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Abstract: There is strong interest in developing high-frequency (HF) supercapacitors or electrochemical
capacitors (ECs), which can work at the hundreds to kilo hertz range for line-frequency alternating
current (AC) filtering in the substitution of bulky aluminum electrolytic capacitors, with broad
applications in the power and electronic fields. Although great progress has been achieved in the
studies of electrode materials for ECs, most of them are not suitable to work in this high frequency
range because of the slow electrochemical processes involved. Edge-oriented vertical graphene (VG)
networks on 3D scaffolds have a unique structure that offers straightforward pore configuration,
reasonable surface area, and high electronic conductivity, thus allowing the fabrication of HF-ECs.
Comparatively, highly conductive freestanding cross-linked carbon nanofibers (CCNFs), derived from
bacterial cellulose in a rapid plasma pyrolysis process, can also provide a large surface area but free of
rate-limiting micropores, and are another good candidate for HF-ECs. In this mini review, advances in
these fields are summarized, with emphasis on our recent contributions in the study of these materials
and their electrochemical properties including preliminary demonstrations of HF-ECs for AC line
filtering and pulse power storage applications.

Keywords: vertical graphene; cross-linked carbon nanofiber; high-rate supercapacitor; AC filtering;
pulse power storage

1. Introduction

Of the different dielectric based electrostatic capacitors, aluminum electrolytic capacitors (AECs)
have large capacitance densities, commonly used for power related filtering applications such as
line-frequency AC filtering, noise decoupling and filtering, direct current (DC) link circuits for
variable-frequency drives, pulse power storage and generation, for which, the requirement of frequency
response is generally in the hundreds to kilo hertz range. To achieve a large surface area and hence a
favorable capacitance density, the aluminum foil electrode is electrochemically etched into a porous
structure, which is conformally coated by the electrochemically formed aluminum oxide dielectric
layer. A liquid or a polymer electrolyte is then backfilled into the sub-micrometer pores to act as the
counter electrode, which is further connected to a current collector, thus constituting an electrostatic
capacitor. However, even with an enlarged surface area, the capacitance density of the AEC is still
limited, resulting in its bulky size in comparison with the dramatically reduced electronic chips on
circuit boards. Great needs exist in downscaling the bulky AEC for compact circuit board design.
Considering the much larger capacitance density offered by an electrical double-layer capacitor (EDLC)
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than the electrostatic capacitor, an interesting question is whether an electrical double-layer based EC,
with a compact size, could be used to replace the AEC [1].

Conventional ECs, with their capability of charging and discharging in minutes or seconds, are
manufactured for storing or releasing energy burst in supplementing slow batteries or work independently.
As explained by the phase angle plot in Figure 1a, an ideal capacitor should have a phase angle close
to −90◦ within its working frequency. The characteristic frequency (f0) where the phase angle reaches
to −45◦ is defined to delineate the frontier between capacitive and resistive dominance. Compared
with conventional ECs having very limited frequency response (<1 Hz), AECs normally show an f0 up
to kHz or even MHz, giving them the capability of being used as a filter capacitor in power systems
or electronic circuits. Since the report of ECs with frequency response reaching to the kHz range by
using vertical graphene in 2010 by Miller et al. [2], efforts in the investigation of HF-ECs have led
to dramatic progress [3–9] in this niche area of supercapacitor technology, as recently reviewed [1].
Different carbon-based nanomaterials including carbon black nanoparticle [10,11], carbon foam [12],
carbon nanofiber [13], and carbon nanotubes (CNTs) [14,15], vertical aligned carbon nanotubes [16,17],
ordered mesoporous carbon [18,19], graphene foam [3], thin graphene mesh [20] and vertical graphene
(VG) [21–24], among others, have been reported as electrodes for HF-ECs. Both sandwich-type and
co-planar interdigitated layouts were used in the configuration design of HF-ECs. In addition to the highly
conductive aqueous electrolytes, organic and ionic liquid electrolytes [25] as well as polymer electrolytes
for solid state capacitors [26], were also studied to boost the rated voltage of the devices. The low-voltage
line-frequency AC-filtering function of HF-ECs has been preliminarily demonstrated [18,27], as well
as their capability to store pulse energy for environmental energy harvesting [13]. Except for these
carbon based electrodes, it deserves to be mentioned that other conductive and electrochemically active
materials have also been synthesized and tested for high-rate ECs [28–33], although their speed is still too
slow to meet the requirements of HF-ECs at present. For comparison, the structural characteristics and
electrochemical performances of these newly studied electrodes are summarized in Table 1.

Table 1. Comparison of different carbon-based materials for HF-ECs in terms of equivalent serial
resistance (ESR), phase angle (Φ120), and single electrode areal capacitance (CA

120) at 120 Hz,
characteristic frequency (f0) and type of electrolyte.

Materials Electrolyte ESR
(Ωcm2)

Φ120
(◦)

f0
(kHz)

CA
120

(mF cm−2)
Ref.

VG on Ni foil KOH 0.1 −82 15 0.175 [2]

ErGO foam on Au KOH 0.14 −84 4.2 0.566 [3]

VG on Ni foam KOH 0.12 −82 4.0 0.72 [5]

VG on carbonized cellulose paper KOH 0.04 −83 12 & 5.6 0.6 & 1.5 [6]

PEDOT:PSS on graphene layer H2SO4 0.09 −83.6 >1.0 1.988 [8]

Carbon black on conductive vinyl KOH 0.39 −75 0.641 1.1 [10]

Laser reduced carbon nanodots TBAPF6/AN - −78 0.955 0.518 [11]

Carbon fiber foam TEABF4/AN - −80.1 2.885 0.264 [12]

Cross-linked carbon nanofibers KOH 0.009 −82 3.3 2.98 [13]

Ultrathin CNTs film TEABF4/AN ~ 0.26 −82.2 1.995 0.56 [14]

CNT film K2SO4 0.11 −81 1.425 1.202 [15]

Aligned CNT on graphene film KOH 0.065 −84.8 1.98 2.72 [16]

Graphitic ordered mesoporous
carbon/CNT TEABF4/AN 0.25 −80.0 >1.0 1.12 [18]

Graphene nano-mesh film KOH 0.39 −82.3 6.211 0.612 [20]

VG on Ni foil KOH 0.1 −85.0 20.0 0.53 [21]

VG on carbon fibers KOH 0.05 −81.5 22.0 0.37 [22]

Carbon black/VG on Ni foil KOH 0.088 −80 1.0 2.30 [24]
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For AC line-frequency filtering applications, the 60 Hz line frequency becomes 120 Hz after a
full-bridge rectification, and therefore, the capacitance and phase angle at 120 Hz are commonly used
as figure of merits, in addition to the f0, to evaluate the HF-ECs’ performances. Key issues to design the
electrode structure with high frequency response have already been explicitly discussed in previous
review papers [1,34]. Since the maximum frequency response is linked with the RC time constant
of the device, for a reasonably large capacitance C, its parasitic resistance (ESR) must be minimized.
This requires that the electrode not only possesses high electronic conductivity and a large surface
area, but also has a straightforward architecture which can facilitate the electrolyte ion to diffuse to the
surface of the electrode rapidly with eliminated porous effect that results in the distributed nature of
the charge storage. In addition, the contact resistance between the electrode and the current collector
must be minimized as well.

Of the different nanocarbon structures, the edge-oriented VG network is positioned as being one
of the superior candidates to meet the aforementioned requirements. In the VG structure (Figure 1e),
multilayer graphene sheets grow vertically on a conductive substrate, forming an interconnected
network, as shown by the scanning electron microscope (SEM) images in Figure 1b. The chemically
strongly bonded VG sheet, the high intrinsic graphene conductivity, and the solid connection between
VG sheets and the conducting substrate, all ensure a very low parasitic resistance. The fully exposed
graphene edges and basal-planes can be easily impregnated by the electrolyte and the straight-forward
channels created by the VG sheets endow rapid mass transport during electrochemical processes.
Therefore, a much smaller ESR can be achieved as long as the conductivity of the electrolyte is
reasonable. Moreover, as revealed by the transmission electron microscope (TEM) images (Figure 1c,d),
the vertical sheets have a tapered shape with a thick base but a thin tip, along their wall edges there
are distributed graphene steps or edges, which can offer abundant absorption sites for electrolyte
ions. Thus, the exposed graphene edges and the easily accessed basal plane surfaces are expected to
provide a promising capacitance density. All these merits collectively offer the possibility of creating
VG-based HF-ECs with a minimized ESR and high level of charge storage capability. Therefore, it is
understandable that the first kHz HF-EC was reported using VG for its electrodes. In this pioneering
work, VG films were deposited on Ni foil by a plasma-enhanced vapor deposition (PECVD) technique
and directly used as electrodes in a symmetric capacitor, achieving very fast frequency response with a
f0 of 15 kHz [2]. This unprecedented result demonstrated the feasibility of ECs working efficiently at
the kHz range. Since then, steady progress has been achieved in this niche field by using a variety of
electrode materials with favorable structures. In this mini-review, we summarize our contributions
in the study of kHz HF-ECs by using VG grown on 3D scaffolds as electrodes. In Section 5, we also
highlight a study of using cross-linked carbon nanofibers (CCNFs), derived from bacterial cellulose
via rapid plasma pyrolysis, for HF-ECs. The highly conductive CCNFs electrode, in the absence of VG
modification, can also offer a large surface area, rendering a capability of high levels of charge storage
for HF-ECs.
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exposed graphene edges. Reproduced with permission from Ref. [1] for (a), Copyright 2017, Ref. [5] 118 
for (b), Copyright 2014, Ref. [6] for (c,d), Copyright 2016, and Ref. [9] for (e), Copyright 2019, Elsevier. 119 
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hydrocarbons (e.g. CH4 and C2H2) or fluorocarbons are used as carbon sources and reductive gases 122 
such as H2 or NH3 are used as etching reagents [35–37]. With plasma activation, the carbon-containing 123 
fragments are decomposed and deposited on the substrate, leading to the interconnected graphene 124 
sheets growing perpendicular to the substrate surface. There are different opinions on the VG growth 125 
mechanisms, including growth rate differences in vertical and lateral directions [38], crowding effects 126 
similar to aligned carbon nanotube growth [39], the effect of a vertical electric field across the plasma 127 
sheath [40], and the sp2 bond bending upwards due to impinging planar island growth [41]. These 128 
factors may vary in importance in determining the vertical morphology, depending on growth 129 
conditions, especially the selection of substrates. 130 

VG growth generally follows three major steps [36], as suggested by the SEM images (Figure 2) 131 
for VG deposition process on a Ni surface [42]: (a) During the first minute or so, after plasma 132 
deposition is initiated, a continuous laterally oriented multilayer-graphene or thin-graphite film 133 
composed of electrically well interconnected domains, is formed conformably along the nickel 134 
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are incubated. (b,c) As the deposition proceeds, VG nucleation begins, and the growth of VG sheets 136 
starts along their basal plane edges, resulting in the gradually increased density of VG sheets. 137 
(d)  The growth of a particular sheet terminates as its open edges close, but other active VG sheets 138 
continue to grow until a well-connected VG network forms in 10–15 minutes. 139 

Figure 1. (a) Schematic showing the phase angle difference between conventional EC and AEC to
appreciate their different frequency responses. HF-EC has a frequency response close to that of AEC,
but with a much larger capacitance density. (b) SEM cross-sectional view of VG structure. (c) TEM
image of vertical graphene sheets. (d) High-resolution TEM image of an individual sheet showing its
tapered geometry with fully exposed graphene edges. (e) Schematic showing the VG network grown
on a scaffold that offers high electronic conductivity and relatively large surface area provided by
exposed graphene edges. Reproduced with permission from Ref. [1] for (a), Copyright 2017, Ref. [5] for
(b), Copyright 2014, Ref. [6] for (c,d), Copyright 2016, and Ref. [9] for (e), Copyright 2019, Elsevier.

2. VG Structure Growth

VG electrodes are commonly grown on a conductive substrate in PECVD systems, in which
hydrocarbons (e.g., CH4 and C2H2) or fluorocarbons are used as carbon sources and reductive gases
such as H2 or NH3 are used as etching reagents [35–37]. With plasma activation, the carbon-containing
fragments are decomposed and deposited on the substrate, leading to the interconnected graphene
sheets growing perpendicular to the substrate surface. There are different opinions on the VG
growth mechanisms, including growth rate differences in vertical and lateral directions [38], crowding
effects similar to aligned carbon nanotube growth [39], the effect of a vertical electric field across the
plasma sheath [40], and the sp2 bond bending upwards due to impinging planar island growth [41].
These factors may vary in importance in determining the vertical morphology, depending on growth
conditions, especially the selection of substrates.

VG growth generally follows three major steps [36], as suggested by the SEM images (Figure 2) for
VG deposition process on a Ni surface [42]: (a) During the first minute or so, after plasma deposition
is initiated, a continuous laterally oriented multilayer-graphene or thin-graphite film composed of
electrically well interconnected domains, is formed conformably along the nickel surface. In this buffer
layer, graphene nuclei with their basal planes perpendicular to the substrate are incubated. (b,c) As the
deposition proceeds, VG nucleation begins, and the growth of VG sheets starts along their basal plane
edges, resulting in the gradually increased density of VG sheets. (d) The growth of a particular sheet
terminates as its open edges close, but other active VG sheets continue to grow until a well-connected
VG network forms in 10–15 min.
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Figure 2. SEM images showing the surface evolution during VG deposition that suggest the three major
steps of VG growth process: (a) the 1st minute, (b,c) in the following several minutes, and (d) after
15 min. Reproduced with permission from Ref. [42], Copyright 2016, Elsevier.

The height of the VG is generally limited within 1–2 µm, above which the coalescence of the
individual sheet at the bottom will not be able to further increase the available surface area [43].
This restricted VG film height and the sheet density limit the achievable capacitance in terms of per
unit area of the electrode footprint. In Ref. [2], the areal capacitance of VG on Ni foil at 120 Hz was
only about 0.175 mF cm−2. To increase the available graphene surface area and edge density for a
given electrode footprint, we used conductive 3D scaffolds as the substrates for VG growth. As long
as the 3D scaffold can be immerged in the plasma and the plasma sheath can be formed around the
branches of the scaffold, the induced perpendicular field will trigger the reactive carbon fragments
impinging onto the surface along the perpendicular direction, leading to the VG growth encircling
around each branch in the scaffold. The results are an increased graphene sheet density with high
surface area and an enhanced areal capacitance on a given electrode footprint.

The 3D scaffolds we used in a microwave based PECVD system include nickel foam [5,44],
carbonized cellulose fiber paper [6,9] and carbon nanofiber film [22]. For a typical synthesis process,
the scaffold loaded on a molybdenum holder was transferred into the growth chamber which was
pumped down to 2 × 10−3 torr. As the sample holder reached the temperature of 750 ◦C, the scaffold
was first cleaned by H2 plasma, and then VG was grown under a certain of conditions for 10–15 min.
It was estimated that the local temperature within the scaffold was more than ~1200 ◦C due to
the plasma heating effects. Interestingly, when a cellulose fiber paper, such as tissue sheet or filter
paper, was used as the scaffold, the carbonization of the substrate and VG growth were conducted
simultaneously in the plasma atmosphere. This rapid plasma carbonization procedure, in contrast to
the time-consuming pyrolysis process in the furnace, turned out to be the key step for developing a
high-performance HF-EC electrode, which will be detailed in Section 4.

Aligned VG structures were also reported to be fabricated by wet chemistry-based methods [45,46],
however, compared to the VG produced by the PECVD process, this kind of VG possesses a distinctive
morphology and packing density. In particular, the lack of intimate contacts between the individual
graphene sheet and between the substrate and the VG cause their relatively low conductivities, making
them unsuitable as electrodes for HF-ECs.

3. VG on Ni Foam

Figure 3 is the schematic of synthesizing VG/Ni and freestanding VG foam electrodes [22].
SEM images at each step are presented here to show the morphology evolution. Using a bare Ni
foam as the scaffold in a PECVD process (Figure 3a), carbon atoms first dissolve into nickel and then
nucleate to form a thin graphite layer along the strut surface of the Ni foam, or G/Ni foam (Figure 3b).
This is the buffer layer on which graphene nuclei with their basal planes perpendicular to the substrate
are incubated. As deposition proceeds, the VG sheets start to grow along their basal plane edges and
gradually transform into interconnected VG networks (Figure 3c). The underlying nickel foam can
be chemically etched off in an acid solution to produce freestanding VG foam with greatly reduced
weight (Figure 3d).
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Figure 3. Schematic and the corresponding SEM images showing the morphology changes of (a) Ni
foam, (b) G/Ni foam, (c) VG/Ni foam, and (d) freestanding VG foam after Ni is etched off. VG/Ni
foam-based HF-EC performances: (e) CV profiles up to 500 V s−1, (f) complex impedance spectrum
(inset is the enlarged part at high frequency range. The electrode area is 1.7 cm2.), (g) calculated
electrode capacitance vs. frequency based on the RC model, and (h) the phase angle vs. frequency plot.
Reproduced with permission from Ref. [42] for (a–d), Copyright 2016, and Ref. [5] for (e–h), Copyright
2014, Elsevier.

Here, VG/Ni foams were tested as electrodes for HF-EC. Without adding any binder and conductive
additive, these electrodes were first wetted in 6 M KOH aqueous solution, and then assembled into
symmetric ECs by using a 25 µm thick separator in a coin cell configuration (CR2016). As shown in
Figure 3e, cyclic voltammetry (CV) curves collected within the potential range of 0–0.9 V, exhibit a
quasi-rectangle shape with scan rates up to 500 V s−1. The low resistivity and wide-open channels in
VG/Ni foam could facilitate the migration of electrons and electrolyte ions, respectively, so an electrical
double layer can be rapidly formed. As a result, the value of the specific capacitance for a single electrode
can attain ~1.32 mF cm−2 at the scan rate of 1 V s−1 and remain at ~0.83 mF cm−2 at 500 V s−1.

Electrochemical impedance spectroscopy (EIS) measurement was carried out over the frequency
range from 100 kHz to 0.1 Hz. The Nyquist complex-plane impedance spectrum presented in Figure 3f
has a nearly vertical line at low frequency. Above a knee frequency of ~9 kHz, the line becomes
more tilted and an intersection with the real axis at around 45◦ suggests a typical porous electrode
behavior, caused by the hierarchical structure of VG/Ni foam. The spectrum at frequencies lower than
the knee frequency can be commonly modeled as an ideal capacitor with an ESR. Using the formula
C = −1/(2π f Z′′ ), where f is the frequency and Z” is the imaginary part of the impedance, the areal
capacitance of the electrode can be calculated, and the result is plotted in Figure 3g. The cell gives
specific capacitances of ~0.72 and ~0.64 mF cm−2 at 120 Hz and 1 kHz, respectively. The Bode diagram
in Figure 3h shows that the phase angle of the cell at 120 Hz is about −82◦ and the f0 is around 4 kHz.
With a cutoff in kHz scope, the VG/Ni foam electrode has a much higher areal capacitance than the
electrodes made from VG on flat foils [2,4].

4. VG on Carbon Fiber Sheets

Although a reasonable areal capacitance could be obtained using VG/Ni foam electrode,
its volumetric density is considerably lower due to the relatively low area:volume ratio of Ni foam.
To address this problem, we further employed carbon nanofiber (CNF) films as the substrates for
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VG growth [22]. Commercially available CNFs were first dispersed in ethanol solution with the
assistance of surfactants and then spin-coated onto Ni foil to form a thin layer with macroporous
structure after drying. Subsequently, VG was successfully grown into this porous layer with graphene
nanosheets wrapped around each CNF in a PECVD system, forming a highly conductive electrode
with a large surface area. In an aqueous electrolyte cell, f0 was found to be as high as 22 kHz and the
areal capacitance for a single electrode was about 0.37 mF cm−2 at 120 Hz.

More interesting works focus on VG growth on carbonized cellulose microfibers (CMFs) and
their HF-EC applications [6,9]. Different from the reported cellulose derived carbon materials for
electrochemical applications [47–50], the freestanding VG/CMF electrodes used in our studies were
synthesized in a one-step PECVD process, where cellulose fiber sheets were rapidly pyrolyzed by the
high-temperature plasma and VG was grown on the developing CMFs simultaneously. For instance,
by using cellulose wiper (KimwipesTM) as the raw material, a thin (~10 µm) and freestanding electrode
was obtained after the PECVD process, which gave satisfying performances in terms of both frequency
response and specific capacitance. Furthermore, these thin layers with hierarchical macro-pore
structure can be further stacked to obtain thick electrodes with much higher areal capacitance without
compromising their frequency response and volumetric capacitance. Apparently, compared to the
VG/metal foam structure, this kind of electrode architecture is more promising in practical use.

The wood fiber derived unwoven cellulose paper consists of abundant ribbon-shaped cellulose
fiber bundles, and these bundles have a relatively compact structure in the microscale. During the
high-temperature PECVD process, the majority of O and H elements are removed, and cellulose
fiber is converted into amorphous carbon fiber and further partially graphitized. A large hollow
space between the neighboring carbon fiber bundles can be preserved. As demonstrated in Figure 4a,
pyrolysis in PECVD causes cellulose texture to have an anisotropic contraction and the sheet size
is reduced by a factor of 5–6 after being converted into VG/CMF. Composition analysis shows that
only a trace amount of oxygen element, mainly in the C–O bonding form, remains in CMF. The X-ray
diffraction (XRD) patterns of cellulose fiber and VG/CMF in Figure 4b show the differences in their
crystalline structures. The pristine cellulose fiber, consisting of cellulose Iβ, has a monoclinic unit
cell. The observed five peaks in the XRD pattern can be well indexed to cellulose Iβ (101), (101),
(021), (002), and (040) planes [51]. In contrast, the VG/CMF only has one diffraction peak at ~26.2◦,
corresponding to the characteristic (002) plane of graphite. SEM images (Figure 4c,d) reveal a maze-like
network composed of VG sheets wrapped around CMFs, with plenty of exposed graphene edges and
straightforward channels. By using the thin and freestanding VG/CMF sheets as electrodes and KOH
aqueous solution as electrolyte, the resulting HF-ECs exhibited superior performances with f0 above
the kHz, areal capacitance of 0.6–1.5 mF cm−2 (depending on the electrode thickness) and volumetric
capacitance of 0.6 mF cm−3 in terms of a single electrode.

Even though aqueous based kHz HF-ECs have been widely reported in the literature, their low
voltage ratings, 0.8–0.9 V restricted by water decomposition, limit their practical applications. Organic
electrolytes have larger voltage ratings (2.5–3.5 V), rendering them a better electrolyte option for
practical HF-ECs in spite of their relatively low conductivity. Herein, VG/CMF electrode based organic
cells were also studied by using 1 M tetra-ethylammonium tetrafluoroborate (TEABF4) in anhydrous
acetonitrile (AN) solution as the electrolyte. The CV curve (Figure 4e) indicates that the potential
window of the organic HF-EC is significantly widened by a factor of ~3 in comparison with that of
the inorganic one and maintains the desired quasi-rectangular shape at the scan rate of 1000 V s−1,
reflecting its high-speed capability. In addition, from the Nyquist plot of this organic cell (Figure 4f),
it is observed that a small semicircle and a near 45◦ linear region appear in the high frequency scope
and a near vertical part shows up below the knee frequency of 3.8 kHz, indicating that this impedance
plot can be simulated by a series RC model as described above. By using equations based on this model,
the areal capacitance of single electrode was calculated (Figure 4g) and found to be ~0.49 mF cm−2

at 120 Hz. From its Bode diagram (Figure 4g), the organic cell exhibits a phase angle of −80.4◦ at
120 Hz and an f0 of 1.3 kHz. The impedance spectrum was further analyzed by introducing complex
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capacitance C = C′ − jC′′ (where C′ is the accessible capacitance at the corresponding frequency
and C” corresponds to energy dissipation) and the results are presented in Figure 4h. The modeled
capacitance (C′) agrees with the result shown in Figure 4g. The value of C” reaches a maximum at
a frequency of 1.3 kHz, defining a relaxation time constant (τ0) of 0.8 ms, in accordance with the
characteristic frequency.
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Figure 4. (a) Photo showing the cotton round (cellulose sheet, the white one) and the VG/CMF sheet
(the black one). (b) XRD patterns of the cellulose and the VG/CMF sheets. (c,d) SEM images of
VG/CMF at different magnifications. Electrochemical performances of VG/CMF electrode: (e) CV
curves at 1000 V s−1 rate in aqueous and organic electrolyte cells. (f) Nyquist impedance spectrum
with the inset showing the zoom-in high frequency range, (g) RC model-derived electrode’s areal
capacitance vs. frequency plot and its Bode diagram, and (h) real and imaginary components of the
complex electrode capacitances in an organic cell. Reproduced with permission from Ref. [6] for (a–c),
Copyright 2016, and Ref. [9] for (e–h), Copyright 2019, Elsevier.

As a proof of concept, the assembled VG/CMF-based HF-EC with organic electrolyte was further
tested for ripple current filtering in the 60 Hz line-frequency AC/DC conversion. The circuit diagram is
described in Figure 5a, a 60 Hz sinusoidal wave voltage with a 4 V amplitude (Figure 5b) is simulated
as the input which passes through a full-bridge rectifier and an HF-EC filter capacitor in turn before
being supplied to a load. As shown in Figure Figure 5c, compared to the output voltage profile
collected without using the filter capacitor, a near ripple-free 2.8 V DC voltage applied to the load is
obtained. This clearly demonstrates that, with their larger capacitance densities, HF-ECs are promising
to replace bulky AECs for AC line-filtering in electronics and power applications in the future.
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Figure 5. Demonstration of AC line filtering function of HF-EC using VG/CMF electrodes: (a) AC/DC
conversion circuit diagram, (b) a 60 Hz sine wave signal with 4 V amplitude used as the input,
and (c) the output from the rectifier with (blue line) and without (green curve) filtering capacitor.
Reproduced with permission from Ref. [9], Copyright 2019, Elsevier.
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5. Cross-Linked Carbon Nanofiber Derived from Bacterial Cellulose Aerogel

In addition to VG based electrode materials, we also studied cross-linked carbon nanofibers (CCNFs)
to simplify the electrode structure but maintain their excellent performances. The CCNFs were obtained
by rapid pyrolysis of bacterial cellulose (BC) precursor (Figure 6a) in the PECVD system. BC pellicles
are comprised of cellulose microfibrils secreted bacterially. These cellulose microfibrils first are bound
into bundles and then are woven into nanoribbons which further branch into a three dimensional
web [52,53]. In our research, BC pellicles were synthesized using Kombucha strains by a fermentation
process [54]. After chemical cleaning to eliminate bacterial cells in the BC pellicles and freeze-drying
processes, BC aerogel was produced, which contained less than 1 wt % of its hydrogel counterpart.

As a precursor for carbon nanofibers, BC is preferred over other natural celluloses due to its smaller
fiber size (around 10–50 nm, Figure 6b,c), higher degree of crystallinity and purity (Figure 6d,e) [55–58].
Exclusively, unlike cellulose fibers derived from plants that are not interconnected, BC with branched
structure (Figure 6c) can yield cross-linked CNFs (Figure 6f) after pyrolysis. These downsized
carbon nanofibers with cross-linked structure not only decrease the inner contact resistance, but
also provide a larger surface area compared to other microscale fibers, and are expected to have a
larger capacitance density.

As we know, the pyrolysis processes for polymer and cellulose precursors are commonly conducted
in an inert ambient atmosphere at high temperatures for several hours [59,60]. Micropore activation,
through physical decomposition and chemical etching, is a common practice for achieving a large surface
area [58]. Figure 6g compares the complex impedance spectra of CCNFs produced by rapid plasma
pyrolysis in the PECVD system and conventional thermal pyrolysis in a tube furnace [61]. Although
the traditional thermal pyrolysis method can dramatically enlarge the specific surface area of CCNFs by
introducing a large amount of micropores, the frequency response of CCNFs is significantly restrained,
making them unsuitable for HF-ECs. In contrast, CCNF film fabricated by the rapid plasma pyrolysis
process can avoid this microporous structure, which is a key factor for its success in HF-EC application.
The nitrogen absorption–desorption result of this CCNF gives a specific surface area of 57.5 m2 g−1 and a
pore volume of 0.374 cm3 g−1 with a minimum pore diameter of 3.8 nm. The meso- and macro-pores
allow a rapid transportation of electrolyte ions throughout the electrode mesh with a low diffusion
resistance, and the cross-linked structure of CNFs guarantees a high electronic conductivity. Consequently,
this web-like electrode engenders a fast frequency response with improved specific capacitances.

CCNF freestanding electrodes with different thickness (10, 20, and 60 µm) were first studied in
KOH aqueous electrolyte by assembling them into coin cells. For example, the Bode diagram of the
20 µm electrode (Figure 6h) shows that the absolute value of the phase angle stays above 80◦ with
frequency increasing to a few hundred Hz. In particular, the 120 Hz phase angle is around −82◦

and the f0 is close to 3.3 kHz. The value of the areal capacitance for a single electrode at 120 Hz is
proportional to the thickness of the electrode, while f0 varies inversely ((1.51, 4,1), (2.98, 3.3) and
(4.50 mF cm−2, 1.3 kHz) for 10, 20, and 60 µm electrode, respectively). For the two thinner electrodes,
a volumetric capacitance of ~1.50 mF cm−3 is achieved. Figure 6i shows the results of cycling stability
for the 10 µm electrodes. After 100,000 continuous cycles with full charge and discharge, about 95%
of its initial capacity is maintained. These CCNF electrodes exhibited extraordinary performance in
terms of both areal capacitance and frequency response.

To broaden its applicable potential window, 10 µm CCNF electrodes were further studied using 1
M TEABF4/AN electrolyte, in which the cell can work at an elevated voltage up to 3.5 V (Figure 7a).
Other promising electrochemical results such as a knee frequency of 3.0 kHz, a phase angle of −80◦,
and an areal capacitance of 0.51 mF cm−2 for a single electrode at 120 Hz (corresponding to volumetric
capacitance of 0.51 F cm−3) and the characteristic frequency of 1.8 kHz well prove that these CCNFs
are one of a number of excellent candidates for high voltage AC line filtering ECs.
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Figure 6. (a) Schematic showing the BC-derived CCNF fabrication processes and their electrochemical
test. (b) SEM image of BC aerogel. (c) TEM image showing the cross-linked structure of BC nanofibers.
(d) High-resolution TEM image and (e) XRD pattern showing the high crystalline of BC. (f) SEM image of
CCNF showing the macroporous structure. The inset TEM image shows branched CNF. (g) Comparison
of complex impedance spectra between CCNF produced by rapid plasma pyrolysis and conventional
thermal pyrolysis. (h) Plots of phase angle and electrode capacitance vs. frequency for a 20 µm thick
CCNF electrode. (i) Galvanostatic charge-discharge stability result at a current density of 50 mA cm−2

for a 10 µm CCNF electrode, with the inset as a section of the C-D curve. Reproduced with permission
from Ref. [13] Copyright 2017, Elsevier.
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Figure 7. (a) CV profiles within different potential windows at scan rate of 100 Vs−1 and (b) Bode plot
for the organic cell. (c) The diagram and (d) photo of the circuit used for pulse energy scavenge and
storage. (e) The scavenged pulse Vi (red curve) and the DC output Vo (green curve) after being filtered by
the HF-EC to a micro-power load. Reproduced with permission from Ref. [13] Copyright 2017, Elsevier.
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Besides filtering applications, HF-ECs, if their self-discharge and leakage current can be minimized,
may also be suitable for pulse energy storage in an energy scavenge system. There are strong interests in
using piezoelectric or triboelectric mechanisms to harvest the environmental noise and vibration and
convert them into electricity for self-powered autonomous sensors. Since these mechanical energy
sources typically vibrate at tens or hundreds of Hz [62–64], HF-ECs, as compact energy storage
devices, are needed to efficiently store these harvested pulse powers. As a demonstration in our
study, a piezoelectric element was used to generate pulses from vibrations. The testing circuit diagram
and photo of these elements are respectively shown in Figure 7c,d. Pulses picked up by a piezoelectric
microgenerator are first rectified by a full-bridge and then stored in the HF-EC. This stored energy
is further used to power a micro-sensor and a green light-emitting diode (LED) is used to simulate a
high-power pulse load. In Figure 7e, the voltage pulses (Vi) from finger-tapping of the piezoelectric
element and the DC output (Vo) to the micro-load are presented. In addition to providing a constant
current to the micro-power load, this HF-EC can even drive a high-power pulse load by turning on a
green LED for a short period. These preliminary results prove that our fabricated CCNF based HF-ECs
are promising for ripple current filtering and pulse energy harvest and storage applications.

6. Conclusions

By designing and synthesizing different types of carbon-based electrodes, great progress is being
steadily made toward practical HF-EC applications, with a goal of very compact EC devices acting as
both energy storages and filtering capacitors. In this mini-review, based on our selected works in this
field, the characteristics and performances of several representative VG based materials are discussed,
with their pros and cons clearly described. The substrates used for growing VG have been proved to
be critical in determining the final specific capacitance and the speed of frequency response of HF-ECs.
Compared to frequently used metal foams, carbon fibers with a three-dimensional configuration are
more suitable for HF-ECs in terms of their light weight, reduced volume, high specific surface area, and
resistance to corrosive electrolytes. Benefiting from the high efficiency of the PECVD pyrolysis process,
more structural engineering works for the substrates could be considered in the future. For instance,
the metal foams normally have a very large pore size (tens to hundreds of micrometer) which not
only reduces the available sites for VG growth, but also decreases the volumetric capacitance of the
electrochemical devices. Filling part of the pores with other materials such as polymers or carbon
fibers before VG growth may alleviate these problems. In Section 5, CCNFs are shown to be superior
in electrochemical performances even to VG/CFs, ascribed to their cross-linked structure and highly
available surface area. This unique architecture constructed by the branched nanofibers could provide
fast ion and electron transportation pathways, resulting in a more desirable frequency response as well
as specific capacitance and cycling stability in both inorganic and organic electrolytes. Furthermore,
the successful demonstrations in AC line filtering and pulse energy harvesting and storage give them
a promising prospect in practical applications. These results also provide a reference for optimizing
the performance of carbon-based electrodes by introducing effective cross-linked structures.

Last but not the least, although some HF-ECs made from different electrodes have been proved to
possess excellent electrochemical performances, their applicable potential windows are still restricted
by the electrolytes’ decomposition voltages (~0.8–0.9 V for water-based electrolyte and ~3.0–3.5 V for
organic based electrolytes), which inevitably limit their application areas. The rated voltage can be
elevated by the stacking process, but the capacitance as well as the frequency response will be decreased
dramatically, making them uncompetitive in practical use. How to increase their rated voltages without
compromising their frequency response speed, becomes a tough problem needing to be addressed
urgently. Stacking design, packaging configurations, and minimizing the contact resistances between
single cells are very important in solving this issue. With more efforts being currently carried out in
this research area, we believe that significant achievements will soon be implemented.
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