (b) #90
asphalt (treated); (c) #110 asphalt (control); and (d) #110 asphalt (treated).
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It is noted that the conventional stripping test results determined using the five-level criteria are
influenced by subjective ranking and test procedure. The conventional stripping test does not provide
further comparisons between the asphalt-aggregate interfaces having the same peeling-off grade.

3.2. Modified Stripping Test with Image Analysis

3.2.1. Adhesion Ratio and Asphalt Film Thickness

The conventional stripping test was modified by using image analysis to quantitatively analyze
test results. The conventional stripping test requires that the aggregate size should be between
13.2 mm and 19 mm. In the modified stripping test, the asphalt binder was coated on the surface
of flat rectangular specimens that were cut from larger aggregates. The surface areas of rectangular
specimens were found to be close to those of the spheres with approximately 18.5-mm diameter. The
ranges of surface areas and the calculated equivalent sphere diameters of aggregates are shown in
Table 3.

Table 3. The surface area and equivalent particle size of used rectangular aggregates.

Aggregate Calculated Surface Area/mm2 Equivalent Sphere Diameter/mm

Min Max Average

Granite 976.37 1172.78 18.48

Basic rock 965.66 1145.95 18.32

Limestone 1032.01 1168.71 18.71

To evaluate the specimens, two parameters were defined responding to two situations. For the
specimens with aggregate surface exposure after boiling process, the adhesion ratio was defined as
the ratio of the non-exposed area in the specimen surface to its total surface area, which could be
determined using image analysis. For the specimens without aggregate surface exposure after boiling
process, the thickness of asphalt film was used to evaluate the adhesion performance.

Figure 6 shows the appearances of testing specimens after the stripping test. It was found that
more asphalt film was peeled off from the control specimens as compared to the treated specimens.
To quantify the adhesion performance, photos were taken on the front and back surfaces after
the stripping test. A series of image processing techniques, including contrast enhancement and
thresholding, were performed to convert the original photos to binary images, as shown in Figure 7.
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Based on the binary images, the surface areas of asphalt binder (black) and the exposed area of
aggregate specimen (white) can be determined. Therefore, the adhesion ratio was calculated using
Equations (1) and (2).

ηs =

n
∑

i−1
ηi

n
(1)

ηi =
Xb

Xw + Xb
(2)

where ηs is the adhesion ratio (opposite to peeling off ratio); ηi is the adhesion ratio of surface i of the
specimen; n is the total number of surfaces of the specimen (n = 2 for the specimens); and Xw and Xb
are the total number of white and black pixels in the binary image, respectively.

For the specimen without asphalt film peeling off, the average thickness of coated aggregate was
measured by the caliper and glass slides, as show in Figure 8. The glass slides were slightly compressed
until the asphalt film contacted with the glass slides completely. The asphalt film thickness (δ) on
specimen could be calculated using Equation (3).

δ =
δa − δs − (δg1 + δg2)

2
(3)

where δa is the total thickness of specimen with glass slides (mm); δs is the thickness of the specimen
without asphalt film (mm); and δg1 and δg2 are the thickness of the glass slides (mm).
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3.2.2. Adhesion Performance Results

The test results show that the specimens with granite showed exposed aggregate surface after
boiling process, while the specimens with basic rock and limestone were still fully covered by asphalt
film. The image analysis results of the granite aggregate specimen with different asphalt binders are
presented in Figure 9. The adhesion and stripping ratios clearly showed that the treatment using
plant ash lixivium improved adhesion performance significantly for both #90 and #110 asphalt binder.
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For instance, the stripping ratio of granite-asphalt (#90) was reduced from 27.95% to 2.67%. At the
same time, the stripping ratio of granite-asphalt (#110) changed from 32.89% to 2.74%.
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Figure 9. The adhesion and stripping ratios of granite specimen after modified stripping test: (a)
control specimen with #90 asphalt; (b) treated specimen with #90 asphalt; (c) control specimen with
#100 asphalt; and (d) treated specimen with #110 asphalt.

For specimens with basic rock and limestone, the conventional stripping test cannot compare
the effects of treatment for basic rock and limestone specimens, because they both ranked at level 5.
Hence, the modified stripping was developed providing quantitative index for adhesion performance
evaluation in this case. In the modified stripping test, the thicknesses of asphalt film before and after
the boiling process could be calculated. Table 4 presents the asphalt film thickness and the relative
improvement for basic rock and limestone treated with plant ash lixivium, respectively. In general, the
treatment of plant ash lixivium increased asphalt film thickness on aggregate surface after boiling. The
treatment showed relatively higher effectiveness for the #110 asphalt in terms of the increasing ratio of
asphalt film thickness. However, no consistent trend was observed for comparing the effectiveness of
treatment on adhesion performance between basic rock and limestone. This is probably due to the
complex mineral compositions of aggregates.

Table 4. The measured asphalt film thickness on aggregates and relative improvement.

Material

Average Thickness of Asphalt Film (mm)

#90 Asphalt #110 Asphalt

Control Treated
Specimen

Improvement
Ratio Control Treated

Specimen
Improvement

Ratio

Basic Rock 0.22 0.32 45.5% 0.18 0.30 66.7%

Limestone 0.20 0.30 50.0% 0.16 0.26 62.5%
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4. Contact Angle Test

The contact angle test is typically used to determine the balance state of three phases (solid-gas,
liquid-gas, and solid-liquid) based on surface free energy theory [29–34]. The asphalt-aggregate
adhesion effect was evaluated using contact angle test in this study.

The interfacial intersection of solid-liquid surface and gas-liquid surface was defined as contact
angle (θ), as shown in Young’s function defined in Equation (4). As shown in Equations (5)–(7), the
work of adhesion (defined as Wa), work of infiltration (defined as Wi), and spreading coefficient
(defined as S) increased with the reduction of contact angle (defined as θ), respectively. Hence, the
contact angle can be used to indicate the adhesion performance between asphalt and aggregate.

γs-g − γs-l = γl-g cos θ (4)

Wa = γs-g + γl-g − γs-l = γl-g(cos θ + 1) (5)

Wi = γs-g − γs-l = γl-g cos θ (6)

S = γs-g − γs-l − γl-g = γl-g(cos θ − 1) (7)

where, γs-g is the interfacial tension of solid-gas interface; γs-l is the interfacial tension of solid-liquid
interface; γl-g is the interfacial tension of liquid-gas interface, which is unknown but can be assumed
as a unit because of the invariant air and liquid phases in this study; and θ is the contact angle.

In this study, the contact angle of asphalt-aggregate surfaces was measured using the device of
OCA20 (produced by Dataphysics Group, Germany), as shown in Figure 10. The #90 asphalt was
dropped onto the flat surface of rectangular-shape aggregate prepared using the same procedure
described above, including washing and cutting to minimize the influences of aggregate surface
roughness. The specimens were cured under 25 ◦C and 100 ◦C for 6 min, and then set under room
temperature for 24 h before testing. In this study, a total of 12 aggregate specimens with 36 asphalt
drops were tested.
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The contact angle of each specimen was determined based on the images collected by the contact
angle tester (OCA20, Dataphysics, Germany), as shown in Table 5. The results show that the contact
angles of different specimens ranged between 90◦ and 180◦, which indicates the weak adhesion at
asphalt-aggregate interface in general. The smaller contact angle indicates the stronger adhesion at
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asphalt-aggregate interface. The specimens treated with plant ash lixivium had smaller contact angle
than the control specimens, especially at 100 ◦C.

Table 5. The test results of contact angles for different aggregates with #90 asphalt.

Aggregate Types Control Samples Treated Samples

100 ◦C 25 ◦C 100 ◦C 25 ◦C

Granite 128◦ 141◦ 109◦ 140◦

Basic rock 114◦ 141◦ 100◦ 139◦

Limestone 115◦ 143◦ 95◦ 136◦

For the aggregate-asphalt interface, the greater adhesion work (Wa) needed for separating
asphalt from aggregate indicates the stronger interfacial bonding between asphalt and aggregate.
The calculated results of adhesion work for three aggregates with the #90 asphalt are presented in
Figure 11. It is noted that the effect of plant ash lixivium should be based on the comparison of work
of adhesion at the same temperature. The comparison of work of adhesion at different temperatures is
not meaningful since the values of γl-g, γs-l, and γs-g in Equations (5)–(7) are dependent on temperature.
Therefore, the improvement ratio after the treatment of plant ash lixivium were calculated and used to
evaluate the effect of temperature on treatment effectiveness.
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The test results showed that the plant ash lixivium could increase adhesion work of
asphalt-aggregate interface under both temperatures. For example, the adhesion work between
limestone and asphalt increased from 0.202γl-g to 0.281γl-g at 25 ◦C, and from 0.579γl-g to 0.909γl-g
at 100 ◦C. This means that the moisture invading process at the asphalt-aggregate interface could be
delayed or prevented due to the stronger interface adhesion after treated by plant ash lixivium.

As compared to the control specimens, the improvement ratios of adhesion work for the treated
specimens with granite, limestone, and basic rock were plotted in Figure 11c. It can be concluded from
the improvement ratio that high temperature, i.e., 100 ◦C, can promote the modification of plant ash
lixivium treatment. The reason could be that asphalt become softer at relative high temperatures, and
thus can flow into minor cracks or surface cavities at aggregate surface and fully coat the aggregate.
In the meanwhile, the chemical reaction between asphalt and aggregate might become stronger at
higher temperatures; but more evidence is needed to support this point.

5. Microstructure Analysis with SEM and EDS

SEM was used to observe the microstructure and element composition at the asphalt-aggregate
interface using the SEM device (JSM-6390A produced by JEOL, Japan). The flat rectangular specimens
of the modified stripping test specimens were cut into smaller sized specimen for SEM analysis. The
hot asphalt (0.3–0.5 µL) was dropped on the control and treated aggregates, and then dried at 135 ◦C
for 20 mins and cooled down to room temperature (25 ◦C) to reach steady shape. Before SEM and EDS
measurements, the upper surfaces of specimens were coated with a thin layer of platinum film (5nm).
The specimens with coated surfaces prepared for SEM/EDS analysis are shown in Figure 12.
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Figure 12. Specimens for scanning electron microscopy (SEM) with energy disperse spectroscopy (EDS)
measurements: (a) control; (b) treated specimen; and (c) observation locations at one specimen (A,
B, C).

The boundaries between asphalt droplet and aggregate can be clearly identified, which was
the light ring around the black asphalt droplet as shown in Figure 12c. For SEM/EDS analysis, the
zone close to the asphalt-aggregate boundary was divided into three areas: Area A is the uncovered
aggregate; Area B is the boundary between aggregate and asphalt; and Area C is the boundary between
the light ring and the black asphalt droplet.

The comparison of aggregate surface images between the control and treated specimens are
shown in Figure 13a,d, respectively, for A/B/C areas. It can be observed that the surface of treated
aggregate has higher micro-texture that can increase surface area and thus enhance adhesion strength
of asphalt-aggregate. Figure 13b and e show the clear boundary of interfacial transition zone (ITZ)
between aggregate and asphalt after treatment. The thickness of ITZ was found in the range of 5–20 µm
for asphalt mixture [35]. However, the ITZ of treated specimens was extended with the blurry zone,
as shown in Figure 13e. The SEM images of asphalt binder surface in control specimens and treated
specimens are shown in Figure 13c,f. A large amount of mesh crystallized substances were found in
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the treated specimens, which could increase the physiochemical effect between asphalt and aggregates.
Figure 13f showed that new crystalline products were observed.
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Figure 13. SEM images on aggregate surface, aggregate-asphalt interface, and asphalt surface of (a–c)
control samples and (d–f) treated samples.

The SEM analysis showed that there were feather-like, needle-like, and square crystals on
aggregate surfaces (Figure 14). In these images, the locations of 004, 022, and 023 at different
crystals (as shown in Figure 14) were scanned by EDS, and the element composition was presented in
Table 6. Although the component compositions of each burning plant ash were different, the main
crystallizations of calcination were the same [22]. According to previous literature [21,22,24], the oxide
compositions of the main chemical components of plant ash were SiO2, K2O and CaO, while the main
crystalline compounds were generally K2CO3, KHCO3, K2SO4, KCl, and SiO2, et al. The SiO2 is an
insoluble component and K2SO4 and KCl are neutral salts. However, K2CO3 and KHCO3 can be
ionized following Equations (8)–(10), which can explain that the pH value of the suspensions with
plant ash lixivium increased over leaching time (Figure 2).

K2CO3 + H2O↔ 2K+ + HCO−3 + OH− (8)

KHCO3 ↔ K+ + HCO−3 (9)

HCO−3 + H2O↔ H2CO3 + OH− (10)



Materials 2019, 12, 605 13 of 16
Materials 2018, 11, x FOR PEER REVIEW  13 of 16 

 

  
(a) (b) 

Figure 14. Observed crystal substances: (a) feather-like and (b) needle-like and square shape. 

At the observed positions (004, 022, and 023 point) in Figure 14, the atom fraction and mass 
fraction of elements of K, S, Cl, O, and C are shown in Table 6. It should be noted that the content of 
C and O could not be accepted because of the signal noise from air (including O2 and CO2). At the 
same time, there was no Ca element observed on specimen’s surface. It indicates that in the lixivium 
solution the main positive ion is K+. The following reasons may explain this phenomenon: (1) the 
lower solubility of Ca(OH)2 (1.65 g/L) than that of KOH (1120 g/L); (2) the CaO is sourced from CaCO3 
which is rarely dissolved in water; and (3) there may be no calcium salts in the ashes. The results 
suggest that in fact the alkalization of aggregates by the plant ash lixivium treatment is mainly 
contributed by the ionization of K2CO3 and KHCO3. The alkalization promotes the higher adhesion 
between aggregate and asphalt binder. 

Table 6. The energy disperse spectroscopy (EDS) analysis results of different crystals on aggregate 
surface. 

Location Index C O S Cl K 

004 point 
Mass/% 21.87 2.47 4.78 30.64 40.25 

Atom/% 45.32 3.84 3.71 21.51 25.62 

022 point 
Mass/% 5.59 26.33 17.39 -- 50.69 

Atom/% 11.78 41.67 13.73 -- 32.82 

023 point 
Mass/% -- -- -- 46.69 53.31 

Atom/% -- -- -- 49.14 50.86 

Based on the distribution of K, S, and Cl elements, it was concluded that there was no KCl at 022 
point and no K2SO4 at 023 point because S and Cl elements were not detected, respectively. Further, 
the element ratios of Cl/K and S/K detected by EDS were plotted in Figure 15, indicating the phase of 
KCl, K2SO4, and K2CO3/KHCO3. It was found that only KCl was present at point 023. The main phase 
at point 022 was K2SO4, with small content of K2CO3/KHCO3. At point 04, the mixture of KCl, K2SO4, 
and K2CO3/KHCO3 was found. 

Figure 14. Observed crystal substances: (a) feather-like and (b) needle-like and square shape.

Table 6. The energy disperse spectroscopy (EDS) analysis results of different crystals on
aggregate surface.

Location Index C O S Cl K

004 point Mass/% 21.87 2.47 4.78 30.64 40.25

Atom/% 45.32 3.84 3.71 21.51 25.62

022 point Mass/% 5.59 26.33 17.39 – 50.69

Atom/% 11.78 41.67 13.73 – 32.82

023 point Mass/% – – – 46.69 53.31

Atom/% – – – 49.14 50.86

At the observed positions (004, 022, and 023 point) in Figure 14, the atom fraction and mass
fraction of elements of K, S, Cl, O, and C are shown in Table 6. It should be noted that the content of
C and O could not be accepted because of the signal noise from air (including O2 and CO2). At the
same time, there was no Ca element observed on specimen’s surface. It indicates that in the lixivium
solution the main positive ion is K+. The following reasons may explain this phenomenon: (1) the
lower solubility of Ca(OH)2 (1.65 g/L) than that of KOH (1120 g/L); (2) the CaO is sourced from
CaCO3 which is rarely dissolved in water; and (3) there may be no calcium salts in the ashes. The
results suggest that in fact the alkalization of aggregates by the plant ash lixivium treatment is mainly
contributed by the ionization of K2CO3 and KHCO3. The alkalization promotes the higher adhesion
between aggregate and asphalt binder.

Based on the distribution of K, S, and Cl elements, it was concluded that there was no KCl at 022
point and no K2SO4 at 023 point because S and Cl elements were not detected, respectively. Further,
the element ratios of Cl/K and S/K detected by EDS were plotted in Figure 15, indicating the phase
of KCl, K2SO4, and K2CO3/KHCO3. It was found that only KCl was present at point 023. The main
phase at point 022 was K2SO4, with small content of K2CO3/KHCO3. At point 04, the mixture of KCl,
K2SO4, and K2CO3/KHCO3 was found.
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Figure 15. Element ratio based on analysis of EDS data.

6. Conclusions

In this study, plant ash lixivium was used to improve adhesion performance of three commonly
used aggregates for asphalt mixtures. To evaluate the improvement of interface adhesion, the
conventional stripping test was modified with image analysis of test results. The modified stripping
test results showed plant ash lixivium can effectively prevent peeling of asphalt binder from aggregate.
Among three aggregate types, granite yielded the worst asphalt-aggregate adhesion for both control
and treated specimens. The treatment effectiveness of plant ash lixivium varied depending on the type
of asphalt and aggregate.

The contact angle test and SEM/EDS analysis were conducted to analyze adhesion work and
microstructure of aggregate-asphalt interfaces. The contact angle test revealed that plant ash lixivium
increased work of adhesion of asphalt-aggregate interface, especially at high temperatures. The
observations with SEM and EDS indicated that there were chemical interactions between asphalt and
aggregate after the aggregate was treated with plant ash lixivium; three crystalline products were
observed at the interface of asphalt and aggregate. The study findings prove the potential of using
plant ashes to enhance the moisture resistance of asphalt mixtures in practical applications.
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