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Abstract  

As fiber and bond characterization tools become more sophisticated, the 
information from the fiber scale becomes richer. This information is used for 
benchmarking of different types of fibers by the paper and packaging industries. In 
this work, we have addressed a question about the effect of variability in the fiber 
and fiber bond properties on the average stiffness and strength of fiber networks. 
We used a fiber-scale numerical model and reconstruction algorithm to address this 
question. The approach was verified using the experimental sheets having fiber data 
acquired by a fiber morphology analyzer and corrected by microtomographic 
analysis of fibers in these sheets. We concluded, among other things, that it is 
sufficient to account for the average bond strength value with an acceptable 
number of samples to describe dry network strength, as long as the bond strength 
distribution remains symmetric. We also found that using the length-weighted 
average for fiber shape factor and fiber length data neglects the important 
contribution from the distribution in these properties on the mechanical properties 
of the sheets. 
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1. Introduction 

Man-made materials with a fiber network structure have a clear advantage over 
other materials in favor of a controlled anisotropy, which makes it possible to 
enhance the mechanical properties in the relevant direction. For example, in paper 
and packaging products, the in-plane fiber orientation ensures a large in-plane 
stiffness to mass ratio.  

The in-plane strength of the dry paper material has remained a central theme in 
papermaking research for many years. It is generally accepted that the tensile 
strength of paper can be described by the mean properties of its constituents, 
which are the mechanical properties of fibers and fiber bonds, the relative bonded 
area (RBA) between the fibers, and fiber orientation (Alava and Niskanen, 2006). 
The tensile index (T, tensile strength per density) for a paper sheet with uniform 
random fiber orientation is usually characterized by the Page equation (Page, 1969): 
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where T, Z† and B have dimensions of N·m·kg-1. In this equation, the contribution 
of fibers’ length ( fl ) and width ( fw ), breaking stress of bonds ( bτ ), as well as RBA 
in bonded fibers, is merged into a single variable B ( f f b1/ B 3 /w l RBAτ= ). 

Indeed, in the characterization of paper constituents, both the bond and fiber 
characteristics are traditionally used in terms of mean values rather than 
distributions in such empirical relations. In fact, the fiber morphological properties 
are non-uniform with the fiber lengths and cross-sectional properties being subject 
to natural variation. The distribution of fiber properties can be characterized using 
modern high-throughput tools in a wet state (Hirn and Bauer, 2006) and X-ray 
tomography in a dry state (Marulier et al., 2015; Borodulina et al., 2016). Similarly, 
the bond strength exhibits a large variation depending on the geometry of the bond 
and the bonded area. Finally, the structure of the paper network itself is clearly 
heterogeneous. Here, we will discuss the effect of such a variation. We limit 
ourselves to the effects of the variability of certain bond and fiber characteristics on 
the in-plane stiffness, strength, and strain to failure of the fiber network.  

The nature of fiber bonding creates notorious difficulties in sample preparation 
and testing methods. Up to the present, a number of experimental methods and 
techniques have been proposed for measuring bond strength between two isolated 
fibers. A large scatter in data is reported depending on the measuring procedure 
(Skowronski, 1991; Eriksson et al., 2006; Rohm et al., 2014), to mention a few.  

Recently, Marais et al. (2014) used polyamines dry-strength additives to alter the 
surface of the fibers in order to understand the mechanisms behind the strength 
enhancement. They presented experimental results on the strength measurement of 
interfiber joints with and without fiber modification, with the distribution of 
interfiber joint strengths following a heavy-tailed Weibull- or exponential 
distribution. It was unclear whether the difference in distribution could contribute 
to the considerable effects introduced into the mechanical properties on the sheet 
level (Marais and Wågberg, 2012). 

In the same fashion, automatic measurements of fiber morphologies may give 
differences in fiber length of up to 20% (Carvalho et al., 1997) in the data for the 
same pulp, depending on the technique and the definition of the average values 
(viz. numerical mean, length-weighted or weight-weighted) adopted. As a result, 
length-weighted data are more commonly used, since it does not significantly 
depend on the fraction of fines‡, and correlates better with paper properties 
(Paavilainen, 1990).  

Here, we study numerically the effect of various bond strength distributions in 
relation to mechanical properties of paper. We resort to utilizing the fiber network 
model presented in our earlier studies (Kulachenko and Uesaka, 2012; Borodulina 

† Zero span tensile index that characterizes strength of fibers (Bronkhorst and Bennet, 2002) 
‡ Small fractions of pulp with lengths shorter than 0.2 mm 
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et al., 2012). In addition to bond properties, we study the effect of variability in 
fiber morphologies, which can readily be captured, but is rarely used in terms of 
distribution. For this work, we developed the procedure of reconstructing the 
three-dimensional (3D) network to ensure that the structural characteristics of the 
networks resemble the experimental sheets used in the verification of the model. 

2. Methods 

We model paper as a 3D network of interconnected fibers. There have been a 
number of studies approaching paper material on this scale using two-dimensional 
fiber networks (Räisänen et al.,  1996; Niskanen et al.,  1999; Hägglund and 
Isaksson, 2008). A full 3D network model is required for a more realistic 
representation of paper structure, accurate estimation of the bonds, and capturing 
the energy stored in out-of-plane deformation of the fibers and fiber bonds. Few 
steps have been taken in modeling 3D fiber networks (Wang and Shaler, 1998; 
Nilsen and Zabihian, 1998; Heyden, 2000; Kulachenko and Uesaka, 2012; Wilbrink 
et al., 2013). For this particular study, the principal advantage of 3D models is the 
ability to assess the contribution of real fiber data to the fiber connectivity inside 
the network. In addition, we endeavor to provide a thoughtful description of the 
mechanical and structural aspects of the 3D fiber networks, which will enable us to 
verify it against the physical tests performed on the handsheets. 

 
2.1. Network reconstruction 
2.1.1. Fibers  
In order to simulate the paper material, we need to define a network of fibers with 
appropriate fiber geometries, orientations, and material properties. We consider a 
network of bonded dry fibers.  

We form the network of fibers numerically by a deposition technique 
(Kulachenko and Uesaka, 2012). For this purpose, we use fiber geometry data 
extracted by automatic fiber morphology analysis (FMA) characterization tools 
(Hirn and Bauer, 2006) in the wet state. As the fiber cross-section changes 
significantly upon pressing and drying, we refine the measured data with the help of 
X-ray tomography scans of the dry sheets.  

For all the measurements, we used the same unbleached commercial softwood 
kraft fiber pulp with removed fiber fractions that are smaller than 0.2 mm. These 
fractions were removed by mesh screening. Kraft fibers are usually chemically 
separated from wood; this process dissolves the phenolic resin (lignin) in the cell 
walls of fibers, making them flexible, resulting in overall good bonding properties. 
In all the computations, the fiber density was assumed to be 1430 kg/m3.  

In our model, each fiber is represented as a series of 3-node quadratic, 
geometrically non-linear Timoshenko/Reissner beam elements (Ibrahimbegovic, 
1995) with either solid or hollow rectangular cross-sections since fibers may have a 
non-circular or collapsed cross-section. After a mesh convergence study, the 
resulting element size was set to be 40 μm. The section properties were computed 
at two quadrature stations along the beam by the Gaussian integration over the 
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discretized beam cross-section (Fig. 1). The constitutive relations were evaluated at 
every integration point. Any coupling between torsional and axial deformation due 
to warping effects was neglected.  

 

 

Fig. 1 Beam element topology and supported fiber cross-sections with depicted quadrature stations and 
integration points. 

The finite element equations were solved by the implicit time integration scheme 
in a quasi-static regime. Prior to simulation and at the end of every converged sub 
step, we scanned the network for fibers that have one single or no connection at all 
to any other fiber. Additionally, isolated fiber islands (and all the elements forming 
these), which were not connected to the constrained fiber network, were eliminated 
from the system in order to alleviate ill-conditioned global stiffness matrix and 
convergence problems associated with it.  

Fig. 3 shows the extracted fiber geometry data from FMA, in terms of 
distribution of fiber width and fiber shape factor (i.e. the ratio between fiber end 
points AOB and fiber length AOB, schematically shown in Fig. 2). These 
geometrical data for fibers have been used as input parameters for network 
generation. Considering that the original fiber width from FMA is from the wet 
state, it is corrected according to µCT measurements of width and height for each 
cross-section. The fiber shape factor and fiber length data do not need to be 
corrected since the fiber length does not change considerably during paper drying. 

The cross-section characteristics of the fibers are adjusted by a cross-sectional 
shrinkage factor for each individual fiber and accompanied by appropriate width-
to-height ratios. 

 

Fiber shape factor 
AO B

c
AOB

′
=  
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Fig. 2. Definition of fiber shape factor.  

 
 

 a) b)  
Fig. 3. Fiber geometrical characteristics: a) fiber width extracted with fiber morphology analyzer (FMA) 

tools, and fiber width and height from micro-computed tomography (µCT), b) fiber shape factor from 
FMA. FMA measurements were performed on wet pulp; µCT was done on dry sheets. The heights of the 
bars have been normalized to give a unit area in total. 

In order to correct the cross-sectional data, we processed the scanned images of 
the sheets made of the considered kraft pulp using the micro-computed 
tomography (µCT) methods described elsewhere (Wernersson et al., 2014; 
Borodulina et al., 2016). These methods enable the extraction of images of fiber 
cross-sections in the dry state. From image analysis methods, we extract 
orientation, width, height, wall thickness and total area for each of the cross-
sections. We then use these data to fit a rectangle. The range of possible cross-
sections and fitted rectangles is demonstrated in Fig. 4. This rectangle is  in terms 
of width-to-height ratio (WH ratio) and fiber wall thickness, schematically 
illustrated in Fig. 4g. Typically, a large fraction of the fibers has nearly closed or 
collapsed cross-sections.  

 

 
a) 

 
b) 

 
c) 
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d) 

 
e) 

 
f) 

 

 
g) 

 

Fig. 4. Images of the actual fiber cross-section in paper: a,b) with and c) without a lumen, computed 
from X-ray tomograms. Geometrical representation of the same cross-sections defined by a rectangle with 
hollow d), e) and solid f) cross-sections. g) Model definition of the fiber geometrical characteristics for the 
cross-section with WH ratio of 2.9 (the computed average proportions are preserved). 

For the considered pulp, the mean WH ratio was 2.9 with a standard deviation 
of 1.78. Having cross-section information in this format gives us appropriate 
reference values for the numerical model. The detailed fiber data are summarized in 
Table 1. 
 

Table 1. Fiber geometrical data used in the network simulation, based on the direct measurement on 
wet pulp (FMA), on dry sheets (µCT) and numerical parameters in terms of length-weighted mean and 
standard deviation (SD) values. 

 Mean SD Source of data 
Fiber length, mm 2.34 0.90 FMA  
Fiber width, µm 23.83 7.09 FMA corrected by µCT 
Fiber wall thickness, µm 3.96 1.90 FMA corrected by µCT 
WH ratio, [-] 2.9 1.72 µCT 
Fiber shape factor 0.945 0.015 FMA 
Maximum interface angle§, º 5 - Numerical 

Radius swelling factor**, [-] 0.78 0.68 µCT 

Wall thickness swelling factor*, [-] 0. 528 0.31 µCT 

 
The constitutive response of the fibers was described by a bilinear plasticity 

model with the material parameters as listed in Table 2: 
 
Table 2. Fiber material parameters used in the network simulation. 

Elastic modulus, GPa Tangent modulus, GPa Yield stress, MPa 
30 10 150 

 
 
 

§ Defined in Fig. 7. 
** The ratio between dry and wet measured radius and wall thickness, respectively. 

20 um 
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2.1.2. Contact formulation 
A fiber-to-fiber bond is treated as a point contact between three-dimensional 
beams using a beam-to-beam contact formulation. In this formulation, bonds are 
treated as inseparable (adhesive) contact points. To detect the contact between the 
fibers, we used minimum distance algorithm (closest projection method), which 
iteratively solves a system of non-linear equations (Kulachenko and Uesaka, 2012). 
In this algorithm, the cross-sections of the fibers are treated as circular and rigid, 
with the diameter equal to the mean of the values of fiber width and height. This 
simplification makes the contact search algorithm very effective. The algorithms, 
which are capable of treating rectangular fibers are available in the literature, e.g. 
(Litewka and Wriggers, 2002). However, in the case of bonded fibers described by 
the point-wise contact, which captures the exact fiber cross-section during the 
contact search, these algorithms do not bring any considerable changes, but may 
affect the number of detected contacts.  

Although the same contact detection algorithm is used during generation and 
computation of the network, the discretization is changed after cutting the network 
to the target size. As a result of the changed discretization, initial interpenetration is 
detected in a number of contact interfaces even prior to loading phase. The initial 
interpenetration is recorded and is used as a permanent offset for the contact pairs. 
In this way, we ensured that the detected contacts with initial interpenetration 
appeared to be in the perfect contact and did not cause convergence problems.  

To force the inseparable contact constraint, one normal and two orthogonal 
tangential as well as rotational gaps are defined as follows:  
 

n 1 2( )u d r r= − +  
1 c o
t 1 1 1

1 ( )
2

u l ξ ξ= −  

θ θ θ= − = ⋅ − ⋅c c o o
n c o 1 2 1 2t t t t  

(2) 

 
where nu  is the normal gap, 1r  and 2r  are the radii of beams in contact, d  is the 
minimum distance between the centerlines of the beams determined by the contact 
search algorithm; 1

tu  is the tangential gap along the master beam, 1l  is the length of  
the master beam, c

1ξ  and o
1ξ  are current and initial dimensionless positions of the 

contact point along beam i  respectively ( [ 1,1]iξ ∈ − ); θn   is the in-plane rotational 
gap, θc  and θo  are current and initial angles between the tangents to the beams at 
the contact point, and c

it  and o
it  are current and initial unit tangent vectors to beam 

i  at the contact point. These parameters are shown in Fig. 5.  
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a)   b)  

c)  
Fig. 5. Schematic representation of two crossing beams in contact and penalty stiffness directions in a) 

normal direction; b) tangent direction and c) rotational direction. 

The second tangent slip 2
tu  is determined by projecting the computed slip along 

the slave beam to the directional vector o o
1 1= ×v t n  orthogonal to the tangent to the 

master beam and to the normal contact. An equivalent tangential slip is computed 

as ( ) ( )2 21 2
t t tu u u= +  and is later used in the cohesive relations, described in Section 

2.1.3. Similar to the in-plane rotational constraint, we constrain two other rotations 
at the point of contact. The contact rotations are not involved in the cohesive 
relations since the contribution from the contact moments to debonding is 
assumed to be significantly smaller than from contact forces as the fibers are 
immobilized by numerous constraints along their length.  

The principle of stationarity of energy potential is used to derive the finite 
element equations for the contact. To do so, the variations of normal and 
tangential gaps need to be calculated and linearized. Using some simplifying 
assumptions described in (Motamedian, 2016a, 2016b), we used an inconsistent 
linearization method and derived the tangent stiffness matrix for the contact 
element. As we showed earlier, this inconsistent formulation resulted in a simpler 
implementation and proved to be more stable and converge in less number of 
iterations for our application, especially when the load step size increases. 

It should be noted that due to the nature of the penalty method, a small 
interpenetration and elastic sliding will be present. As a result, the directions of the 
contact normal and tangents are updated at each iteration. During the deformation, 
the contact point can change location from one beam element to an adjacent one.  
In order to prevent convergence difficulties due to the changed normal upon such 
transition, we enriched the shape of contact surface using the adjacent nodes. This 

8 
 



was done in terms of 2 nodes located to the left and 2 nodes to the right from the 
given contact element, meaning that each contact element consisted of seven nodes 
in total. Similar methods are earlier employed by (Litewka, 2007). Alternative to this 
contact smoothing is using geometrically exact beams, which do not require such 
measures (Meier et al., 2016).  

A certain number of contact pairs in the generated networks appeared to be close 
to being parallel. It is known that in such cases, the closest point projection method 
for finding the contact point may yield multiple solutions or not converge at all. In 
case of multiple solutions, the contact status of the affected beams can change 
several times, which causes formidable convergence problems. To address this, 
different strategies have been proposed in the literature (Chamekh et al., 2014; 
Duville, 2012; Meier et al., 2016), some of which include treating such contact 
points with a point-to-surface contact or having a distributed line force instead of a 
point force. In our case, we put an experimentally determined threshold of 2 
degrees on the crossing angle between two beams and neglect all the contact pairs 
crossing at an angle below it. The estimated number of contacts removed due to 
this threshold was below 0.5% of the total number of contacts in the computed 
cases and was considered insignificant. If during the computation the closest point 
projection fails to yield a unique solution for a certain contact point, the fibers in 
that contact were considered debonded. The number of such cases summed up to 
less than 0.1% of all of the debonded contacts and had a negligible effect on the 
overall response of the network.  
 
 
2.1.3. Bonds 

We describe the mechanical bond behavior with traction-separation laws and 
model it with a cohesive zone model, which is based on the contact forces (the 
contact moments are not accounted for in the cohesive zone model). A mixed 
failure mode was . A schematic representation of the adopted bilinear cohesive 
zone model for the tangential direction is shown in Fig. 6a. In both the normal and 
tangential directions, denoted by subscripts n and t, respectively, the initial linear 
loading continues until the bond strength ( max

tF ) is reached (at the normal 
separation and slip displacement nu  and tu , where the latter is the effective 

displacement for both tangential directions 2 2
t t1 t2u u u= + ); followed by a linear 

softening behavior until failure (with critical displacement c
nu  and c

tu ). In this 
formulation, c

t tu u−  is the separation distance that reflects the bond damage in the 
tangential direction, which is 15% larger than that distance at strength (the same is 
valid for the normal direction). A contact is considered to be fractured when it 
reaches max

tF  and separated/debonded when it attains the critical displacement.  
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Fig. 6. The cohesive bond failure model in terms of a traction-separation diagram with linear softening, 

shown for the tangential direction. Unloading subsequent to damage follows the secant towards zero 
force. 

A linear traction-separation law includes the normal ( nF ) and the equivalent 
tangential ( tF ) force components: 

 
( )
( )

n n n

t t t

1

1

F K u D

F K u D

= −


= −
, (3) 

 
which are coupled through the damage parameter D . In order to account for the 
contribution from each direction into the separation through this damage 
parameter, we use a non-dimensional effective displacement β , which is defined 
through the separation- and slip-ratios as follows: 

 
22

tn

n t

uu
u uβ   = +   

   
, (4) 

 
where nu  and tu  are the calculated normal separation and tangent slip respectively 
(Fig. 6). The damage onset β  always exceeds 1, which effectively corresponds to 
the second power law energy criterion, if this condition is rewritten in terms of 
critical fracture energies. At the onset of damage, the damage parameter D  is equal 
to 0 and reaches 1 at the point of separation. In order to force the damage 
parameter D  to be compatible with a single mode failure, the following linear 
relationship is adopted: 

 
c
n

c
n n

1 uD
u u

β
β

 −
=  − 

. (5) 

 
Finally, in order to achieve separation in tangential and normal direction 

simultaneously, the normal contact stiffness was scaled as it is shown in 
Equation  5, 
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max c
n t

max cn t
t n

F uK K F u= ⋅  (6) 

 
to satisfy the following constraint: 

 
cc
tn

c
n n t

c
t

uu
u u u u

  
=   − −   

. (7) 

 
Since we assume linear damage evolution, any unloading after the damage 

initiation is always linear towards zero force and the value of the damage parameter 
before unloading is preserved in the subsequent reloading.  

The characteristics of bonds are summarized in Table 3. We assume a constant 
normal to the tangential ratio for bond strength at 0.25 in all the numerical tests. It 
should be noted that the contact parameters in the normal direction influence the 
results marginally, even when varied by a factor of 10 with respect to the 
corresponding parameters in the tangential direction. This is a manifestation of the 
fact that the overwhelming majority of the fibers fails in nearly pure shear mode in 
the considered cases.  

 
Table 3. Characteristics of bonds used in the network simulation. 

 Tangential direction Normal direction 
Bond strength, mN 11.00 2.75 
Bond stiffness, 109 N/m 8.90 8.00 
Separation distance, µm 1.56 0.35 

 
2.2. Network generation 

A three-dimensional network of fibers is numerically generated with deposition 
techniques (Kulachenko and Uesaka, 2012) with a custom code. To summarize the 
formulation, a number of specific features are considered: 

1) Fiber geometrical properties. A fiber is represented as a series of beam elements. 
The fiber geometry can either be selected randomly from the characterized pulp, 

or follow a prescribed length-weighted distribution. In either case, the data for fiber 
cross-sections acquired from FMA are corrected through µCT measurements; 
see Table 1. 

2) Fiber deposition. In order to create a symmetrical density profile with respect to 
the mid-surface, fibers are deposited on an imaginary flat surface from both sides. 
This method of fiber deposition is different compared to the network generation 
procedure in our earlier works (Borodulina et al., 2012; Borodulina et al., 2015), in 
which the deposition took place from one side only. The reason for this change is 
the relatively symmetric density profile of the handsheets discovered in the 
microtomography analysis, which cannot be recreated by depositing fibers from 
one side only. The fiber orientations and positions are assumed to be completely 
random, in order to secure the isotropic in-plane orientation of the fibers. A 
generated fiber is allowed to fall down on already-deposited fibers on the respective 
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side of the mid-plane. The contacts with other fibers are  through the contact 
search algorithm.  

During the deposition, the fibers are allowed to bend and wrap around other 
underlying fibers. The cross-section of the beams was oriented to have the height 
aligned with thickness direction before being deposited. A parameter referred to as 
the interface angle ϕ  ( Fig. 7), was used to control the degree to which the fibers 
can bend during the deposition. The interface angle, together with the WH ratio, 
affects the thickness of the network. In addition, we introduced a compressibility 
parameter that can be used to adjust the thickness of the network to the target 
value. This parameter was used to scale the coordinates of the fiber segments in the 
thickness direction and accounts for the fact that fibers can be compressed more in 
the bond region, mainly because the exact cross-section of the fiber in this region 
cannot be easily determined. We used both the compressibility parameter and the 
interface angle to match the spatial characteristics of the structure, as will be 
explained in the verification procedure.  

 

 
Fig. 7. Fiber interface angle as defined in the model. 

3) Network thickness. Since we work with a 3D network, the unevenness of the 
surfaces complicates the definition of the sheet thickness due to its roughness. The 
thickness is affected by fibers’ WH ratio (Fig. 4g) and/or interface angle ( Fig. 7), 
both of which define how well the fibers are pressed/conformed against each 
other. 

Within the presented model, we estimate the network thickness as follows. First, 
we calculate the average distance of all fiber segments ( z ) from the imaginary plane 
at zero distance ( 0z = ):  

 

1 1

f s

f sn n

ij
i j

z
z

n n
= ==
∑∑

, (8) 

  
where ijz  is the z - coordinate of the center of the j-th segment of the i-th fiber. The 
total number of fibers is fn , each having sn  segments. Similarly, we calculate z -

weighted average distance all fiber segments ( z ) from the same imaginary plane at 
zero distance: 
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1 1

1 1

( )
f s

f s

n n

ij
i j

n n

ij
i j

z
z

z

= =

= =

=
∑∑

∑∑
. (9) 

Hence, the thickness of the network is approximated as  
 

Network Thickness 2( )z z≈ + . (10) 
 
Using this method, we estimate the mean thickness of the scanned networks to 
be 57 µm. Although this value does not match exactly that measured with a caliper 
tool on the experimental sheets (44.9 µm), the proposed measure offers a 
reproducible way of comparing the thicknesses of the fiber networks. 
 

4) Network size. Both the fiber network strength and stiffness are size-dependent. 
While the size dependency in strength has a complex nature and follows a weakest-
link scaling law starting from certain size (Hristopulos and Uesaka, 2004), the size 
dependency in stiffness depends mostly on the average length of the fibers and 
appropriate boundary conditions. The representative size of a network was chosen 
from the size dependency tests, based solely on the network stiffness, to be 
10 mm × 4 mm. We confirmed experimentally that the relative difference between 
the stiffness of a 10 mm × 4 mm sample and that of a 20 mm × 20 mm specimen 
is less than 2%. A sample of the numerically generated network of fibers with 
isotropic orientation and basis weight of 27 g/m2 is presented in Fig. 8. The fibers, 
both with solid and open cross-sections, are visible in the thickness 
profile (Fig. 8b). The fraction of fibers with collapsed cross-sections is 
approximately 50%. 

 

a)  b)  
 
Fig. 8. Generated network (size 10 mm × 4 mm, basis weight of 27 g/m2, thickness 57 µm): a) in-plane 

fiber orientation, b) through-thickness profile. Network thickness is defined in between the red lines 
according to the proposed thickness calculation method. 

 
2.3. Evaluating the results of the simulation 
 

We use the following nomenclature. Paper strength (MPa) is the maximum point 
on the stress-strain curve, shown in Fig. 9, with corresponding strain value called 
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paper stretch (%). The slope of the initial linear part of the stress-strain curve is  as 
stiffness (GPa). The simulations are interrupted after at least 5% reduction in force 
from the peak region. This softening region is shown by a gray line in Fig. 9. 

 
Fig. 9. Stress-strain curve of the reference network with constant bond strength. Definition of 

“Strength”, “Stretch” and “Stiffness” nomenclature used throughout the article. The gray line represents 
the strain softening region. 

 

3. Results and Discussion 

3.1. Verification of numerical model  
 

We verified the numerical model using experiments conducted 
earlier (Borodulina et al., 2012). The extracted cross-section properties and 3D 
structure of the sheet (Borodulina et al., 2016) allowed us to fine-tune the 
deposition model in order to match the connectivity data and density profile of the 
sheets. These sheets were first mechanically tested and later scanned with X-ray 
microtomography. The experimental data were available for these laboratory sheets 
made of well-characterized pulp. The sheets had the dimensions of 
10 mm × 4 mm × 44.9 µm and grammage†† of 27 g/m2. A relatively small size of 
the sheets made it possible to perform direct simulation on the numerical samples 
having the same size.  

We used three measures to ensure that the deposition model generated a 
representative network. By manually fitting to these measures using the parameters 
of the deposition model, i.e. the interface angle and compressibility coefficient, we 
ensured that the generated networks are fairly close to the sheets used in the 
experiments. These three measures are: 

1) Network thickness and a number of contacts (NoC) per unit area. We can 
match them exactly. However, these are two scalar parameters, therefore, they 
do not give much information about 3D connectivity inside the network.  

†† Grammage is basis weight, defined as mass per unit area, usually expressed in units of grams 
per square meter. 
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2) Through-thickness density profiles (Fig. 10). A similar porosity profile was 
previously reported by Bloch et al. (2006) who performed simple optical 
profilometry of different paper grades. Porosity can be seen as inversely 
proportional to density. 

 

a)  

b)  
Fig. 10. Comparison of the reconstructed network properties with those extracted from two µCT 

samples denoted as µCT1 and µCT2 respectively. a) Density profile. b) Distance distribution between non-
bonded fibers crossing in the top view. 

3) Distances between unconnected fibers that cross in the top view. These 
distances are measured in the thickness direction and characterize a spatial 
arrangement of the fibers in 3D. The results on fiber-to-fiber distances from 
µCT samples and reconstructed networks are presented in Fig. 10b. The 
results from the generated network compare well to those extracted from µCT 
in terms of the mean value of the distance and the shape of the distribution. A 
relatively large number of fibers that have short distances in µCT 
measurements can be explained by missed contacts from the contact 
identification algorithm during processing of µCT images (Wernersson et al., 
2014).  
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For the final verification with the experimental tensile test, we simulated the 

stress-strain curve of the reconstructed network. The conversion from a specific 
stress (kN·m·kg-1) of the experimental data to traditional stress values in MPa was 
performed using the sample thickness measured with µCT (44.9 µm). The 
numerical experiments were displacement-controlled and the boundary conditions 
were similar to those used in the physical experiments performed on the cut 
samples of identical size. The nodes crossing the left boundary were constrained in 
all 6 degrees of freedom (3 translational displacements and 3 rotations). At the right 
boundary, all the degrees of freedom were constrained apart from the translational 
displacement xu , which was gradually increased until the sufficient softening in the 
tensile response was reached (Fig. 8a). The considered network structures were not 
periodic and the free boundaries in the cross-direction remained unconstrained. 
The results of the comparison are presented in Fig. 11. 

 
Fig. 11. Stress-strain curve of the experimental laboratory sheets (Borodulina et al., 2012), compared to 

the reference network with constant bond strength.  

As can be seen in Fig. 11, all the parameters (i.e. tensile stiffness, strength, and 
stretch) are well captured with the chosen fiber and bond constitutive properties 
presented earlier in Table 2 and Table 3, as well as with the reconstructed geometry 
of the network.  

Without changing the properties of the generation procedure, we also compute 
the network of greater grammage of 65 g/m2 and compare to the experimental 
results obtained by the standard tensile test on 100 mm × 15 mm strips. The results 
of this comparison are summarized in Table 4. 

 
Table 4. Comparison of experimental and network simulation data for sheets with a grammage of 65 

g/m2. 

Stiffness, GPa Strength, MPa 
experiment simulation experiment simulation 

3.21 2.82 28.1 31.54 
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The numerical results show good agreement with the experiment. Note, the 
physical size of the experimental sample was larger, which explains the lower 
strength of the sample. 
 

3.2. Effect of variation in fiber properties  

The pulp data are usually expressed in length-weighted averages. These values are 
used for assessing the quality of the pulp and for benchmarking purposes. In this 
section, we assess whether using the length-weighted values is a justified strategy in 
relation to their impact on the mean values of the strength and stiffness of the 
networks. 

In our numerical tests, we worked with the sheets generated by the deposition 
technique. The reference networks are based on data from the original pulp, 
characterized with respect to their geometrical properties, as discussed in the 
previous section. We compared the mean values of tensile strength, stiffness, and a 
stretch of the networks made of the original pulp with the networks where fibers 
had equal properties, such as length, diameter, wall thickness and shape factor. In 
every case, we considered five network realizations having the same (length-
weighted) mean fiber properties with isotropic orientation. 

In the study of fiber length distribution, the size of the computed network 
affected the fiber length distribution through “cutting” the fibers at the boundaries. 
Therefore, achieving a sharp distribution with a limited size is infeasible. Fig. 12 
shows the length distribution in the sheet made of the original pulp and that made 
of fibers having the same length. Both networks were numerically cut to the size of 
10 mm × 4 mm from a larger sample. It is possible to observe the fraction of cut 
fibers in the corresponding histogram. However, it is clear that the distribution is 
more uniform with the largest fraction of fiber volume having the same length.  

 

 
Fig. 12. Fiber length distribution in the cut sample for the study case “Equal fiber length,” compared to 

the original fiber length distribution in the pulp. 
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In Table 5, we present the values of fiber properties that were kept constant 
during individual study cases. These were taken from the data of the considered 
pulps and specified earlier in Table 1. 

 
Table 5. Specified variation in fiber properties used in the simulations. In all study cases, only one 

parameter was kept constant, the value of which is indicated in the corresponding column. The other 
parameters were subject to their natural variation according to the measured data.  

Equal length, mm Diameter, µm Wall thickness, µm Shape factor, [-] 
2.34 23.83 3.96 0.945 

 
The results of the simulated stress-strain curves of different fiber properties are 

shown in Fig. 13 for two different grammages, 27 and 65 g/m2. Each curve 
represents the mean of five simulated networks with the standard deviation shown 
by error bars: vertical for stress and horizontal (in bold) for strains. The softening 
parts of the curves were discarded. For an easier understanding of the trends, we 
have illustrated the results with the help of the bar plots in Fig. 13, showing the 
relative difference in results with respect to (w.r.t.) the reference case based on the 
original, unmodified pulp. 

a) b)  
Fig. 13. Stress-strain curves for networks with different fiber properties according to Table 6, shown for 

a) 27 g/m2 and b) 65 g/m2. Vertical error bars characterize standard deviation in stress, while the standard 
deviation in strain is presented by a thick horizontal error bar.  

Fig. 13 and 14 indicate that the fiber shape factor and fiber length equalization 
have the largest impact on both the strength and stiffness of the network, while 
other fiber parameters do not affect the average network properties to the same 
extent. Similar trends for length and shape factors are seen for both lower and 
higher grammages. Removing cross-sectional variation gave a positive impact only 
for the higher grammage. From Fig. 14a, it can be seen that fixing certain fiber 
geometrical properties during network generation changes the number of contacts. 
To single out the effect of the change in the number of contacts for the other three 
cases (i.e. “Diameter”, “Wall thickness” and “Shape factor”), we assigned the same 
number of contacts in all the considered networks. After computing the initial 
position of the contacts prior to applying the load, a small fraction of the excessive 
contact points was removed uniformly across the networks to arrive at exactly the 
same number of contacts in all the generated networks. The removal was 
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performed by removing the corresponding contact pairs and all the contact 
elements associated with them prior to computations. This ensured that the fibers 
from the removed bonds could no longer be in contact during the analysis. Fig. 14b 
shows the results in the case when the number of contacts was the same on all the 
networks. Fixing the number of contacts in the network decreases the effect of the 
length and shape factor, proving that the observed differences both in strength and 
stiffness were caused by the changed number of contacts. 

a) b)  

c)  
Fig. 14. Effect of the distribution of fiber properties on the average network properties (i.e. strength, 

stiffness, strain at failure (stretch), network thickness and number of contacts) with a) & c) original and b) 
fixed predefined number of contacts, shown for a) & c) 27 g/m2 and b) 65 g/m2. The relative difference 
in the average properties is calculated with respect to the “Original pulp” values used as a reference.  

To a large extent, the effect of the shape factor (manifested in the reduction of 
network stiffness, and strength) remained unchanged, even after we eliminated the 
effect of the number of contacts. This can be explained by the fact that in networks 
composed of fibers that have the same shape factor, a greater fraction of energies is 
stored in bending type of deformation and in contact regions. Fig. 15 shows how 
the percentage of longitudinal, bending and contact energy changes during the 
deformation in “Original” and “Shape factor” test cases. (A fraction of shear 
energy stored in fibers was negligible.) Compared to the original case, the 
percentage of energy stored in longitudinal deformation of the fibers was decreased 
by 20% and shared between the bending deformation and contact regions, in 
particular, prior to failure. As bending is a more compliant form of deformation, it 
is reflected in the decreased stiffness. At the same time, more energy is stored in 
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contacts, meaning the contacts experience greater stress levels; which is the cause 
of lower network strength. 

 

a) b)  
 

Fig. 15. The fraction of energies with respect to the total energy along the averaged stress-strain curve, 
shown for a) “Original” and b) “Shape factor” test cases for networks of 27 g/m2 with fixed number of 
contacts.  

The coefficient of variation (COV) for the considered cases is presented in Table 
6. 

 
Table 6. Effect of variation of fiber parameters on the properties of networks of 27 g/m2 and 65 g/m2 

grammages. The lowest and highest values are emboldened and colored differently. 

 COV in 
Strength [%] 

COV in 
Stretch [%] 

COV in 
Stiffness [%] 

COV in  
NoC [%] 

COV in 
Thickness [%] 

27 g/m2  a) With number of contacts  by contact search algorithm 
Original pulp 8.31 8.92 3.13 3.43 1.73 
Equal length 7.63 5.19 4.18 5.36 2.69 
Diameter 5.32 9.84 6.30 1.87 2.15 
Wall thickness 4.67 11.63 1.54 1.15 0.96 
Shape factor 6.41 2.80 6.80 3.56 3.19 

27 g/m2 b) With fixed number of contacts equal to the Original pulp case 
Original pulp 5.76 11.30 2.57 0 1.73 
Equal length 8.28 11.82 3.42 0 2.69 
Diameter 6.30 15.24 5.40 0 2.15 
Wall thickness 5.00 13.69 1.44 0 0.96 
Shape factor 4.74 4.63 5.98 0 3.18 

65 g/m2  c) With number of contacts  by contact search algorithm 
Original pulp 3.78 9.03 1.74 2.56 0.85 
Equal length 3.66 13.10 2.39 3.20 1.38 
Diameter 4.45 7.02 3.38 1.61 1.19 
Wall thickness 1.62 3.80 1.15 1.39 1.14 
Shape factor 3.48 6.14 1.53 1.81 1.33 

 
Interestingly, the original pulp gave the highest variation in strength for the low-

grammage network with the original number of contacts. At the same time, 
assigning a uniform fiber wall thickness gave the lowest variation in strength for 
both the low and high grammage networks. The coefficient of variation was 
reduced by the increased grammage for all the properties, which emphasizes the 
role of the thickness for strength variations. It should be noted that the number of 
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considered samples was insufficient to draw solid conclusions concerning the 
effects on strength variations; this question will be addressed separately.  

 

3.3. Effect of the variation in bond strength 

Fibers are bonded in the network in a very complex process: the bond strength 
depends on a number of factors, including the fiber type, fiber surface roughness, 
fiber alignments and eventual details of the bond geometries. A large variation in 
data for the measured bond strength in artificially created bonds has been reported. 
The values for bond strength vary in the range of 1–60 mN (Magnusson et al., 
2013; Fischer et al., 2013). Remarkably, a large number of artificially created bonds 
showed a rather low value of the bond strength; the results of bond strength 
measurements resembled a gamma distribution. The experimental findings 
presented in the literature raise the question as to the importance of the 
distribution of bond strength compared to mean values.  

To address this question, we performed a controlled numerical study in which we 
tested five cases of various bond strength distributions:  

1) The reference case with a uniform bond strength of 11 mN across all the 
bonds in the network. 

2) The network with the bonds having a strength that varied according to a 
Gamma distribution, yet having a mean value of 11 mN and standard 
deviation of 5.45 mN. 

3) Same as 2) but with a truncated Gaussian distribution, using the same mean 
value and standard deviation of 11 mN and 5.45 mN, respectively.  

4) An L-shaped gamma distribution with a mean value of 11 mN and standard 
deviation of 10 mN. 

5) Random distribution with the same mean value of bond strength of 11 mN. 
In all the tests, we kept the network structures the same; that is, we considered the 
effect of the changed bond properties with a set of five networks per each 
distribution.  

The considered distributions from cases 2–5 are shown in Fig. 16. Note that cases 
3 and 4 resemble the measured bond strength distribution for bonds with and 
without strength additives presented by Marais et al. (2014). 
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Fig. 16. Distributions for tangential bond strength utilized in the simulation based on experimentally 

measured bond strength values of Marais et al. (2014). A constant normal to the tangential ratio for bond 
strength is assumed to be 0.25 in all the numerical tests. 

Fig. 17 shows the stress-strain response of networks with the considered four 
different bond strength distributions compared to the reference case having 
constant bond strength, computed for low and high grammage sheets. Each curve 
represents the mean of five simulated networks with the standard deviation shown 
by error bars. The interval for recorded stretch is shown with a bold horizontal 
line. Remarkably, despite the difference in bond strength distributions and standard 
deviations, the computed mean strength was nearly the same, considering that the 
mean value of the bond strength is retained. The only exception is the L-shaped 
Gamma distribution of bond strength, which yielded a noticeably lower strength of 
the networks. Similar results were observed for handsheets of never-dried, 
unbleached kraft fibers from spruce, with bond strength following a comparable 
distribution shape with an observable difference in strength of up to nearly 50% 
compared to a different bond strength distribution (Marais and Wågberg, 2012). 
The trends seen in the lower grammage sheets are preserved in the higher 
grammage sheets. These results are presented in Fig. 18 in the form of relative 
difference (in percentages) for strength, stiffness and stretch with respect to the 
case of uniformly constant bond strength.  

a) b)  
Fig. 17. Stress-strain curves for the networks with different distributions of bond strength according to 

Fig. 16, shown for a) 27 g/m2 and b) 65 g/m2. Vertical error bars characterize stress, while the standard 
deviation in strain is presented by a horizontal error bar in bold.  
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a) b)  
Fig. 18. Effect of bond strength distribution on the average network properties, shown for a) 27 g/m2 

and b) 65 g/m2. The relative difference in the average properties is calculated with respect to the 
“Constant bond strength” values. 

It can be seen from Fig. 18 that the stiffness of the network is completely 
unaffected. Only the L-shaped Gamma distribution led to a considerable reduction 
in strength (15–20%) for networks of the considered grammages, while the 
influence of the other distributions was not significant. It should be noted that the 
number of contacts remained unchanged in all these cases. The L-shaped Gamma 
distribution resembles that recorded by Marais et al. (2014). However, judging by 
the degree by which it changed in the simulations, we can conclude that the nearly 
50% difference in strength observed on the sheet level by Marais and 
Wågberg (2012) cannot be explained by differences in the measured distributions 
alone.  

In Table 7, the computed coefficients of variations in the bond strength variations 
case studies are presented. Interestingly, the coefficient of variations decreased in 
strength and stiffness but remained almost the same in the stretch with increased 
grammage.  

 
Table 7. Effect of the variation of fiber-to-fiber bond parameters on the properties of networks of 

27 g/m2 and 65 g/m2 grammages. The lowest and highest results are emboldened and colored differently.  

 COV in Strength 
[%] 

COV in Stretch  
[%] 

COV in Stiffness  
[%] 

27 g/m2    
Constant bond strength 8,30 8.92 3.13 
Truncated Gaussian 8.35 10.21 3.15 
Gamma 8.97 10.53 3.13 
L-shaped Gamma  7.46 10.63 3.20 
Random 8.32 10.49 3.11 

65 g/m2    
Constant bond strength 3.78 9.03 1.74 
Truncated Gaussian 3.37 7.92 1.66 
Gamma 3.44 8.33 1.65 
L-shaped Gamma 2.71 8.01 1.65 
Random 3.70 9.50 1.64 

 
In order to assist further interpretation of the difference in results between 

distributions, we first consider the rate at which the bonds broke under the selected 
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distributions of bond strength. The number of broken bonds can be related to the 
intensity of network fracture. Experimentally, this parameter can be approached, 
for example, by acoustic emission methods applied during paper straining, where 
the bond breakage is recorded by energy release (Salminen et al., 2002; Henriksson 
et al., 2008; Gradin et al., 2008). This method records very few events prior to the 
final fracture. However, the interpretation of experimental results is not 
straightforward, since the method is often unable to pick up events with low 
emitted energies. In our numerical methods, we can observe the number of 
fractured bonds even at the very beginning of network fracture. 

We estimate the number of debonded contacts with respect to the total number 
of contacts (kept constant for all the networks) as a function of the applied tensile 
strain, presented in Fig. 19.  

 
Fig. 19. Percentage of completely debonded contacts; circle represents the point of network failure.  

Despite the fact that all the considered distributions resulted in more or less the 
same strength, the processes on the bond level, controlling the damage, were very 
different. In the network with a Gaussian distribution of bond strength, the bonds 
started to fail immediately with the applied strain at an almost linear growth rate. 
As expected, the largest number of debonded contacts occurs in networks with an 
L-shaped Gamma bond strength distribution with a large portion of weak bonds. 
In contrast, the network with a uniform constant strength had a relatively small 
fraction of bonds broken prior to failure, and the growth rate was exponential.  

Another question that requires separate discussion are the observed differences in 
the mean stretch, which is an important factor in many applications. We compared 
the strain fields in the networks. This was effected by extracting the nodal 
displacements for fiber segments and mapping them on a regular square mesh, 
acting as a coordinate grid. The mapped displacement field is then smoothed over 
all the data points using a Butterworth filter. We compared the same networks 
computed with constant bond strength and L-shaped Gamma bond strength 
distributions, at a point of maximum stress on the stress-strain curve: Fig. 20c.  
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a)  

b)  
 

           c)      
                          

Fig. 20. Strain field in the fiber network of 27 g/m2, shown for two cases: a) constant bond strength, 
and b) varied bond strength according to the L-shaped Gamma distribution. The color bar represents the 
strain values. The results were collected upon reaching the network strength at the point marked by “x” in 
c). 

Since the difference in the two numerical study cases, presented in 
Fig. 20a and 20b, is only in the bonding properties (constant vs. varied bond 
strength, keeping the same mean values), we can conclude that the fracture path is 
not affected by the change in bond strength distribution. At the same time, the 
unsymmetrical distribution in fiber bond properties makes the intensity of the 
strain localization smaller at the point of maximum stress along the stress-strain 
curve. This observation can be explained by the fact that the presence of a large 
number of weak bonds and their early failure allows for a more even strain 
distribution across the network.  
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4. Conclusions 

We have approached the question of the effect of variability in the fiber and bond 
properties on the mean values of stiffness and strength of the network of fibers by 
conducting consistent numerical experiments using 3D models.  

Our numerical model was verified against the experimental data, yielding a very 
good agreement. During the verification procedure, the numerical pulp (i.e. the 
assembly of fibers) was used to reconstruct the laboratory sheets. The cross-
sectional geometry of the dry fibers was corrected using microtomography scans.  

We found that the details of the strength distribution among the bonds in the 
network did not influence significantly the mean values of strength or stiffness of 
the network of fibers, as long as the distribution of bonds strength did not become 
extremely asymmetric with respect to mean value, such as in the case of a Gamma 
L-shaped distribution. This means that comparing the average bond strength 
having a sufficient number of samples is an adequate strategy, only if the bond 
strength distribution is close to being symmetric. The mean stretch is increased in 
the presence of bond variability, which is attributed to more uniform strain transfer 
during strain localization in the network when weak bonds fail prior to reaching the 
strength limit.  

The length-weighted fiber properties are often used as quality criteria for paper 
pulp. We found that among the fiber geometries, the variability in length-weighted 
fiber shape factor and fiber lengths have a major effect. In particular, the network 
composed of fibers having the average length-weighted fiber shape factor constant 
had over 20% reduced strength and stiffness. This was partly due to the altered 
number of contacts, but mostly due to the increased contribution of bending 
deformation mode in the fibers. At the same time, reducing the length-weighted 
variation of fiber length had an observable positive effect on the average strength 
and stiffness. In the case of the fiber length, the effect is mostly attributed to the 
increased number of contacts as we found through equalizing their number across 
all the networks. Eliminating the variability in fiber cross-section brought little or 
no effect compared to the fiber length and the shape factor, even with the observed 
reduction in the number of contacts upon using the uniform distribution of fiber 
cross-sectional properties. The effect of the shape factor was found to be due to 
the increased percentage of energy stored in bending of fibers and in contact 
regions. This means that in benchmarking the characterization data, the variation in 
length and fiber shape factors should be given separate attention. 

These conclusions are drawn for isotropic sheets with two different grammages, 
27 and 65 g/m2, composed of unrefined fibers.  

 
 
Acknowledgments 

We gratefully acknowledge the competence center BiMaC Innovation and 
WoodWisdom ERA-NET program (PowerBonds project) for financial support of 
this work. 
 

26 
 



 
References  
Alava, M., Niskanen, K., 2006. The physics of paper. Reports Prog. Phys. 69, 669–

723. 

Bloch, J.-F., Rolland Du Roscoat, S., Mercier, C., Vernhes, P., Pineaux, B., Blayo, 
A., Mangin, P., 2006. Influence of paper structure on printability: 
characterisation of paper using X-ray synchrotron microtomography, in: 22nd 
International Conference on Digital Printing Technologies (NIP 22). Denver, 
United States. 

Borodulina, S., Kulachenko, A., Galland, S., Nygårds, M., 2012. Stress-strain curve 
of paper revisited. Nord. Pulp Pap. Res. J. 27, 318–328. 

Borodulina, S., Kulachenko, A., Tjahjanto, D.D., 2015. Constitutive modeling of a 
paper fiber in cyclic loading application. Comput. Mater. Sci. 110, 227–240. 

Borodulina, S., Wernersson, E.L.G., Kulachenko, A., Hendriks Luengo, C.L., 2016. 
Extracting fiber and network connectivity data using microtomography images 
of paper. Nord. Pulp Pap. Res. J. 31. 

Bronkhorst, C.A., Bennet, K.A., 2002. Deformation and failure behaviour of paper, 
in: Mark, R.E., Habeger, C.C.J., Borch, J., Lyne, M.B. (Eds.), Handbook of 
Physical Testing of Paper. Marcel Dekker, Inc., New York, pp. 313–427. 

Carvalho, G.M., Ferreira, P.J., Martins, A.A., Figueiredo, M.M., 1997. A 
comparative study of two automated techniques for measuring fiber length. 
Tappi J. 80, 137–142. 

Chamekh, M., Mani-Aouadi, S., Moakher, M., 2014. Stability of elastic rods with 
self-contact. Comput. Methods Appl. Mech. Eng. 279, 227–246. 

Duville, D., 2012. Contact-friction modeling within elastic beam assemblies: An 
application to knot tightening. Comput. Mech. 49, 687–707. 

Eriksson, M., Torgnysdotter, A., Wågberg, L., 2006. Surface modification of wood 
fibers using the polyelectrolyte multilayer technique: Effects on fiber joint and 
paper strength properties. Ind. Eng. Chem. Res. 45, 5279–5286. 
doi:10.1021/ie060226w 

Fischer, W.J., Zankel, A., Ganser, C., Schmied, F.J., Schroettner, H., Hirn, U., 
Teichert, C., Bauer, W., Schennach, R., 2013. Imaging of the formerly bonded 
area of individual fibre to fibre joints with SEM and AFM. Cellulose 21, 251–
260. doi:10.1007/s10570-013-0107-0 

Gradin, P., Graham, D., Nygård, P., Vallen, H., 2008. The use of acoustic emission 
monitoring to rank paper materials with respect to their fracture toughness. 
Exp. Mech. 48, 133–137. doi:10.1007/s11340-007-9055-7 

Hägglund, R., Isaksson, P., 2008. On the coupling between macroscopic material 
degradation and interfiber bond fracture in an idealized fiber network. Int. J. 

27 
 



Solids Struct. 45, 868–878. 

Henriksson, M., Berglund, L.A., Isaksson, P., Lindström, T., Nishino, T., 2008. 
Cellulose nanopaper structures of high toughness. Biomacromolecules 9, 
1579–1585. doi:10.1021/bm800038n 

Heyden, S., 2000. Network modelling for the evaluation of mechanical properties 
of cellulose fluff. Ph.D. Thesis, Lund University. 

Hirn, W., Bauer, U., 2006. A review of image analysis based methods to evaluate 
fiber properties. Lenzinger Berichte 86, 96–105. 

Hristopulos, D.T., Uesaka, T., 2004. Structural disorder effects on the tensile 
strength distribution of heterogeneous brittle materials with emphasis on fiber 
networks. Phys. Rev. B 70, 64108-64108–18. 

Ibrahimbegovic, A., 1995. On finite element implementation of geometrically 
nonlinear Reissner’s beam theory: three-dimensional curved beam elements. 
Comput. Methods Appl. Mech. Eng. 122, 11–26. 

Kulachenko, A., Uesaka, T., 2012. Direct simulations of fiber network deformation 
and failure. Mech. Mater. 51, 1–14. doi:10.1016/j.mechmat.2012.03.010 

Litewka, P., 2007. Hermite polynomial smoothing in beam-to-beam frictional 
contact. Comput. Mech. 40, 815–826. 

Litewka, P., Wriggers, P., 2002. Contact between 3D beams with rectangular cross-
sections. Int. J. Numer. Methods Eng. 53, 2019–2041. 

Magnusson, M.S., Zhang, X., Östlund, S., 2013. Experimental evaluation of the 
interfibre joint strength of papermaking fibres in terms of manufacturing 
parameters and in two different loading directions. Exp. Mech. 53, 1621–1634. 
doi:10.1007/s11340-013-9757-y 

Marais, A., Magnusson, M., Joffre, T., Wernersson, E.G., Wågberg, L., 2014. New 
insights into the mechanisms behind the strengthening of lignocellulosic 
fibrous networks with polyamines. Cellulose 21, 3941–3950. 
doi:10.1007/s10570-014-0421-1 

Marais, A., Wågberg, L., 2012. The use of polymeric amines to enhance the 
mechanical properties of lignocellulosic fibrous networks. Cellulose 19, 1437–
1447. doi:10.1007/s10570-012-9712-6 

Marulier, C., Dumont, P.J.J., Orgéas, L., Rolland du Roscoat, S., Caillerie, D., 2015. 
3D analysis of paper microstructures at the scale of fibres and bonds. Cellulose 
22, 1517–1539. doi:10.1007/s10570-015-0610-6 

Meier, C., Popp, A., Wall, W.A., 2016. A finite element approach for the line-to-line 
contact interaction of thin beams with arbitrary orientation. Comput. Methods 
Appl. Mech. Eng. 308, 377–413. 

Motamedian, H.R., 2016a. Robust formulations for beam-to-beam contact. 

28 
 



Licentiate Thesis. 

Motamedian, H.R., 2016b. Beam2Beam, Matlab Central. 

Nilsen, N., Zabihian, M., 1998. KCL-PAKKA: a tool for simulating paper 
properties. Tappi J. 81(5), 163–166. 

Niskanen, K.J., Alava, M.J., Seppälä, E.T., Åström, J., 1999. Fracture energy in fibre 
and bond failure. J. Pulp Pap. Sci. 25, 167–169. 

Paavilainen, L., 1990. Importance of particle size - fibre length and fines - for the 
characterization of softwood kraft pulp. Pap. ja puu 72, 516–526. 

Page, D.H., 1969. A Theory for the Tensile Strength of Paper. Tappi 52, 674–681. 

Räisänen, V.I., Alava, M.J., Nieminen, R.M., Niskanen, K.J., 1996. Elastic-plastic 
behaviour in fibre networks. Nord. Pulp Pap. Res. J. 11, 243–248. 

Rohm, S., Hirn, U., Ganser, C., Teichert, C., Schennach, R., 2014. Thin cellulose 
films as a model system for paper fibre bonds. Cellulose 21, 237–249. 
doi:10.1007/s10570-013-0098-x 

Salminen, L., Tolvanen, A., Alava, M., 2002. Acoustic emission from paper 
fracture. Phys. Rev. Lett. 89, 185503-185503–4. 
doi:10.1103/PhysRevLett.89.185503 

Skowronski, J., 1991. Fibre-to-fibre bonds in paper. Part II: measurement of the 
breaking energy of fibre-to-fibre bonds. J. Pulp Pap. Sci. 17, 217–222. 

Wang, H., Shaler, S.M., 1998. Computer-simulated three-dimensional 
microstructure of wood fibre composite materials. J. Pulp Pap. Sci. 24, 314–
319. 

Wernersson, E.L.G., Borodulina, S., Kulachenko, A., Borgerfors, G., 2014. 
Characterisations of the fibre networks in paper using micro computed 
tomography images. Nord. Pulp Pap. Res. J. 29, 468–475. 

Wilbrink, D.V., Beex, L.A.A., Peerlings, R.H.J., 2013. A discrete network model for 
bond failure and frictional sliding in fibrous materials. Int. J. Solids Struct. 50, 
1354–1363. 

 

 

29 
 


	Abstract
	1. Introduction
	2. Methods
	2.1. Network reconstruction
	2.1.1. Fibers
	2.2. Network generation

	3. Results and Discussion
	3.1. Verification of numerical model

	3.2. Effect of variation in fiber properties
	3.3. Effect of the variation in bond strength
	4. Conclusions

