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Abstract: The possibility of application of the eddy current tomography setup to measure the small
permeability variations caused by magnetoelastic effect was presented. A ferromagnetic steel sample
was prepared for applying wall stresses and measured for 30 MPa stresses. The Finite Element
Method (FEM) was utilized to conduct numerical forward tomography transformation for samples of
known permeability. Developed forward tomography transformation was applied for single variable
inverse tomography transformation, utilized for determining magnetic permeability. This confirmed
the possibility of the application of eddy current tomography for quantitative measurements of
magnetoelastic effect in samples of known geometry.
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1. Introduction

Magnetoelastic effect is a general name for several different phenomena that consider the
mechanical stresses and change of a material’s magnetic properties [1]. The observable effects of those
phenomena vary from change of sample dimensions due to external magnetic field (magnetostriction
effect [2]) via electrical impulses due to a sample’s torsion in the magnetic field (Matteucci effect [3]) to
changes in the magnetic state caused by change in the sample’s volume (Nagaoka-Honda effect [4]).
One of the first reported magnetoelastic effects is the Villari effect [5]. The application of external
stresses influences the ease of movement of magnetic domains in material, and thus its magnetic
permeability [6]. A typical method for measuring this effect is usage of special samples for applying
uniform stresses in material and measuring the magnetic hysteresis loop for different stresses values [7].
The sample may be either frame shaped [8] or ring shaped [9]. This method requires special sample
preparation in order to obtain closed magnetic circuit and uniform stresses in material. Additionally,
the standard method requires winding of magnetizing and sensing coils on the sample [10]. Sample
winding is not required when using a contactless method such as eddy current tomography (ECT).

Eddy current tomography (or magnetic induction tomography) is a non-destructive contactless
method for evaluating discontinuities in conductive materials [11]. It is based on the standard eddy
current non-destructive method, where tested object influences the coupling of at least two coils.
ECT setups either collects data from multiple set of coils [12] or conducts measurements for different
positions of the sample [13]. Based on the measurement data, the spatial distribution of material can
be obtained in a process of inverse tomography transformation [14].

Even most recent research considering ECT-based permeability imaging [15] had not focused
on quantitative assessment of obtained values of permeability. This paper fills this gap for small
permeability variations caused by the magnetoelastic effect. Additionally, the presented method is an
interesting alternative for measuring of magnetoelastic effect due to its contactless nature, and thus
may be suitable for stress assessment in constructions.
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2. Materials and Methods

2.1. Sample Preparation

For research, the pipe shaped sample made of 13CrMo4-5 constructional steel was considered.
This material has relative magnetic permeability of 80 [16]. The length of the sample was 100.00 mm,
its external radius was 10.675 mm, and wall thickness was 0.35 mm. The pipe was sealed with
non-magnetic material. Additionally, in the top-side sealing was a valve to regulate the pressure inside
the sample. The scheme of the sample is presented in Figure 1.
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Pressure was applied into the sample through a valve with the usage of an air compressor with
pressure regulation. The internal pressure caused circumferential stresses in the sample. The value of
the stresses were calculated from Barlow’s formula:

σ =
r·p
g

(1)

where σ—circumferential stresses in the pipe, r—outside radius of the pipe, g—thickness of the pipe
wall, p—pressure inside the pipe.

The sample was measured without any stresses as well as with applied 1 MPa pressure, which
resulted in 30 MPa circumferential stresses in the material.

2.2. Measurement Method

The pipe was measured on an eddy current tomography setup (block diagram is presented in
Figure 2., model is presented in Figure 3), described in detail in [13]. The tested sample moves linearly
between two coaxial coils (driving and measuring) and, for each linear step, fully rotates around its
axis in 100 discrete steps. The position of the sample is set by two stepper motors, controlled by an
ARM 1114 microcontroller (NXP Semiconductors, Eindhoven, The Netherlands).

Both coils have/consist of 100 turns. The exciting coil has a 7.4 mm internal radius and 17.9 mm
external radius, whereas the measuring coil has a 6.1 mm internal radius and 14.8 external radius.
The driving coil is powered by a 2 kHz sine current generator and induces an alternating magnetic
field, which induces eddy current in the conducting sample. The distribution of eddy current highly
depends on the object’s geometry as well as on the electromagnetic parameters of the sample’s material.
The magnetic field caused by the eddy current influences the magnetic field in the measuring coil.
The changes concern both the amplitude of the measured field as well as phase shift between the
exciting and measuring signals. The measurement of the signal’s amplitude signal is done by a 6 1

2
digit multimeter (TH1961, Tonghui, Changzhou, China) and phase shift measurement is done by a
digital phase shift meter. The entire measurement procedure is controlled by software developed in
LabVIEW (National Instruments, Austin, TX, USA).
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2.3. Modelling Method

FEM-based forward tomography transformation was conducted with a set of open-source
software. FEM modelling was done in ElmerFEM (CSC–IT Center for Science Ltd, Helsinki,
Finland) [17] with the usage of a magnetodynamics solver. This software solves Maxwell’s equations

in frequency domain with the usage of
→
A-V model [18].

The generation of finite element mesh was done in Netgen 5.3 (Vienna University of Technology,
Vienna, Austria). For simulations, the eddy current tomography setup was reduced to 4 elements—the
driving coil, measuring coil, sample model, and external ball of air.

The driving coil was modelled as a single turn solenoid, whereas the measuring coil was modelled
as a disk, in order to properly represent the phenomena of magnetic induction. In the eddy current
tomography setup, measured voltage (induced due to Faraday’s law) is proportional to magnetic flux
in the volume of measuring coil. In order to simplify the FEM simulations, the induced voltage was
calculated as an integral of magnetic field in the volume of model of measurement coil.

The sample’s actuators were removed from the FEM model. The model of the tested sample was
generated automatically in consecutive linear and angular positions.

The fourth object in the model of eddy current tomography setup was an external air ball,
which radius significantly exceeds the dimension of any other object in the model. The ball provides
finite elements between the other objects in model, in order to properly simulate the distribution of
the electromagnetic field. The external surface of the ball (sphere) was used for applying Dirichlet
boundary conditions, in order to obtain the uniqueness of the FEM solution, which otherwise would
be properly determined only up to constant.

The solid geometry for each measurement point was automatically generated. The Netgen
software, based on Delaunay algorithm, created a finite element mesh (example presented on Figure 4.).
The noticeable difference of mesh density for different objects was caused by thin walls of the
sample, which require a high-density mesh [19]. On average, the model of exciting coil consisted
of 101,300 elements, the model of measuring coil consisted of 47,200 elements, whereas the sample’s
model was formed by 755,000 1st order elements.
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The forward tomography transformation is based on conducting FEM simulations for each linear
and angular position of the sample. As a result of single simulations, data about distribution of
magnetic field is obtained. The magnetic flux density in each finite element is described as a complex
number, because utilized magnetodynamics FEM solver provides solution in the frequency domain.
Magnetic flux density in the volume of measuring coil’s model is numerically integrated and data
proportional to real (in phase) and imaginary (90◦ phase shifted) parts of inducted voltage are obtained.
Thus, the values of signal amplitude (A) and phase shift between driving and measured signals (P) can
be calculated based on (2) and (3):

A =

√
(Vre)

2 + (Vim)
2 (2)

P = arcsin(
Vim√

(Vre)
2 + (Vim)

2
) (3)

where: Vre and Vim—integrated values of real and imaginary part of magnetic flux density in measuring
coil volume.

The simulations for different measurement points can be conducted independently, which allows
parallelization of the calculations. The entire procedure—generation of finite element mesh, FEM
modelling and results computation—is done on a single processor core.

2.4. Method of Inverse Tomography Transformation for Determining the Permeability of the Sample

Inverse tomography transformation is used to reconstruct the properties of the measured object.
Due to the fact that phenomena of eddy current induction are highly nonlinear, inverse tomography
transformation requires utilization of FEM modelling as well as optimization algorithm. The objective
function for the optimization algorithm is minimalization of mean difference between measurement
results and FEM-based forward tomography transformation. The diagram of utilized method for
inverse tomography transformation is presented in Figure 5. Initially, the measurement data are
acquired. This data is compared with the normalized results of FEM-based forward tomography
transformation for the given model and the value of objective function is calculated.

The object’s model may be described either by distribution of material in the cross-section of
the sample [20] or by a cylindrical model with substitute defect [21]. The optimization algorithm
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changes the model of the sample for forward transformation in the cycle until it converges. Afterward,
the tomography results are obtained as parameters of a best-fitting model.

For determining of the sample’s permeability, a downhill simplex method [22] was utilized.
The sample’s geometry parameters, as well as its electrical conductivity, were set to constant.
The magnetic permeability of the sample was only variable for optimization algorithm.
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3. Results

Due to the axial symmetry of the sample, the measurements and simulations in forward
tomography transformation were conducted without rotational steps. In addition, the linear movement
of the sample was limited—measurement and simulations started in initial position (45 mm from the
setup’s coils axis) and were conducted with 1 mm linear step, until the sample’s midpoint reached the
coil’s axis.

3.1. Measurement Results

As presented in Figures 6 and 7, the application of stresses on the material noticeably influences
the results of measurement on the eddy current tomography setup. The change is more noticeable
in the signal amplitude measurement than in the phase shift measurement. The changes in phase
shift values are more influenced by material conductivity, which was not affected by the stresses in
the sample. The measurement results confirmed the ability to detect permeability changes with the
eddy current tomography. Results of measurement of both signal amplitude and phase shift value
exhibit the same character. Initially, the sample does not influence the magnetic field between the coils.
Then, as the sample approaches the axis of the coils, the presence of conductive ferromagnetic material
decreases the measured signal due to the induction of eddy currents.
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function of the sample’s linear position. The blue line is for a sample with no external stresses, green is
for a sample with 30 MPa stresses.

3.2. Forward Tomography Transformation Results

The results obtained from the FEM-based forward tomography are in high accordance with
the measurement results. Signal amplitude and phase shift exhibit the same character of changes as
presented in Section 2.2. The only difference is the scale of obtained values. The difference in the signal’s
amplitudes (comparing results presented in Figures 6 and 8) was caused by the usage of single-turn
models of measurement and exciting coils. Additionally, in simulations, the exciting coil was supplied
with a unitary current. As presented in Figures 7 and 9, phase shift values obtained during the
measurement have 57◦ offset comparing to data obtained from forward eddy current tomography
transformation. The constant offset of phase shift value was caused by the signal conditioning system
utilized in the tomography setup. Thus, for the purpose of proper inverse tomography transformation,
the measurement and modelling data are normalized to the 0–1 range.
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3.3. Inverse Tomography Transformation Results

As a result of inverse eddy current tomography transformation, two values of the sample’s
magnetic permeability were obtained. For a sample with 0 MPa stresses, the obtained permeability
value was 81.2, whereas for a sample with 30 MPa, it was 68.1. The values are in accordance with
values obtained with the standard method for low magnetic fields (Rayleigh region of hysteresis
loop) [12], as presented in Table 1.

Table 1. Comparison of obtained values of magnetic permeability for different sample stresses.

Sample
Stresses (mpa)

M Value Obtained from Inverse
Tomography Transformation

M Value Obtained with
Standard Method

Relative
Error (%)

0 81.2 80 1.5
30 68.1 66.8 1.9
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4. Discussion

Presented in Figures 4 and 5, the results of eddy current tomography measurements clearly
indicate that the utilized method is suitable for distinguishing changes in material permeability caused
by the Villari effect. The permeability variation notably influences signal amplitude, when the object is
placed in a position near the coils (starting from 25 mm from the coils axis). On the other hand, the
value of phase shift between exciting and measuring signals is not noticeably influenced.

The results of FEM-based forward eddy current tomography present high accordance with the
measurement results. The noticeable difference of range of amplitude signal changes is caused by
FEM model simplifications—utilization of a unitary exciting current and a single turn coil’s models.
The offset difference between the results of phase shift measurements and simulations is caused by
the presence of a signal conditioner in the eddy current tomography setup. This conditioner contains
a band-pass filter, which shifts the phase of the signal, as well as the amplifier, which increases the
signal’s amplitude. Thus, in order to properly compare the modelling and measurement results during
inverse tomography transformation, the data were normalized to the 0–1 range.

The presented method for determining sample permeability has high accordance with other
methods utilized for measurements of the magnetoelastic Villari effect.

5. Conclusions

The possibility of qualitative analysis of magnetoelastic effect with the usage of eddy current
tomography is presented. The proposed method requires the preparation of pipe-shaped samples
with valves, but allows for contactless assessment of permeability changes. Additionally, inverse
tomography transformation is much more time-consuming than classical methods.

The utilized method assumed constant and known geometry of the tested sample. Further
research will concern the determination of a sample’s geometry as well.
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