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Abstract: In this study, two kinds of copper micro-patterned surfaces with different heights were
fabricated by using a powder injection molding (PIM) process. The micro-pattern’s size was 100 µm,
and the gap size was 50 µm. The short micro-pattern’s height was 100 µm, and the height of the tall
one was 380 µm. A copper powder and wax-polymer-based binder system was used to fabricate
the micro-patterned surfaces. The critical heat flux (CHF) and heat transfer coefficient (HTC) during
pool-boiling tests were measured with the micro-patterned surfaces and a reference plain copper
surface. The CHF of short and tall micro-patterned surfaces were 1434 and 1444 kW/m2, respectively,
and the plain copper surface’s CHF was 1191 kW/m2. The HTC of the plain copper surface and
the PIM surface with short and tall micro-patterned surfaces were similar in value up to a heat flux
1000 kW/m2. Beyond that value, the plain surface quickly reached its CHF, while the HTC of the
short micro-patterned surface achieved higher values than that of the tall micro-patterned surface.
At CHF, the maximum values of HTC for the short micro-pattern, tall micro-pattern, and the plain
copper surface were 68, 58, and 57 kW/m2 K.

Keywords: powder injection molding; copper micro-pattern; pool boiling; critical heat flux; heat
transfer coefficient

1. Introduction

The surface of a reactor in a nuclear power plant requires highly effective cooling. It is cooled by
water that can boil under atmospheric pressure at the surface [1], protecting the surface from reaching
excessive temperatures, which can compromise the integrity of the reactor vessel. Achieving effective
boiling heat transfer is required in order to improve the nuclear power plant’s safety and prevent
damage that can occur due to excessive heat.

Research in pool-boiling heat transfer can be directly used in this cooling application, among
numerous other applications. Representative quantities for pool-boiling heat transfer are the critical
heat flux (CHF) and the heat transfer coefficient (HTC) [2]. CHF is the upper limit of the nucleate
boiling regime where a vapor film blankets the heating surface and causes a significant reduction of
the HTC. When the applied heat flux increases towards CHF, vapor generation prevents the surface
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from being wetted effectively. If the surface is not wetted, boiling at the surface is obstructed and
the surface temperature increases dramatically. CHF is defined as heat flux just before the dramatic
increase of surface temperature. It is the maximum heat flux where effective boiling can occur at a hot
surface. Achieving high CHF values allows effective heat dissipation in high heat flux applications.

Meanwhile, HTC is the ratio of the heat flux at the surface to the temperature difference between
the heating surface and the working fluid. In the nuclear reactor application, achieving a high HTC
results in effective removal of heat while keeping the surface at temperatures within the design limits
of the vessel.

Researchers have studied how CHF and HTC can be increased by fabricating porous coatings on
a plain surface [1,3–10], nano-structures on a plain surface [11,12], laser-processed structures [4,13],
rough surfaces [14,15], enhanced designed surfaces [16], micro-patterned structures [6,15,17–20], or
combined structures with micro-patterned structures and porous coating [6,21,22]. Their results
indicate significant improvements in both the CHF and HTC. Common fabrication methods for the
micro-pattern or micro-channel are electric discharge machining [6,17] or computer numerical control
(CNC) machining [21,22] for metallic surfaces and dry etching [15,18–20] for silicon surfaces.

In this paper, the effects of micro-patterns on CHF and HTC with distilled water on a copper
surface are investigated. The micro-patterns were fabricated using a powder injection molding (PIM)
process, because complex-shaped structures can be easily fabricated with low production costs by
using the PIM process [23]. The PIM process facilitates the mass-production of the micro-patterns with
low production costs, and it is the most useful advantage compared with other common fabrication
methods [24]. The micro-patterned surface was fabricated with material and a structure suitable for
pool-boiling heat transfer. Copper powder was used to fabricate the structure due to copper’s high
thermal conductivity. The structure was fabricated with small gaps between the patterns, since small
gaps lead to high capillary forces [25].

Various researchers have also studied powder injection molded (PIMed) micro-patterns [24,26–30].
All of the PIMed micro-patterns were fabricated by using a sacrificial mold with a reversed shape of
the pattern. Silicon [26,28] or polymethylmethacrylate (PMMA) [24,29,30] were used for the sacrificial
mold. The reversed shape of the micro-pattern was fabricated by using deep reactive ion etching for
silicon, or X-ray lithography for PMMA. The micro-patterns with the silicon sacrificial mold usually
had a small pattern size and high aspect ratio, but had a large gap compared to the micro-patterns with
the PMMA sacrificial mold. However, the researchers usually developed the PIMed micro-patterns not
for heat transfer applications. but sensor and actuator applications. The introduction of micro/nano
structures on a heating surface have been found to enhance liquid spreading on a heating surface and to
delay dry-out. In pool-boiling applications, this results in an increase in the HTC and the CHF [19,31].

Tall and short micro-patterns described in this paper are suitable for pool-boiling and exhibit
better CHF and HTC than a plain surface.

2. Materials and Methods

2.1. Preparation of Materials

Copper powder with purity of 99.9% (supplied by HKK solutions, Seoul, Korea) was used in this
research. The particle size and density of the powder are shown in Table 1. Particle size was measured
by using a laser-scattering particle-size analyzer (Horiba Partica LA-950V2, Kyoto, Japan). Density was
measured by using helium picnometry (Accupyc 1330, Norcross, GA, USA) at room temperature
(24 ± 1 ◦C). Figure 1 shows the powder morphology observed by scanning electron microscopy (SEM,
Akishima, Tokyo, Japan). The particles had a spherical shape.

Table 1. Particle size and density of the copper powder.

D10 (µm) D50 (µm) D90 (µm) Density (g/cm3)

2.01 4.73 15.23 8.638
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Figure 1. Scanning electron microscopy (SEM) image of the copper powder.

A wax-polymer-based binder system (supplied by CetaTech, Cheongju, Chungbuk, Korea) was
used as a binder. The binder consisted of paraffin wax (PW), polypropylene (PP), polyethylene (PE),
and stearic acid (SA). Detailed information about the binder is shown in Table 2. Physical properties of
the binder were determined from the reference [32].

Table 2. Wax-polymer-based binder system.

Component Contents (wt. %) Melting Point (◦C) Decomposition Range (◦C) Density (g/cm3)

Paraffin wax (PW) 57.5 51 242–280 0.92
Polypropylene (PP) 25.0 78 464–481 0.92
Polyethylene (PE) 15.0 120 464–471 0.93
Stearic acid (SA) 2.5 53 246–275 0.95

Sacrificial molds which had a reversed shape of the micro-pattern were fabricated by the same
method as our previous work for fabrication of PIMed lead zirconate titanate (PZT) micro-patterns [31].
The polymethylmethacrylate (PMMA) plate was selectively exposed to an X-ray through a mask which
had the same shape as the micro-pattern. The exposed area in the PMMA plate was dissolved in
GG developer (a chemical mixture of 60 vol. % 2-(2-butoxyethoxy) ethanol, 20 vol. % tetrahydro-1,
4-oxazine, 5 vol. % 2-aminoethanol, and 15 vol. % deionized water) [31,33]. Two kinds of PMMA
plates with different thicknesses were used. Thus, PMMA sacrificial molds with different thicknesses
but identical pattern sizes were fabricated.

2.2. PIM Process

A common PIM process consists of four steps: mixing, injection molding, debinding,
and sintering [23]. In the mixing step, the volume fraction of the copper powder to the total volume
of the powder and the binder system is called solid loading. Critical solid loading was evaluated by
measuring mixing torque at various solid loading ranges with a HAAKE PolyLab QC. A dramatic
increase in mixing torque occurs after critical solid loading [32]. The copper powder and the binder
system were mixed with slightly less solid loading than the critical solid loading in order to facilitate
the injection molding process [32]. The mixing process was conducted with a twin-extruder mixer at
160 ◦C. The mixture of the powder and the binder system is called a feedstock.

After the mixing process was complete, the injection molding process was conducted in order
to shape the micro-pattern. Sodick Plustech TR30EH (Yokohama, Kanagawa, Japan) was used for
the injection molding process. The PMMA sacrificial mold was placed in a rectangular mold cavity
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as a mold insert. The feedstock was injected at 160 ◦C. The temperature of the mold was 45 ◦C,
the plunger’s injection speed was 30 mm/s, and the maximum filling pressure was 80 MPa.

Next, the debinding process in this research consisted of three steps: demolding, solvent
debinding, and thermal debinding. The demolding step was conducted to remove the PMMA sacrificial
mold by immersing the injected specimens in acetone at 50 ◦C, so that the sacrificial mold was dissolved
in acetone. Then, the injected specimen had micro-patterns. PW and SA were removed during the
solvent debinding step. The specimens were immersed in N-hexane at 50 ◦C, and both PW and SA
were dissolved in N-hexane. Then, PP and PE were removed during thermal debinding by thermal
degradation in the tube furnace (Kejia KJ-1600G, Zhengzhou, China). The thermal debinding was
conducted with two holding stages in a hydrogen atmosphere. The first holding stage was at 250 ◦C for
three hours in order to remove the remaining PW and SA from the solvent debinding step. The second
holding stage was at 450 ◦C for three hours in order to remove PP and PE. Because the micro-pattern
had a high aspect ratio and small pattern size, the structure could be deformed with a high heating
rate during the thermal debinding step [31,34]. Therefore, the feedstock was heated slowly at a rate of
0.5 ◦C/min. Finally, the specimens were sintered at 700 ◦C in a hydrogen atmosphere. The sintering
process was conducted in a tube furnace (Kejia KJ-1600G) with a heating rate of 0.5 ◦C/min.

2.3. Pool-Boiling Experiment

A heater assembly with a surface area of 6.3 mm × 19 mm was fabricated for pool-boiling
experiments using distilled water. The assembly was used in a pool-boiling chamber at atmospheric
pressure. Schematics of the heater assembly and the chamber are shown in Figure 2. The heater
assembly consisted of a micro-patterned surface, a machined copper block with a surface area of
6.3 mm × 19 mm and 3 mm depth (copper purity of 99.99%, supplied by McMaster-Carr, Elmhurst,
IL, USA) with two holes along the 19 mm × 3 mm side that housed thermocouples (30 AWG T-Type
with a diameter of 0.25 mm), and three 6.3 mm × 6.3 mm heaters (20-ohm resistance heaters with a
maximum power of 350 Watts, supplied by Component General, Inc., Odessa, FL, USA). A heater
assembly without the micro-patterned surface was also prepared as a control test. The machined
copper block with its thermocouples was attached below the micro-patterned surface by using a Rosin
core 97/3 lead-free solder. The heaters were also attached below the copper block using the same
solder. When the control heater assembly (without micro-patterned copper surface) was prepared,
only the heater and machined copper block were attached to each other using the solder. In this case,
the heating surface of the plain copper block was prepared by sanding and its surface roughness
was 0.35 µm Ra. All other surfaces except the top surface were insulated with epoxy (3M DP420).
A polycarbonate block was attached at the bottom of the heater, using the same epoxy, in order to fix
the heater assembly in the test chamber.

The thermal conductivities of epoxy (0.2 W/m·K) and polycarbonate (0.2 W/m·K) were
sufficiently lower than that of copper. Therefore, heat transfer in the heater assembly is represented by
one dimensional conduction [1]. The surface temperature of the micro-pattern structure was calculated
from the measured temperature by using Equation (1). The terms representing the solder and PIM are
excluded from Equation (1) for the tests with a plain copper surface:

Ts = Tm −
(

1
2 tblock

kblock
+

tsolder
ksolder

+
tPIM
kPIM

)
q′′ , (1)

where Ts is the surface temperature, Tm is the average of the measured temperatures from the
thermocouples in the middle of the copper block, tblock (3.0 mm) is the thickness of the machined copper
block, kblock (401 W/m-K) is the thermal conductivity of the machined copper block, and tsolder (70 µm
for the assembly with the short micro-pattern and 90 µm for the assembly with the tall micro-pattern)
is the thickness of the solder, and is obtained by measuring the overall thickness of the assembly
minus the thicknesses of the individual components. ksolder (77 W/m-K) is the thermal conductivity
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of the solder which was provided by the manufacturer, tPIM (1.53 mm for the PIMed block with the
short micro-pattern and 1.48 mm for that with the tall PIMed micro-pattern) is the total thickness of
the PIMed copper substrate and its micro-pattern, and kPIM (78 W/m-K) is the thermal conductivity
of the PIMed copper substrate and was obtained from a one-dimensional conduction heat transfer
experiment. Constant properties are assumed for the physical properties. q” is the provided input heat
flux, which is the supplied power to the heater, divided by the area of 6.3 mm × 19 mm.
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When the test was conducted without the micro-patterned surface, the surface temperature of the
plain copper surface could be calculated by using Equation (2).

Ts = Tm −
1
2 tblock

kblock
q′′ . (2)

The nucleate boiling heat-transfer coefficient (HTC) can be obtained from Equations (3) and (4).

HTC =
q′′

∆Tsat
, (3)

∆Tsat = Ts − Tsat, (4)

where ∆Tsat is the wall superheat, and Tsat is the saturation temperature of the water, respectively.
Each heater assembly was immersed in distilled water in the test chamber. The water was

degassed for 45 min by using an immersion heater, and the temperature of the water was maintained
at saturation temperature by using band heaters. Power was applied to the test heater to generate the
heat flux as the pool-boiling experiment was commenced.

During the pool-boiling experiment, a stepwise increase in the power to the heater assembly
was imposed by the data acquisition system until the heater reached CHF. The data acquisition
program holds a constant power supply to the heater assembly at each step to establish a steady state.
The program collects data and calculates the wall superheat ∆Tsat every 250 ms and compares a 20 s
running average to the prior 20 s average of ∆Tsat. Steady state is determined when the difference
between the averages is less than 0.1 K. CHF is achieved when the instantaneous ∆Tsat suddenly
increases to exceed the prior 20 s running average by 10 K. At that step, the CHF value is recorded as
the highest heat flux which yields a steady temperature, plus half the added heat flux which caused
the sudden increase in ∆Tsat. Then, CHF of the specimen is defined as the maximum heat-flux value
recorded during the experiment.

A LabVIEW program was used to collect the data and to control the pool-boiling experiment.
The LabVIEW program was also used to control the direct current (DC) power supply (Agilent N5771a,
Santa Rosa, CA, USA) and the data acquisition system (Agilent 34980A Multifunction Switch/Measure
Module equipped with an Agilent 34921T 40-Channel Armature Multiplexer, Santa Rosa, CA, USA).
The program calculates the heat flux by measuring the voltage and current at the resistance heater.
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2.4. Experimental Uncertainties

The experimental uncertainties were calculated using the single-sample experimental method
developed by Kline and McClintock [35]. The calculated wall superheat uncertainty was within ±0.6 K
for the range of parameters used in this work. The calculated heat flux uncertainty was ±31 kW/m2 at
a heat flux of 1500 kW/m2. For the range of heat flux used in this work, the heat flux, and thermal
conductivity of the PIMed surface, kPIM, uncertainty was consistently within ±2.5%.

3. Results and Discussion

3.1. Fabrication of the Micro-Patterned Surface

The mixing torque of feedstock at a solid-loading range from 51% to 61% by volume is shown in
Figure 3. Beyond a solid-loading of 58% by volume, the torque was found to increase rapidly, so the
critical solid loading was defined as 58% by volume.
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Figure 4. (a) Fabricated feedstock; (b) polymethylmethacrylate (PMMA) sacrificial mold.

The PMMA sacrificial mold was placed in a rectangular mold cavity, shown in Figure 5.
Feedstock was injected into the mold. The injected specimen attached to the PMMA mold is shown
in Figure 6. The transparent part in Figure 6 is the PMMA mold. Feedstock was completely packed
into the empty space of the PMMA mold. The PMMA mold and the binder system were removed
during the debinding step. Finally, sintered micro-patterned surfaces were fabricated after the sintering
process. SEM images of the micro-patterns are shown in Figure 7. Straight and uniform micro-patterns
were fabricated. All dimensions were measured from the SEM images.
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Figure 7. SEM images of sintered micro-patterns: (a) side view of the short micro-pattern; (b) side
view of the tall micro-pattern; (c) top view of the short micro-pattern; and (d) top view of the
tall micro-pattern.
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The pattern size is 100 µm and the gap size between the patterns is 50 µm. The short pattern’s
height is 100 µm, and the tall pattern’s height is 380 µm. An additional surface was also fabricated
using this same PIM method with no micro-patterns.

3.2. Contact Angle of the Micro-Patterned Surface

In order to characterize the wetting behavior of the micro-patterned surface, the apparent contact
angle was measured by using a goniometer (Krüss DSA30, 0.3◦ measurement accuracy, Hamburg,
Germany). The surface was cleaned using 5% acetic acid in an ultrasonic bath prior to the contact
angle measurements. Then, the surface was rinsed by distilled water and dried by an air jet. A single
water droplet of 11.5 mm3 was dripped onto the surface. The contact angle measurement was repeated
three times, and the average of the three results is reported.

Contact angles of the short-patterned, tall-patterned, and plain copper surface fabricated by PIM
with no micro-patterns are 11.7◦, nearly 0◦, 64.9◦, and 35.1◦, respectively (shown in Figure 8).
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Figure 8. Contact angles of each surface: (a) the short micro-patterned surface; (b) the tall
micro-patterned surface; (c) the plain copper surface; and (d) the flat copper surface fabricated by
powder injection molding (PIM) with no micro-patterns.

The contact angle on the PIMed copper surface with no micro-patterns is significantly less than
that of a plain copper surface. The contact angles on the micro-patterned surfaces are observed to
decrease further. Of particular note is the tall-patterned surface, which appears fully wetted within
0.161 s after the water droplet contacts the surface. This apparent decrease in the contact angle
is partially due to the reduced contact angle of the PIMed material and also partially due to the
patterned surface behaving as a pin wall which allows water to penetrate between the pins during
the measurements.

3.3. Results of the Pool-Boiling Experiments

The top surface of the test heater assembly during the test at 50 kW/m2, 500 kW/m2,
and 1000 kW/m2 is shown in Figure 9 for the plain copper surface, the short micro-patterned surface,
and the tall micro-patterned surface.
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Figure 9. Captured images during the pool-boiling tests.

Results of the pool-boiling experiments are shown in Figure 10 in terms of the pool-boiling curve
(a) and the HTC curve (b). The CHF of the plain copper surface is measured as 1191 kW/m2. The CHF
of the short and tall micro-patterned surfaces were measured as 1434 and 1444 kW/m2, respectively.
The CHF value for either micro-patterned surface exhibits a 20% improvement over that of a plain
copper surface. This increase is due to the reduced contact angle [11,36] which allows the surface to be
easily and continuously wetted and delays dry-out of the surface.

HTC for the PIMed surfaces and the plain copper surface are similar in value when the applied
heat flux is below 1000 kW/m2. However, HTC of the short micro-patterned surface is found to exceed
that of the tall micro-patterned surface when the applied heat flux is increased beyond 1000 kW/m2.
The maximum values of the HTC for the short micro-pattern, tall micro-pattern, and the plain copper
surface, based on the same plain copper area, are 68, 58, and 57 kW/m2·K. The CHF values for the
PIMed surfaces exhibit an increase of 19% and 2% over the value for a plain copper surface for the
PIMed surface with the short and tall micro-patterns, respectively.

The decrease in the HTC on the tall micro-patterned surface relative to the short micro-patterned
surface is due to more vapor (dry spots) contained within the thicker PIMed surface. It seems that
generated vapor may be trapped among the tall micro-patterns, and the trapped vapor reduces the
boiling heat-transfer on the surface.

The true surface areas of the boiling surfaces (base plus all the surfaces of pins) were calculated
for the short and tall micro-patterns over the entire surface. The extended areas for the short and tall
micropatterns were 79% and 301% larger than the area of the flat plain surface area. This percentage
increase in area is much larger than the improvement in CHF (20% improvement in CHF with
micropatterns) and HTC (19% for the short and 2% for the tall micro-patterns at CHF).
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4. Conclusions

Two kinds of copper micro-patterned surfaces with different heights were successfully fabricated
by using the powder injection molding process. Boiling heat-transfer tests with distilled water at
an atmospheric pressure were conducted using these surfaces. The micro-patterns enhance boiling
heat-transfer. Specifically, the micro-patterned surfaces exhibit an enhancement in CHF by 20%
over a plain copper surface. The HTC values using the tall micro-patterned surface and the short
micro-patterned surface are comparable to one another and to the plain copper surface at heat flux
values below 1000 kW/m2. The HTC with a short micro-patterned surface was shown to exhibit an
advantage over the tall micro-patterned surface at heat-flux values over 1000 kW/m2.
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