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Abstract: WxNbMoTa refractory high-entropy alloys with four different tungsten concentrations
(x = 0, 0.16, 0.33, 0.53) were fabricated by laser cladding deposition. The crystal structures of WxNbMoTa
alloys are all a single-phase solid solution of the body-centered cubic (BCC) structure. The size of the
grains and dendrites are 20 µm and 4 µm on average, due to the rapid solidification characteristics
of the laser cladding deposition. These are much smaller sizes than refractory high-entropy alloys
fabricated by vacuum arc melting. In terms of integrated mechanical properties, the increase of
the tungsten concentration of WxNbMoTa has led to four results of the Vickers microhardness,
i.e., Hv = 459.2 ± 9.7, 476.0 ± 12.9, 485.3 ± 8.7, and 497.6 ± 5.6. As a result, NbMoTa alloy shows a
yield strength (σb) and compressive strain (εp) of 530 Mpa and 8.5% at 1000 ◦C, leading to better
results than traditional refractory alloys such as T-111, C103, and Nb-1Zr, which are commonly used
in the aerospace industry.
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1. Introduction

With the rapid development of materials and manufacturing technologies in the aerospace
industry, the established macroscopic thermal protection theory and the existing traditional types of
the refractory alloy are difficult to meet the harsh requirements of the advanced aerospace industry.
Traditional alloy design is based on a metallic element with a mass fraction of more than 50% and the
comprehensive properties of the alloys are improved by adding trace elements. This system of alloy
design has reached the bottleneck after thousands of years of development.

In 2004, Taiwan scholar professor Yeh JW and his team [1] proposed the concepts of multi-principal
element alloys (MPEAs) and high-entropy alloys (HEAs). Generally, HEAs can be defined as a simple
and disordered structure of solid solution mixed by multi-elements of 5%–35% atom ratio, showing
specific characteristics, such as the high-entropy effect in thermodynamics and hysteresis diffusion
effect in dynamics [2,3]. These characteristics then contribute to the advantages of HEAs in such
aspects as high-temperature resistance [4], high strength and ductility [5,6], corrosion and radiation
resistance [7,8], providing more possible applications in the aerospace industry.

In the research field of refractory HEAs, researchers have conducted a series of studies on the
different refractory HEAs in strength and ductility at small scales [9,10], the relationship between grain
size and mechanical properties [11], thermodynamic properties [12] and the interplay among lattice
distortions, vibrations, and phase stability [13]. In 2011, Senkov, O.N. [14] produced the refractory
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HEAs with equiatomic concentrations, WNbMoTa and WNbMoTaV, via vacuum arc melting (VAM)
for the first time, obtaining a single-phase body-centered cubic (BCC) structure. Later on, he [4] found
that WNbMoTa and WNbMoTaV HEAs have better high-temperature yield strength than traditional
superalloys, namely Inconel 718 and Haynes 230. In 2017, after adding the equal mole titanium element,
Han [15] improved the ductility of WNbMoTa and WNbMoTaV through VAM at room temperature.
As a result, existing research is mainly aimed at revealing the nature or the characteristics of HEAs,
instead of being driven by engineering applications.

At present, refractory HEAs are mainly produced by the methods of VAM or powder metallurgy
(PM). Traditional manufacturing methods have difficulties in forming the HEAs with a large size,
a complex structure, and a variable composition. The technology of laser cladding deposition (LCD) is
the process that fuses the metal powders from points to layers and finally fabricates the parts according
to the three-dimensional model data. As an emerging technology, it has many unparalleled advantages
in forming refractory HEAs. One the one hand, refractory alloys can be melted rapidly due to the
high energy density of the laser, thus not limiting the forming size and structure. On the other hand,
the functionally gradient structure of the HEAs can be manufactured in any direction of the parts by
controlling the feeding rate of the different hopper, which can realize the macrostructure and micro
metallurgy synchronous manufacturing [16]. In 2016, Dobbelstein [17] prepared WNbMoTa HEA by
means of remelting in the process of LCD, analyzing its composition uniformity and macroscopic
segregation. Then, in 2018, Zhang [18] formed WNbMoTa HEA through selective laser melting (SLM)
and carried out the simulation of the finite difference-finite element (FD-FE) coupling in the SLM
forming process.

Special requirements of “high strength, low density” are put forward due to the severe
environment in aerospace. The high density of the tungsten element limits the application of the
refractory HEA with equiatomic concentrations, WNbMoTa, in the aerospace industry. Presented in
current work with the tungsten mole of 0%, 5%, 10% and 15%, and the remaining elements of the
equal mole, refractory alloy materials were formed by LCD, respectively. The purpose of the present
work is to recognize the relationships between mechanical behavior and the content of tungsten in
the WNbMoTa HEAs and to provide a feasible scheme for the possibility of large-size and complex
shaped gradient structures in the aerospace application.

2. Experimental Procedures

The four WxNbMoTa HEAs are referred to as x = 0, 0.16, 0.33 and 0.53, respectively. The deposition
of the four different tungsten mole alloys were fabricated by using the LCD-1000-a type of the coaxial
LCD system, which was independently designed and developed by the State Key Laboratory for
Manufacturing Systems Engineering at Xi’an Jiaotong University. The system was equipped with two
powder feeders, a 25 kW intermediate frequency induction heating auxiliary device and a standard,
industrial pulse JK802/1002 Nd:YAG laser (JK Lasers, Rugby, UK) with 1000 W maximum power,
which had a spot diameter of 500 µm at a central emission wavelength of 1064 nm. The diagram of the
LCD forming process is shown in Figure 1.

All experimental materials, including particles with sizes ranging from 45 µm to 125 µm elemental
tungsten (99.5 wt.%), niobium (99.78 wt.%), molybdenum (99.84 wt.%), tantalum (99.54 wt.%) metal
powders and Φ 20 mm × 80 mm of pure molybdenum substrates, were provided by Beijing AMC
Powder Metallurgy Technology Co., Ltd. (Beijing, China). The scanning electron microscope photos
of the four powders are shown in Figure 2 and the basic physical properties of the four elements are
shown in Table 1.
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Figure 2. Scanning electron microscope (SEM) images of four metal powders. (a) Tungsten powders, 
(b) niobium powders, (c) molybdenum powders, (d) tantalum powders. 

Table 1. The basic physical parameters of the four materials used in the alloy. 

Metallic Element. W Nb Mo Ta 
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Figure 2. Scanning electron microscope (SEM) images of four metal powders. (a) Tungsten powders,
(b) niobium powders, (c) molybdenum powders, (d) tantalum powders.

Table 1. The basic physical parameters of the four materials used in the alloy.

Metallic Element. W Nb Mo Ta

Relative Atomic Mass, u 183.84 92.9 95.94 180.9
r, Å 1.37 1.43 1.36 1.43

ρ, g/cm3 19.35 8.57 10.2 16.65
Hv 350 135 156 89

Tm, K 3695 2750 2896 3290
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The elemental metal powders of the four different tungsten mole alloys were accurately measured
by the electronic, analytical balance before the experiment. Powders were mixed for 4 h via SYH
three-dimensional motion mixer series to ensure that they were mixed evenly. Then, the mixed
powders were put into a vacuum oven at 120 ◦C to dry for 8 h in order to remove moisture and
enhance the liquidity of the powder. The atmosphere chamber was filled with Argon gas to ensure
that the oxygen content of the environment was lower than 80 ppm for the purpose of protecting the
powders from being oxidized during the forming process. The LCD processing parameters in the
experiments after optimizing were 565 W laser power, 8 mm/s scanning speed, 0.08 mm thickness of
the deposited layer, and 600 ◦C induction heating temperature. The substrates and the formed area
were heated during the forming process to reduce the internal stress.

The crystal structures of the four different tungsten mole alloys were identified on the cross-section
surfaces, using Bruker D8 Advanced A25 X-ray diffraction (XRD, Bruker AXS GmbH, Karlsruhe,
Germany) equipment. Taking advantage of a METTLER TOLEDO XS105 (Mettler-Toledo GmbH,
Zurich, Switzerland) analytical balance through the drainage method, the densities of the alloys
were measured. Microstructures were analyzed with the use of a TESCAN MIRA3 LMH scanning
electron microscope (SEM, TESCAN, a.s., Brno-Kohoutovice, Czech Republic) equipped with a
backscatter electron (BSE) and an energy dispersive spectroscopy (EDS) detector. The sizes and
orientations of the grains were determined by the electron back-scatter diffraction (EBSD) using
an SU3500 SEM (Techcomp (China) Ltd, Beijing, China). Vickers microhardness was measured on
polished longitudinal-section surfaces using an HXD-2000TMSC/LCD tester (Shanghai Taiming
Optical Instrument CO., Ltd, Shanghai, China) and the test parameter was applied for 30 s under
a 500 g load. Before the compression mechanical performance testing, the samples were cut into
pieces that were 4 mm in diameter and 6 mm in height, giving an aspect ratio of 1.5. The room
temperature compression test was conducted at 25 ◦C by a Sans CMT4304 multi-function static
experiment machine (MTS Systems (China) CO., Ltd, Shenzhen, China) at a strain rate of 0.001 s−1,
and the high temperature compression test was conducted at 1000 ◦C by Gleeble 3500 equipment.
In high temperature compression, the chamber was evacuated to 10−3 torr. The sample was heated
to 1000 ◦C in 3.5 min, soaked at this temperature for 15 min, and then compressed at a strain rate of
0.001 s−1.

3. Results and Discussions

The WxNbMoTa HEAs were fabricated by LCD, shown in Figure 3. NbMoTa, W0.16NbMoTa,
W0.33NbMoTa and W0.53NbMoTa ranged from left to right. Four groups of samples deposited by LCD
had a rectangular geometry with the size of 15 mm × 9 mm × 6 mm.
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3.1. Chemical and Phase Composition

The composition of the alloys, determined by EDS detector, is reported in Table 2. It can be found
that the composition of each alloy is close to the ratio of design, and the biggest deviation is the mole
of niobium in alloy 3, up to 2.6%. It shows that the composition uniformity is ensured and there is no
obvious macroscopic burning loss to the elements during the process of LCD.

Table 2. Chemical composition (in at.%) of four refractory alloys produced by LCD.

Alloy ID/element W Nb Mo Ta

NbMoTa 0% 31.26% 32.90% 35.84%
W0.16NbMoTa 5.80% 29.76% 30.86% 33.58%
W0.33NbMoTa 12.42% 27.40% 30.01% 30.17%
W0.53NbMoTa 14.95% 26.80% 27.62% 30.63%

The phase compositions of WxNbMoTa HEAs were checked by XRD patterns as shown in Figure 4.
All peaks on these X-ray patterns have been indexed and are congruent with a single BCC phase.
Meanwhile, there is no alternative phase found under the analysis of the XRD result. This result
indicates that these elements could still form the same BCC structures in spite of the varied lattice
parameters of the four elements. Four different tungsten mole alloys fabricated by LCD all have a
single-phase BCC crystal structure. Due to the texture effects caused by the grains within the X-ray
excited volume, the same peaks in the four alloys have shown the different relative intensities.
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Figure 4. X-ray diffraction (XRD) patterns of the WxNbMoTa alloys.

Yeh [1] proposed that HEAs should contain at least five elements, and that the entropy of mixing
(∆Smix) is the main factor that promotes the formation of a multicomponent solid solution. With further
research, WNbMoTa [14], NbTiVZr [19] quaternary equiatomic alloys and the ZrNbHf [20] ternary
equiatomic alloy are proven to be able to form typical HEAs. Therefore, the formation of the solid
solution in HEAs systems can be predicted in terms of the atomic size difference (δ), enthalpy of mixing
(∆Hmix) and other factors in addition to the entropy of mixing (∆Smix).
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Atomic size difference (δ) is determined by:

δ= 100

√
n

∑
i=1

ci(1−
ri

∑n
j=1 cjrj

)
2

(1)

where ci and cj are the atomic fractions of the i-th and j-th components, ri and rj are the atom radii of
the i-th and j-th components.

Entropy and enthalpy of mixing could be obtained by:

∆Smix = −R
n

∑
1

ci ln ci (2)

∆Hmix =
n

∑
i=1,i 6=j

Ωijcicj, Ωij = 4∆Hmix
AB (3)

where ∆Smix is mixing entropy change, ∆Hmix is mixing enthalpy mixing, R is constant gases, ∆Hmix
AB is

the enthalpy change of the binary liquid alloy composed of the components A and B in the regular
solution, which is calculated based on Miedema macroscopic model [21,22].

Zhang [3] proposed a new parameter to determine the ability of the solid solution formation of
the multi-component alloys. It consists of ∆Smix, ∆Hmix and can be defined as follows:

Ω =
Tm∆Smix
|∆Hmix|

(4)

Tm =
n

∑
i=1

ci(Tm)i (5)

where Tm is the average melting point of the alloy, (Tm)i is the melting point of i-th component.
Combined with δ and Ω parameters, statistical analysis has been made for a large number of known
solid solution HEAs. Then, the criteria for forming staple HEAs solid solution are [23,24]:

δ% ≤ 6.6%, Ω ≥ 1.1 (6)

The relevant parameters of four different tungsten mole HEAs are shown in Table 3. The calculated
parameters meet the criteria of solid solution formation and are consistent with the experimental
XRD patterns.

Table 3. The parameters, δ, ∆Smix, ∆Hmix, Tm and Ω for WxNbMoTa high-entropy alloys (HEAs).

Parameter/Alloy ID NbMoTa W0.16NbMoTa W0.33NbMoTa W0.53NbMoTa

δ, % 2.334 2.359 2.365 2.364
∆Smix, J·mol−1·K−1 9.14 10.33 10.93 11.28

∆Hmix, J·mol−1 −4.67 −5.22 −5.69 −6.07
Tm, K 2979 3015 3050 3086

Ω, 5.83 5.96 5.86 5.74

3.2. Density and Microstructure

The density of the alloys measured by the drainage method is reported in Table 4. According to
the theoretical density of the alloys, it can be calculated by the formula:

ρother =
∑ ci Ai

∑ ci Ai
ρi

(7)
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where ci, Ai and ρi are the atomic fraction, atomic weight and density of element i, respectively, and
calculated ρtheor value for the four different tungsten mole high-entropy alloys is also reported in
Table 4.

Table 4. Theoretical and experimental densities of the WxNbMoTa HEAs.

Alloy ID/Density Theoretical Density; g/cm3 Experimental Density; g/cm3

NbMoTa 11.913 10.486
W0.16NbMoTa 12.205 10.572
W0.33NbMoTa 12.595 10.634
W0.53NbMoTa 12.940 11.044

It can be seen that the experimental densities are lower than the theoretical densities in that many
spherical gas porosities appear inside the alloys during the process of LCD, which is shown in Figure 5.
In addition, the quality of the powders is different, owing to the different preparation methods of
metal powders. Figure 1 shows that the mechanically pulverized tantalum powders were spheroidized
through the technology of radio frequency plasma spherification, showing a good property in sphericity
and granule density, while the tungsten and niobium powders were not spheroidized after mechanical
grinding, leading to a higher granule density but a poor sphericity. Molybdenum powders were
prepared through granulation reunion. The sphericity of molybdenum powders is much better than
tungsten and niobium powders, but all of them are hollow, having nodular surfaces and containing
significant amounts of pores.
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The studies have shown that the granule density of powders is the main factor affecting the
gas porosities. Conclusions have been verified in Ti-6Al-4V, Inconel 718 and other powders’ forming
process [25–27]. During the forming process, the protective Argon gas from the powder feed system is
adsorbed in the pores of molybdenum powders, drawn into the forming part, forming a certain amount
of spherical and randomly distributed gas porosities. The appearance of porosities has no correlation
with microstructure features. In order to verify the above conclusions, the molybdenum powders with
high granule density and good sphericity were used to replace that used in the previous experiment,
shown in Figure 6. Then, the HEA was formed with the same process parameters to control a single
variable. The SEM image of the formed sample is shown in Figure 7 and the porosities disappeared.
This evidence strongly suggests that the granule density, instead of sphericity of powders, has a great
influence on the defects of porosities. Particle pores may directly contribute to deposit porosities.



Materials 2019, 12, 533 8 of 14
Materials 2018, 11, x FOR PEER REVIEW  8 of 14 

 

 

Figure 6. SEM image of the molybdenum powders with high granule density. 

 

Figure 7. SEM image of the HEAs used powders with high granule density. 

BSE images of the WxNbMoTa HEAs are shown in Figure 8. The microstructures of the 
WxNbMoTa are similar. The interior of the grain contains spheroidal dendrites (as the sub-structure 
of grain). Grains of about 20 μm in diameter and dendrites of about 4 μm in diameter can be seen. 
EBSD images of the NbMoTa HEAs formed in the process of LCD and VAM are shown in Figure 9. 
The grain size of NbMoTa fabricated by LCD is much smaller than that of NbMoTa fabricated by 
VAM and the growth way of grains is equiaxed crystals. Due to the characteristics of rapid 
solidification, the laser with high energy density fuses the metallic powders with a high melting point 
in a moment (10−3–10−2 s). The phase transition of powder materials from the liquid phase to the solid 
phase is so fast that it is easy to form fine grain, low constitutional segregation microstructure. 

This is compared to the HEAs produced by vacuum arc melting. According to the Hall-Petch 
relation, the yield strength or microhardness of materials has a negative linear correlation with grain 
size, when the grain size of testing materials is not ultrafine (≥1 μm) [28–32]. In engineering 
manufacture, large yield strength or hardness of the material may be attained by decreasing the grain 
size, while the characteristics of rapid solidification in LCD facilitate the formation of fine grain. 
Compared with traditional VAM manufacturing, the yield strength and microhardness of alloys by 
LCD are usually much better. 

Figure 6. SEM image of the molybdenum powders with high granule density.

Materials 2018, 11, x FOR PEER REVIEW  8 of 14 

 

 

Figure 6. SEM image of the molybdenum powders with high granule density. 

 

Figure 7. SEM image of the HEAs used powders with high granule density. 

BSE images of the WxNbMoTa HEAs are shown in Figure 8. The microstructures of the 
WxNbMoTa are similar. The interior of the grain contains spheroidal dendrites (as the sub-structure 
of grain). Grains of about 20 μm in diameter and dendrites of about 4 μm in diameter can be seen. 
EBSD images of the NbMoTa HEAs formed in the process of LCD and VAM are shown in Figure 9. 
The grain size of NbMoTa fabricated by LCD is much smaller than that of NbMoTa fabricated by 
VAM and the growth way of grains is equiaxed crystals. Due to the characteristics of rapid 
solidification, the laser with high energy density fuses the metallic powders with a high melting point 
in a moment (10−3–10−2 s). The phase transition of powder materials from the liquid phase to the solid 
phase is so fast that it is easy to form fine grain, low constitutional segregation microstructure. 

This is compared to the HEAs produced by vacuum arc melting. According to the Hall-Petch 
relation, the yield strength or microhardness of materials has a negative linear correlation with grain 
size, when the grain size of testing materials is not ultrafine (≥1 μm) [28–32]. In engineering 
manufacture, large yield strength or hardness of the material may be attained by decreasing the grain 
size, while the characteristics of rapid solidification in LCD facilitate the formation of fine grain. 
Compared with traditional VAM manufacturing, the yield strength and microhardness of alloys by 
LCD are usually much better. 

Figure 7. SEM image of the HEAs used powders with high granule density.

BSE images of the WxNbMoTa HEAs are shown in Figure 8. The microstructures of the
WxNbMoTa are similar. The interior of the grain contains spheroidal dendrites (as the sub-structure
of grain). Grains of about 20 µm in diameter and dendrites of about 4 µm in diameter can be seen.
EBSD images of the NbMoTa HEAs formed in the process of LCD and VAM are shown in Figure 9.
The grain size of NbMoTa fabricated by LCD is much smaller than that of NbMoTa fabricated by VAM
and the growth way of grains is equiaxed crystals. Due to the characteristics of rapid solidification,
the laser with high energy density fuses the metallic powders with a high melting point in a moment
(10−3–10−2 s). The phase transition of powder materials from the liquid phase to the solid phase is so
fast that it is easy to form fine grain, low constitutional segregation microstructure.

This is compared to the HEAs produced by vacuum arc melting. According to the Hall-Petch
relation, the yield strength or microhardness of materials has a negative linear correlation with
grain size, when the grain size of testing materials is not ultrafine (≥1 µm) [28–32]. In engineering
manufacture, large yield strength or hardness of the material may be attained by decreasing the
grain size, while the characteristics of rapid solidification in LCD facilitate the formation of fine grain.
Compared with traditional VAM manufacturing, the yield strength and microhardness of alloys by
LCD are usually much better.
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3.3. Mechanical Properties

The Vickers microhardness of the different tungsten mole HEAs were measured from the substrate
to the metallurgical bonding surface, and then the cladding layer. With the increase of the cladding
height, no obviously regular change was found in microhardness. The results are demonstrated below
in Figure 10. The average values of microhardness are shown in Table 5. With the increase of the
content of tungsten, the hardness shows an increasing tendency.
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Table 5. Experimental Hv and theoretical Hv values of the WxNbMoTa HEAs.

Hv/Alloy ID NbMoTa W0.16NbMoTa W0.33NbMoTa W0.53NbMoTa

Experimental Hv 459.2 ± 9.7 476.0 ± 12.9 485.3 ± 8.7 497.6 ± 5.6

The bulk modulus of the WxNbMoTa (x = 0, 0.16, 0.33, 0.53) were measured to be 174 GPa,
182 GPa, 186 GPa and 192 GPa. The compressive stress-strain curve of the alloys at room temperature
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(T = 25 ◦C) is illustrated in Figure 11a. NbMoTa showed a yield strength (σb), compressive strength
(σm) and compressive strain (εp) of 874 MPa, 1140 MPa and 5.8%, respectively. The compressive strain
was improved compared with the WNbMoTa HEAs by VAM (1.5%) [4], indicating that NbMoTa has
certain machinability at room temperature. W0.16NbMoTa, W0.33NbMoTa and W0.53NbMoTa were
characterized as brittle materials, and their maximum compressive strength (σb) showed 840 MPa,
895 MPa, and 890 MPa.

The compressive stress-strain curve for the NbMoTa at 1000 ◦C is illustrated in Figure 11b,
showing a yield strength (σb), compressive strength (σm) and compressive strain (εp) of 530 MPa,
684 MPa and 8.5%, respectively. It reflects a better effect than such traditional refractory alloys, as T-111,
Nb-1Zr and C103 are commonly used in aerospace industry [33], as shown in Table 6. The result
indicates that NbMoTa fabricated by LCD shows potential for application in the aerospace industry.
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Table 6. The comparison of high temperature (1000 ◦C) performance of aerospace materials.

Alloy ID Yield Strength at 1000 ◦C/MPa

Nb-1Zr 113
C103 144

ODS-MA754 212
Mo-14Re 371

T111 505
NbMoTa 530

4. Conclusions

The purpose of the work is to study the dependence of the yield strength of the refractory HEAs on
their composition fabricated by LCD for the potential applications in aerospace industry. The following
conclusions are drawn:

(1) The crystal structures of each WxNbMoTa (x = 0, 0.16, 0.33, 0.53) alloys are all a single-phase solid
solution of the BCC structure analyzed by XRD.

(2) Due to the characteristic of rapid solidification, the size of the grains and dendrites on the
microcosmic of WxNbMoTa refractory HEAs was 20 µm and 4 µm on average, smaller than that
of the HEAs fabricated by VAM.

(3) The increase of the tungsten concentration of WxNbMoTa led to four results of the Vickers
microhardness, i.e., Hv = 459.2 ± 9.7, 476.0 ± 12.9, 485.3 ± 8.7, 497.6 ± 5.6, respectively.

(4) The NbMoTa alloy has a compressive strain (εp) of 5.8% at room temperature and its yield
strength (σb), compressive strength (σm) and compressive strain (εp) of 530 MPa, 684 Mpa and
8.5% respectively at 1000 ◦C. The effects show better performance than many traditional refractory
metals such as T-111, Nb-1Zr, and C103, which are commonly used in aerospace.

(5) The content of tungsten has no effect on the formation of a single-phase solid solution and the
microstructure of the HEAs. In terms of mechanical behavior, the microhardness shows an
increasing tendency with the increase of the content of tungsten. As a result, the yield strength
and plasticity of the W-free alloy is improved compared with alloys containing tungsten at
room temperature.

In this study, with excellent yield strength at high temperature, the NbMoTa alloy shows
potential for application in aerospace industry. The present work provides a theoretical basis for
LCD manufacturing of aerospace parts of refractory HEAs with a large size, complex structure, and
variable composition.
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