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Abstract: In a combined experimental and theoretical study of gold phosphide (Au2P3), we investigate
its vibrational properties, band structure, and dielectric properties, providing new insight into the
properties of this underexplored material. Using a simple synthesis route, Au2P3 thin films were
produced, enabling the first reported Raman analysis of this material. Coupled with first-principles
calculations of these Raman modes, this analysis reveals that low-frequency vibrations are due to Au
or mixed Au to P, and at higher frequencies, they are due to P vibrations. Further band structure and
dielectric calculations reveal Au2P3 to be a narrow band (0.16 eV) indirect semiconductor. This work
helps to fill major gaps in our understanding of key properties in this material that will benefit future
research in this field.

Keywords: gold phosphide; Raman spectroscopy; density functional theory; band structure; dielectric
function

1. Introduction

Metal phosphides are of interest for a number of applications for electronics and semiconductors,
catalysts, hydrogen storage, and magnetic devices. Among this broad and diverse materials group,
gold phosphide (Au2P3) has remained largely unstudied. This is likely due, in part, to its instability [1]
decomposing to Au and P4 at one atm at temperatures above 700 ◦C [2]. To this point, Au2P3 has been
the most widely studied in the formation of Ohmic contacts for InP, which forms upon annealing Au
on InP [3,4]. Transmission electron microscopy investigations show that rough polycrystalline Au2P3

layers form at the InP surface [3]. The formation of Au2P3 between Au and InP is responsible for a
significant drop in the contact resistance for both n and p-type InP [5]. Additionally, nanostructured
Au2P3 has recently been synthesized by solution methods forming networks of nanoparticles
(~5 nm) [6,7], which were demonstrated to be efficient catalysts for hydrogen [6]. As such, this limited
line of investigation leaves a great deal unknown about this material.

Early studies on bulk polycrystalline gold phosphides reported the synthesis of multiple phases
and compositions, which later were found to contain additional elements and contaminates. Through
the direct reaction of elemental Au and red phosphorus powders, phase pure Au2P3 was formed and
identified as the only stable gold phosphide phase [8]. Due to the highly reactive nature of P and
the stability of ternary gold phosphides, synthesis methods using transport agents and mineralizers
can result in ternary compounds such as Au3SnP7 and Au7IP10 [8,9], complicating synthesis. From
crystalline samples, Jeitschko and Moller [8] described a detailed structural analysis of monoclinic
Au2P3, providing complete powder diffraction data and structural description. Beyond this, little is
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known about its optical, conduction, or phonon properties. As such, calculations of band structure and
phonon dispersion would be beneficial for Raman, IR, and other optical characterization, as well as
examining its usefulness for the above applications. In this paper, we first describe the experimental
methods for the synthesis, structure, and Raman characterization, and then coupled these experimental
results with first-principles phonon and band structure calculations to fill gaps in the general knowledge
of this material.

2. Materials and Methods

Gold phosphide films were formed on Au foil using a horizontal hot wall chemical vapor
deposition (CVD) reactor with a three-zone furnace. Phosphine was used at the P source, and H2

was used as the carrier gas. A reactor pressure of 700 Torr and furnace profile of 650/450/350 ◦C
(Z1/Z2/Z3) across the three zones was used. Substrates were loaded in between Z1 and Z3 to achieve
temperatures between 600 and 300 ◦C. Once temperatures were reached and stabilized, PH3 was
introduced at a flow rate of 80 sccm with 160 sccm H2 flow. After three hours, the reactor was cooled
to 200 ◦C, and the PH3 was turned off. Samples were unloaded and stored in a N2 glove box with <0.1
ppm O2 and H2O to prevent oxidation.

As-deposited films were characterized using optical microscopy, X-ray diffraction (XRD),
transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and Raman
spectroscopy. X-ray diffraction using an Empyrean X’pert Pro system with a four-bounce Ge
monochrometer was used for structural characterization and phase identification. The TEM-ready
samples were prepared using the in situ focused ion beam (FIB) lift-out technique, and high resolution
(HR)TEM images were acquired on an FEI Titan Themis TEM equipped with a post-specimen
aberration corrector (Cs=0). An accelerating voltage of 300 kV was used in Free Control mode with the
C3 lens off and a BM-UltraScan 2048 x 2048 CCD detector. Scanning tunneling electron microscopy
(STEM) images and EDS were acquired on an FEI Talos TEM operated in STEM mode at 200 kV
using a high-angle annular dark field (HAADF) detector and an FEI SuperX quad-core EDS detector,
respectively. Raman measurements were carried out under a N2 atmosphere in a Linkam stage using
a Renishaw inVia system. An accumulation of 20 scans, each of 30-s duration, was collected using a
250-µW 514 nm excitation source, 20-µm slits, and a 3000 line/mm grating for each measurement.

First-principles calculations based on density functional theory (DFT) were performed using the
Vienna AB-Initio Simulation Program (VASP) [10]. We used the projector-augmented wave function
(PAW) pseudopotentials, with an energy cutoff ECut = 255 eV [11]. The Brillouin zone was sampled
with uniform 6 × 6 × 8 k-point mesh. Structural relaxation and phonon mode calculations were
performed at the generalized gradient approximation level (GGA) using the Perdew–Burke–Ernzerhof
functional [12]. The electronic band structure and the density of states were obtained with the
Heyd–Scuseria–Ernzerhof (HSE06) functional [13], and then adjusted with self-consistent quasiparticle
scGW0 correction [10,14]. The first Brillouin zone and the symmetry points were obtained using the
AFLOW software [15] based on reference [16].

3. Results and Discussion

Gold phosphide films on Au were synthesized using a simple process of reacting PH3 with Au in a
CVD system. The process is fairly robust, with Au2P3 forming over a wide range of pressures between
20–700 Torr and temperatures between 400–500 ◦C. Over these ranges, parameters were found to have
a significant impact on coverage (Figure 1). Below 400 ◦C, red phosphorus films form, and much above
500 ◦C, no growth was observed. Due to the metastable nature of Au2P3, we investigated the annealing
of films in a N2 or H2 ambient at 700 Torr over a temperature range of 500 ◦C to 650 ◦C. Films were
found to completely disappear at temperatures >600 ◦C, where no sign of Au2P3 was observable in
optical, scanning electron miscopy, or XRD measurements. This range of decomposition temperatures
is consistent with the thermodynamic investigations by Myers et al. [17] and considerably higher than
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those reported for the Au2P3–InP system [18]. To identify the phase and investigate the structure of
the films, XRD (Figure 1a) was performed on films grown at 400 ◦C andMaterials 2018, 11, x FOR PEER REVIEW  3 of 8 
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Figure 1. Structural characterization of Au2P3 on Au films (a) optical images of films grown at 400 ◦C
and 500 ◦C, and (b) X-ray diffraction (XRD) spectra from films grown at 400 ◦C and 450 ◦C. All of the
peaks have been all indexed to Au2P3 (JCPDS# 98-000-8058) or Au (JCPDS# 98-004-4362). Unlabeled
peaks can be assigned to Au2P3.

450 ◦C. The diffraction pattern from both films shows peaks corresponding to Au2P3 (JCPDS#
98-000-8058) and Au. Due to the higher coverage area of the 400 ◦C sample, we see a much more
detailed diffraction spectra for the Au2P3 film, which is in excellent agreement with previous reports for
poly and nanocrystalline samples [6–8]. From the spectra, four peaks were assigned to the Au substrate,
which is predominantly (002) oriented, with all of the other peaks assignable to the monoclinic
Au2P3 structure. According to XRD, films can be identified as polycrystalline with no clear preferred
orientation, in spite of the oriented substrate. Temperature, within this narrow range, does not appear
to have an effect on the Au2P3 film orientation.

Closer examination of the crystal structure and chemical make-up of these films was performed
using cross-sectional TEM, STEM, and EDS, as shown in Figure 2a,b. HAADF images of the
cross-section clearly show the formation of films on the surface of the Au foil (Figure 2a). The film
thickness is clearly non-uniform, with significant height variation ranging from 50 nm to 200 nm. This
morphology is quite similar to those reported on InP [4]. Elemental EDX maps of Au and P over this
same region delineates the substrate from the film matching the HAADF images. These images show a
uniform distribution of P and Au throughout the film, and a low P background in the Au substrate.
The high-resolution TEM images show the films to be crystalline and reveal a layered structure that is
consistent with previous reports on Au2P3 nanostructures [6]. The measured spacing between these
layers is ~0.519 nm, which is matched with the calculated d-spacing for (110). Figure 2c shows a
schematic of the crystal structure. We can see the clear layered nature of this structure along the [110]
formed by planes of Au, which is consistent with our TEM observations.

The combined structural and elemental analysis confirm the formation of thin film monoclinic
Au2P3, which we now use for Raman characterization. Figure 2a shows the room temperature Raman
spectra from Au2P3 films grown at 400 ◦C and 450 ◦C. Eleven Raman peaks are observed over the
range of 50 to 1000 cm−1, as listed in Table 1. Raman spectroscopy is an important technique for
identifying materials, and it is quite prevalent in the study of nanomaterials. It is particularly useful for
very small sample sizes or mapping across structures where traditional bulk characterization methods
(XRD) may not be suitable. However, to this point, we are unaware of any previous reports on the
Raman spectra of Au2P3. Coupled with the structural analysis provided in figures 1 and 2, we have
confidence that the presented Raman spectra are characteristic of the monoclinic phase of Au2P3.
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To both strengthen our confidence as well as gain a deeper understanding of the structural, vibrational,
and electronic properties, we performed DFT using VASP. The crystallographic cell contains 20 atoms,
and the relaxed crystal assumes a c-centered monoclinic structure of type MCLC3 [16] with calculated
lattice parameters a = 14.56, b = 4.75, c = 5.91 Angstrom, and β = 109◦.Materials 2018, 11, x FOR PEER REVIEW  4 of 8 
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Figure 2. (a) High-angle annular dark field (HAADF) image of film cross-section (top) and energy-
dispersive X-ray spectroscopy (EDS) chemical maps of P (middle) and Au (bottom); (b) High-resolution
TEM of film and measured layer spacing; (c) Schematic of the Au2P3 monoclinic crystal structure where
the orange atoms are Au and the black atoms are P. The red plane corresponds to the (110).

Table 1. Calculated vibrational modes and measured Raman modes for Au2P3. I.R. = infrared, N/O =
not observed.

Mode Calc. (cm−1) Expt. (cm−1) Mode Calc. (cm−1) Expt. (cm−1)

Bg 41 N/O Bg 369.4 363

Ag 68.9 67 Ag 376.2 378

Bg 78.9 78 Ag 397.2 396

Bg 165.4 171 Ag 429.5 438

Ag 231.8 247 Bg 446.3 464

Bg 307.7 305 Ag 472.6 483

I.R. Mode Calc.
Au, Bu, Bu, Bu, Au, Au

Bu, Bu, Au, Bu, Bu
Au, Bu, Au, Au

56.8, 57.1, 65.6, 72.2, 78.4, 107.7, 136.2, 158.6,
191.7, 288.5, 382.9, 383.8, 407.1, 423.9, 469.4 cm−1

The primitive cell (shown in Figure 3b and used in the DFT calculations) contains 10 atoms.
The calculated vibrational modes and measured Raman modes are presented in Table 1 and Figure 3a.
According to calculations, there are 12 Raman active modes and 15 IR modes. The 11 Raman modes
from 68.9 to 472.6 cm−1 are well matched with the experimentally observed values. Only the Bg mode
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at 41 cm−1 could not be observed due to the limit of the Rayleigh filtering. Due to the Au substrate, IR
spectra were not able to be measured, and thus require further work to experimentally verify. However,
these results provide a database for its future characterization and identification, which are important
for the further study of this intriguing material.
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Figure 3. (a) Raman spectra from Au2P3 film on Au deposited at 400 ◦C, 450 ◦C, and calculated Raman
modes. (b) Schematics of atomic vibrations, for example low-frequency and high-frequency Raman
modes; the inset shows the Cartesian axis orientation, with axis a parallel to x and axis c parallel to y.

Calculations of the Au2P3 vibrational modes provides more insight into this material than just
mode identification. Evaluation of the atomic displacement that is associated with each mode reveals a
clear physical distinction between the low and high-frequency modes. At frequencies above 158.6 cm−1,
the vibrations are due to P–P bonds, while at lower frequencies, they are due to Au or mixed Au and
P vibrations, as shown in Figure 3b. This may be a consequence of two intercalated sublattices—of
phosphorous and gold atoms—with the former more strongly bonded to one another. This finding is
consistent with the bond calculation presented by Xu et al. [19] that suggests much stronger covalent
bonding between P atoms than Au atoms. Knowing the atomic origin of these modes may enable us to
predict or interpret changes in the structure. If we compare the Raman spectra in Figure 3a, we observe
the significant reduction in the relative intensity of modes at 67 cm−1 and 78 cm−1 for the sample
grown at 450 ◦C, which are dominated by the vibration of Au atoms. This may suggest a tendency
toward phase separation in the higher-temperature samples.

In recent articles, it has been suggested that Au2P3 is expected to have interesting optical
properties; however, not much is really known about these properties [7,19]. Reference [8] described
Au2P3 as having metallic conduction and focuses on electron, interatomic interactions, and phase
transitions. Reference [19] discussed the finite band gaps and the resulting optical properties of small
five-atom Au2P3 clusters. By virtue of their molecular size, the latter have band gaps of the order
of eV, and cannot be used to interpret the band gaps and optical properties of extended systems,
where periodic boundary condition calculations are in order. As such, the work presented here is an
important addition to the study of Au2P3. The metallic conductivity in [8] can be interpreted either
as a lack of a band gap or as native doping in the presence of a very small band gap. Our calculated
electronic band structure is given in Figure 4, and to the best of our knowledge, it is the first for
bulk Au2P3 in the literature. The standard DFT method describing a proper crystal structure had
to be augmented in order to obtain an accurate electronic structure. The latter is obtained using the
HSE06 hybrid functional HSE06 [13] and self-consistent quasiparticle (scGW0) corrections [10,14].
Convergence was obtained within one meV in 10 iteration steps. The result is that Au2P3 is an indirect
band gap semiconductor with a transition from Γ to Z and a zone-center band gap of 0.160 eV. The
valence and the bottom of the conduction band result from the overlap between the partially filled
s1d10 orbitals of Au atoms and the partially filled s2p3 orbitals of P atoms.
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diffraction and TEM structural analysis. Utilizing these films, Raman spectra are presented with 

Figure 4. (a) The first Brillouin zone of Au2P3 obtained with the AFLOW [15,16]; (b) Electronic band
structure of Au2P3 along the k-point path in (a). The red circles mark the top of the valence band (at
the Γ point) and the bottom of the conduction band (at Z point), with a band gap of 0.160 eV.

The free-carrier contribution to the real and imaginary parts of the dielectric function is shown in
Figure 5. This is due to valence to conduction-band excitation, and covers a large range of energies.
This type of data can be compared to ellipsometry measurements and optical conductivity data to
extract the characteristic scattering times for the quasi-free electron Drude model. Using the orientation
given in Figure 3b, the three types of P atoms in the primitive cell give rise to three branches at the top
of the valence band with different p_x, p_y, and p_z orbital characters. This results in different optical
transition elements to the conduction band and the anisotropy of the dielectric tensor. Using our current
process, we only have access to thin layers of phosphide with high roughness on a relatively thick
Au substrate, making experimental verification of the dielectric function via transmission reflectance
and ellipsometry unfeasible. A comparison of the computed dielectric function with experiments will
become possible when standalone bulk or thin films on an insulator become available to the community.
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Figure 5. (a) Real and imaginary (b) parts of the dielectric function from HSE06+scGW0 ab-initio
calculations. The three diagonal components and the off-diagonal component in the (a,b)-plane
are shown.

As noted above, the band gap of the bulk material is much smaller than the separation between
the occupied and unoccupied orbitals of small clusters [19]. The small band gap of 160 meV found
here is only somewhat larger than the energies of the bulk phonon modes from the first section, which
have a maximum at ~50 meV. This means that an experimentally measured dielectric function at room
temperature would present a significant overlap at low energies between the valence–conduction band
transitions shown in Figure 4b, and an IR signal from the phonon modes. In addition, if this material
is natively n-doped (as suggested by its metallic conductivity), the dielectric function is expected to
have a plasmonic component at low energies in the low-energy range comparable to the band gap.
The topics of native point defect formation energies and plasmonic resonances are outside the scope of
this work.
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4. Conclusions

Experimental measurements supported by first-principles modeling reveal key details of the
vibrational modes and band structure of Au2P3. Reacting phosphine with Au substrates, we present
a simple process to form monoclinic Au2P3 thin films, which is unequivocally identified by X-ray
diffraction and TEM structural analysis. Utilizing these films, Raman spectra are presented with
excellent agreement between experiment and theory, providing, for the first time, information on
the vibrational modes. The DFT calculations in this work further supply the electronic structure and
optical properties of this material in bulk form. Au2P3 is found to be an indirect semiconductor with a
0.16-eV band gap. This information will be important to those working in the field of metal phosphides,
providing important details on Raman and I.R. spectra, as well as answering questions about the
electronic structure and optical properties.
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