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Abstract: High-entropy alloys (HEAs) with soft magnetic properties are one of the new candidate
soft magnetic materials which are usually used under an alternating current (AC) magnetic field.
In this work, the AC soft magnetic properties are investigated for FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs.
The X-ray diffraction (XRD) and scanning electron microscope (SEM) show that the alloy consists
of two phases, namely a face-centred cubic (FCC) phase and a body-centred cubic (BCC) phase.
With increasing Ni content, the FCC phase content increased. Further research shows that the AC
soft magnetic properties of these alloys are closely related to their phase constitution. Increasing the
FCC phase content contributes to a decrease in the values of AC remanence (AC Br), AC coercivity
(AC Hc) and AC total loss (Ps), while it is harmful to the AC maximum magnetic flux density (AC Bm).
Ps can be divided into two parts: AC hysteresis loss (Ph) and eddy current loss (Pe). With increasing
frequency f, the ratio of Ph/Ps decreases for all samples. When f ≤ 150 Hz, Ph/Ps > 70%, which means
that Ph mainly contributes to Ps. When f ≥ 800 Hz, Ph/Ps < 40% (except for the x = 1.0 sample),
which means that Pe mainly contributes to Ps. At the same frequency, the ratio of Ph/Ps decreases
gradually with increasing FCC phase content. The values of Pe and Ph are mainly related to the
electrical resistivity (ρ) and the AC Hc, respectively. This provides a direction to reduce Ps.

Keywords: high-entropy alloys; Ni content; AC soft magnetic properties; AC hysteresis loss (Ph);
eddy current loss (Pe)

1. Introduction

Conventional alloys are usually based on a certain metallic element, adding a few other elements to
improve the property or fine tune the performance according to different application requirements [1,2].
In 2004, a new class of alloys was put forward by Cantor [3] and Yeh [4], namely high-entropy alloys
(HEAs). These alloys contain five or more equiatomic or near-equiatomic ratio elements, each of which
has an atomic percentage between 5% and 35%. The HEAs are conducive to the formation of a solid
solution phase, typically with a structure of a body-centred cubic (BCC) [5,6], a face-centred cubic
(FCC) [7–9], a hexagonal stacked (HCP) [10,11], or a mixture of the above mentioned structures [12–14].
In the past decade, HEAs have drawn extensive attention because of their excellent mechanical and
chemical properties, such as great thermal stability [15], good corrosion resistance [16,17], good wear
resistance [18], excellent strength [19] and high hardness [20].
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Some HEAs show soft magnetic properties due to their ferromagnetic elements such as Fe, Co and
Ni [21–25]. Zuo et al. [26] showed that the CoNiMnGa HEAs had a high saturation magnetisation (Ms) of
about 115.92 emu/g, and a low coercivity (Hc) of about 27.9 Oe. Liu et al. [27] found that FeCoNi1.5CuAl
HEA not only had good mechanical properties (maximum compressive strength σmax = 1725 MPa), but
also good direct current (DC) soft magnetic properties (Ms = 63.58 emu/g, Hc = 13.7 Oe). These studies
were basically conducted under DC magnetic conditions.

Moreover, soft magnetic materials are commonly used in alternating current (AC) magnetic fields.
However, limited information on AC magnetic performance is available in HEAs. Our previous work
studied the AC soft magnetic properties of FeCoNi(MnSi)x HEAs and found that a suitable content of MnSi
can improve the AC soft magnetic properties [28]. Duan et al. [29,30] prepared Fe-Co-Ni-Si-Al high-entropy
powders by mechanical milling and studied their electromagnetic performance as wave absorbing materials
under the frequency ranging from 1 GHz to 16 GHz. It is found that the electromagnetic parameters
depend on the milling time and aspect ratio of powders. They also found the wave absorption properties
can be improved after annealing in FeCoNiCuAl high-entropy powders [31].

In our work, we chose Fe-Co-Ni-Cu-Al HEAs to study their AC magnetic properties for two reasons.
(1) Our previous work showed that FeCoNiCuAl HEA had a combination of good mechanical properties
and DC magnetic properties [32]. In particular, it has larger electrical resistivity with 51.4 uΩ·cm
than 40.8 uΩ·cm of non-oriented silicon electrical steel reported in reference [33], which indicates that
FeCoNiCuAl HEA has potential AC applications by reducing the energy loss. (2) Recently, Liu et al. [27]
found that Ni addition could have obvious effects on the DC magnetic property and mechanical property
of FeCoNiCuAl alloy. Here arises the question, does Ni addition have effects on AC soft magnetic
properties of Fe-Co-Ni-Cu-Al HEAs? Hence, in this paper, the effects of Ni addition on the AC soft
magnetic properties and microstructure in Fe-Co-Ni-Cu-Al HEAs are investigated. The relationship
between AC magnetic parameters (e.g., the eddy current loss, Pe, and AC hysteresis loss, Ph) and phase
composition is also studied in FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs. Furthermore, the influencing factors
of Pe and Ph are discussed.

2. Experimental

The alloy ingots of FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs were made by arc melting of high purity
metals (≥99.99 wt%) with a water-cooled copper crucible, re-melted four times, in a high purity argon
atmosphere. The alloys were then sucked into a water-cooled copper mould with the dimensions of
100 × 10 × 2 mm3. The composition of samples was confirmed by Electron-coupled plasma atomic
emission spectrometry (ICP-AES, PERKINE 7300DV, Perkinelmer, Waltham, MA, USA).

The phases in the alloys were determined by X-ray diffraction (XRD, Rigaku Corporation,
Akishima-Shi, Tokyo, Japan) analysis with Cu Kα radiation using D/max-2500 V. The diffraction angles
ranged from 20 to 100◦ and the radiation condition was 18 kW. The microstructure of the alloys was
investigated by scanning electron microscope (SEM, TESCAN S9000, Tescan, Brno, Czech Republic)
and the chemical compositions of the alloys were measured by energy dispersive spectroscopy (EDS).
The AC magnetic characteristic parameters were determined by an AC hysteresis curves test system
(FE-2100SM, Yongyi technology co. LTD, Hunan, China) with the sample size of 50 × 9.5 × 1.8 mm3.
The electrical resistivity (ρ) was measured by an ST-2258C multifunction digital four-probe tester.

3. Results

3.1. XRD

The XRD patterns of the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs are shown in Figure 1. All of these
HEAs contain two phases, namely FCC and BCC phase. The intensities of the strongest peaks, (111)
for FCC and (110) for BCC, are denoted as I(111)F and I(110)B, respectively. Table 1 lists the values of
the ratio (I(111)F/I(110)B), which is employed to estimate the content of the FCC and BCC phases. It can
be seen that the ratio increases with increasing Ni content. It indicates that increasing the Ni content
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tends to facilitate the formation of the FCC phase in these alloys. The lattice parameters of the FCC
and BCC phases were calculated, and the values are also listed in Table 1. With increasing Ni content,
the lattice parameters of both phases slightly decrease. This may be due to the atomic radius of Ni
(124 pm) being smaller than Fe (126 pm), Co (125 pm), Cu (128 pm) and Al (143.1 pm) [34].
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Figure 1. X-ray diffraction (XRD) patterns of the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) high-entropy alloys (HEAs).

Table 1. The values of I(111)F/I(110)B and lattice parameters of the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs.

x I(111)F/I(110)B
A ± 0.0002 (nm)

FCC BCC

1.0 0.447 0.3618 0.2877
1.25 1.374 0.3614 0.2876
1.5 4.016 0.3610 0.2872

1.75 11.364 0.3608 -

The values of electron concentration (VEC), atomic size difference (∆R), electronegativity differences
(∆X), mixing entropy (∆S), mixed enthalpy (∆H), and solid solution formation ability (Ω) were then
calculated and are listed in Table 2. With increasing Ni content, ∆R, ∆X, ∆S, ∆H and Ωall decrease
while VEC increases. It is reported that the parameters including VEC, ∆R, ∆S and ∆H are key factors to
determine the phase formation. In particular, ∆R has a critical role in lattice distortion [27]. The decrease
of ∆R suggests the decrease content of BCC phase [27]. Based on our XRD result and the decrease of
the atomic size difference with increasing Ni addition, it may have a conclusion that the increase of Ni
content tends to facilitate the formation of the FCC phase in FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs due to
lattice distortion.

Table 2. Parameters of values of electron concentration (VEC), atomic size difference (∆R), electronegativity
differences (∆X), mixing entropy (∆S), mixed enthalpy (∆H) and solid solution formation ability (Ω) for
the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs.

x VEC ∆R ∆X ∆S (J/K·mol) ∆H (kJ/mol) Ω (kJ/mol)

1.0 8.20 5.404 0.1115 1.609R −5.28 3.8477
1.25 8.29 5.341 0.1102 1.605R −5.51 3.6980
1.5 8.36 5.278 0.1090 1.594R −5.69 3.5831

1.75 8.43 5.216 0.1077 1.579R −5.81 3.4932
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3.2. SEM Images

The SEM backscattered electron images (SEM-BSE) and the elemental mapping images of the
FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs are shown in Figures 2–5. All the samples show two contrasts:
one is dark grey (marked as A), the other is white (marked as B). Combined with XRD result, it is
found that region A is BCC phase, and region B is FCC phase. When x = 1.0, the elemental mapping
images (see Figure 2b–f) show that Cu element is enriched, while Fe, Co, Al and Ni are depleted in
FCC phase. In comparison to x = 1.0 alloy, the fraction of FCC phase is significantly increased in
x = 1.25 alloy. The elemental mapping result shows a similar trend of distribution of Cu, Fe, Co, Al and
Ni in FCC and BCC phases (see Figure 3b–f). It is worth noting that x = 1.5 alloy exhibits different
SEM morphology with x = 1.0 and x = 1.25 alloys, as shown in Figure 4a. Moreover, the elemental
distribution in FCC and BCC phases is also different. That is, the mapping images (Figure 4b–f) shows
that Al and Ni are depleted whereas Fe and Co are enriched in FCC phase. In particular, a Cu-rich
phase boundary (PB) appears between the FCC and BCC phases. This phenomenon of Cu enrichment
in the PB region has also been observed in our previous studies [35]. With further increasing Ni content
to x = 1.75, it consists of a large number of FCC phase and small number of BCC phase. This alloy has
similar elemental distribution in FCC and BCC phases to x = 1.5 alloy. The EDS point analysis gives
the chemical compositions of the alloys in different regions, and it is listed in Table 3. For comparison,
the nominal compositions are also included in Table 3.
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Table 3. The chemical compositions (at.%) of the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs by EDS
point analysis.

x Regions Fe Co Ni Cu Al

1.0
Nominal 20.00 20.00 20.00 20.00 20.00

A 19.74 20.00 20.06 18.98 21.23
B 15.54 15.12 17.27 37.01 15.07

1.25
Nominal 19.05 19.05 23.80 19.05 19.05

A 21.31 21.69 23.92 12.34 20.74
B 15.77 15.05 21.61 32.39 15.18

1.5

Nominal 18.18 18.18 27.28 18.18 18.18
A 13.56 15.50 28.33 18.56 24.05
B 21.93 22.20 26.96 13.01 15.90

PB 13.21 13.69 24.21 32.72 16.17

1.75

Nominal 17.39 17.39 30.44 17.39 17.39
A 12.37 13.68 31.71 17.75 24.49
B 20.93 20.58 30.04 13.4 15.07

PB 13.13 13.52 29.95 28.10 15.29

3.3. Magnetic Properties at H = 10 kA/m and f = 50 Hz

Figure 6a,b show the AC magnetisation curves and hysteresis loops of FeCoNixCuAl (1.0 ≤ x ≤ 1.75)
HEAs (H = 10 kA/m and f = 50 Hz). With increasing Ni content, the magnetisation curve and the
hysteresis loop change significantly. The parameters such as the AC maximum magnetic flux density
(Bm), AC remanence (Br), AC coercivity (Hc) and the energy loss (Ps) of the alloy can be obtained, and
the detailed values are listed in Table 4. Figure 6c shows AC Bm, AC Br, AC Hc and Ps of the alloy
as a function of Ni content. For comparison, the ratio of I(111)F/I(110)B as a function of Ni content is
also listed in Figure 6c. With x increasing from 1.0 to 1.75, the values of AC Bm, AC Br, AC Hc and
Ps decrease from 608.3 mT to 410.6 mT, 320 mT to 98 mT, 1582 A/m to 306 A/m, and 19.79 W/kg to
1.89 W/kg, respectively. An interesting phenomenon is that the variations of AC Bm, AC Br, AC Hc and
Ps are opposite to that of I(111)F/I(110)B. This means that the AC soft magnetic properties of the alloy
are closely related to the phase composition. The formation of the FCC phase would be conducive to
a decrease in the values of AC Br, AC Hc and Ps, while it is harmful to AC Bm. This provides a direction
for improving AC magnetic properties in the future.
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Table 4. AC maximum magnetic flux density (Bm), AC remanence (Br), AC coercivity (Hc) and energy
loss (Ps) of the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs measured at H = 10 kA/m and f = 50 Hz.

x AC Bm (mT) AC Br (mT) AC Hc (A/m) Ps (W/kg)

1.0 608.3 320.0 1582.0 19.79
1.25 577.3 244.9 705.3 8.02
1.5 468.2 148.2 424.7 3.24

1.75 410.6 98.2 306.3 1.89

3.4. Magnetic Properties at AC Bm = 300 mT

Soft magnetic materials are usually used at different frequencies, and they need to reach a fixed
AC Bm to provide a certain force [36,37]. Figure 7 shows AC Br, AC Hc and Ps as a function of f for the
FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs measured at AC Bm = 300 mT. It can be seen that AC Br, AC Hc

and Ps increase gradually with increasing f, and decline with increasing Ni content. When f = 950 Hz,
with x increasing from 1.0 to 1.75, AC Br, AC Hc and Ps reduce by 40%, 71% and 74%, respectively.
The values of AC Br, AC Hc and Ps are listed in Table 5.
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Figure 7. AC soft magnetic parameters as a function of f for the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs
measured at AC Bm = 300 mT (a) AC Br; (b) AC Hc; (c) Ps.
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Table 5. AC magnetic parameters measured at AC Bm = 0.3 T at different f and electrical resistivity of
the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs.

x F (Hz) Ps (W/kg) Ph (W/kg) Pe (W/kg) Ph/Ps (%) AC Hc (A/m) AC Br (mT) P (µΩ·cm)

1.0

50

5.13 4.91 0.22 95.7 806.7 184.4 54.7
1.25 1.93 1.76 0.17 91.2 322.2 159.8 67.1
1.5 0.97 0.85 0.12 87.6 190.5 119.9 86.7

1.75 0.85 0.77 0.08 90.6 172.7 90.1 93.3

1.0

100

10.78 9.91 0.87 91.9 850.2 187.4 54.7
1.25 4.25 3.56 0.69 83.8 353.3 165.5 67.1
1.5 2.21 1.71 0.50 77.4 214.7 126.7 86.7

1.75 1.86 1.52 0.34 81.7 189.0 94.0 93.3

1.0

150

16.91 14.94 1.97 88.4 891.9 189.9 54.7
1.25 6.94 5.39 1.55 77.7 381.6 170.5 67.1
1.5 3.68 2.56 1.12 69.5 235.4 131.8 86.7

1.75 3.02 2.26 0.76 74.9 203.5 97.4 93.3

1.0

250

30.71 25.25 5.46 82.2 966.5 194.6 54.7
1.25 13.49 9.19 4.30 68.1 434.3 179.1 67.1
1.5 7.40 4.28 3.12 57.9 273.1 140.9 86.7

1.75 5.92 3.82 2.10 64.5 231.5 103.4 93.3

1.0

350

46.49 35.78 10.71 77.0 1039 198.9 54.7
1.25 21.40 12.97 8.43 60.6 481.5 185.9 67.1
1.5 12.11 5.99 6.12 49.5 308.7 148.5 86.7

1.75 9.63 5.52 4.11 57.3 258.6 109.6 93.3

1.0

450

64.18 46.48 17.70 72.4 1106 202.8 54.7
1.25 30.89 16.96 13.93 54.9 531.3 192.4 67.1
1.5 18.05 7.94 10.11 44.0 345.7 155.9 86.7

1.75 13.67 6.87 6.80 50.3 281.2 112.6 93.3

1.0

550

82.32 55.88 26.44 67.9 1147 205.0 54.7
1.25 41.35 20.55 20.80 49.7 569.1 197.6 67.1
1.5 24.63 9.52 15.11 38.7 372.2 161.1 86.7

1.75 18.55 8.39 10.16 45.2 305.0 116.8 93.3

1.0

650

103.00 66.08 36.92 64.2 1202 208.6 54.7
1.25 52.79 23.73 29.06 45.0 607.5 201.5 67.1
1.5 32.10 11.00 21.10 34.3 402.8 165.9 86.7

1.75 23.87 9.68 14.19 40.6 330.8 119.5 93.3

1.0

750

124.30 75.14 49.16 60.5 1249 210.7 54.7
1.25 66.04 27.35 38.69 41.4 650.9 207.3 67.1
1.5 40.93 12.84 28.09 31.4 436.4 170.8 86.7

1.75 29.61 10.72 18.89 36.2 350.7 122.8 93.3

1.0

850

147.50 84.36 63.14 57.2 1296 213.1 54.7
1.25 80.00 30.31 49.69 37.9 690.5 209.9 67.1
1.5 50.54 14.46 36.08 28.6 470.4 175.9 86.7

1.75 37.63 13.37 24.26 35.5 375.0 127.5 93.3

1.0

950

172.20 93.33 78.87 54.2 1346 214.8 54.7
1.25 95.37 33.30 62.07 34.9 729.4 214.2 67.1
1.5 61.25 16.18 45.07 26.4 501.5 179.8 86.7

1.75 45.13 14.83 30.30 32.9 395.5 129.0 93.3

4. Discussions

For practical applications of soft magnetic materials, Ps under a dynamic magnetic field is a very
important parameter in evaluating the application of magnetic materials. In general, Ps can be
decomposed into the sum of three loss generations, Ph, Pe and residual loss (Pr) [38]. Under our test
conditions, the effect of Pr can be ignored due to the frequency being not very high [38].

Ps can be expressed as Equation (1) [39]:

Ps = Ph + Pe (1)

Ph can be expressed as Equation (2) [39]:

Ph = ηBn
m f (2)
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where η is the material constant, Bm is the maximum magnetic flux density, and n is the
exponential constant.

Pe can be expressed as Equation (3) [39]:

Pe =
π2d2B2

m
ρβ

f 2 (3)

where d is the sample thickness, ρ is the resistivity, and β is the material shape parameter.
Combining Equations (1)–(3) to get Equation (4):

Ps = Ph + Pe = ηBn
m f +

π2d2B2
m

ρβ
f 2 (4)

Setting a =
π2d2B2

m
ρβ , and b = ηBn

m. Then, Equation (4) can be rewritten as Equation (5):

Ps

f
=

Ph
f
+

Pe

f
= b + a f (5)

Through Equation (5), the unary function of f( f ,Ps/ f ) can be obtained. Using the measured data in
Table 5, we can fit the slope a and intercept b of the function. Pe and Ph can then be calculated from a
and b, and the values are listed in Table 5.

Equation (6) can be given by combination of Equations (2) and (5),

Ph/Ps =
1

1 + a
b f

(6)

It is seen that Ph/Ps is inversely proportional to frequency. The ratio of Ph/Ps and values of ρ are
also listed in Table 5.

The ratio of Ph/Ps and Pe/Ps (= 1−Ph/Ps) can be considered as the contribution of Ph and Pe to the
total loss, Ps, respectively. Figure 8 shows the Ph/Ps as a function of f. With increasing f, the ratio of Ph/Ps

decreases gradually. It can be seen that when f ≤ 150 Hz (left side of black dotted line), Ph/Ps is over 70%
which means that Ph mainly contributes to Ps. When f ≥ 800 Hz (right side of green dotted line), Ph/Ps is
less than 40% (except for the x = 1.0 sample) which means that Pe mainly contributes to Ps. Combined
with XRD result, it is found that the Ph/Ps decreased with the frequency when Ni addition, x, is less
than 1.5 due to an increase of FCC phase. When x = 1.5, the ratio of Ph/Ps is only 26.5% at f = 950 Hz.
However, furthering increasing the fraction of FCC phase results in a minor improvement of Ph/Ps.
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Figure 9a,b show Pe as a function of x for the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs at 50 Hz
and 950 Hz, respectively, and for comparison purposes, ρ as a function of x is shown in Figure 9c.
With increasing Ni content, Pe decrease linearly, and the downward trend is inversely proportional to
the ρ, which corresponds to Equation (3). It suggests that Pe can be reduced by increasing ρ for the
FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs.
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Figure 10a shows Ph as a function of x for the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs at 50 Hz. When
the Ni content increased from 1.0 to 1.75, Ph was reduced by about 85%. In general, the value of hysteresis
loss is related to the area of the hysteresis loop [40], and Br and Hc are important parameters that
determine the area of the hysteresis loop. Figure 10b,c show AC Hc and AC Br as a function of x at 50 Hz,
respectively. The scales of AC Hc and AC Br are in proportion to that of Ph. It can be seen that AC Br

decreases slightly with increasing Ni content. It is worth noting that the downward trend of AC Hc is
basically consistent with the downward trend of Ph. This means that the decrease of Ph is closely related
to AC Hc. When f = 950 Hz, a similar change law can be observed (Figure 10d–f). Therefore, Ph can be
reduced by decreasing AC Hc for the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs.

Liu et al. used two magnetic parameters (the saturation magnetization, Ms, and the coercivity, Hc)
to study the DC magnetic properties of AlCoCuFeNix (x = 0.5, 0.8, 1.0, 1.5, 2.0, 3.0). They found that
high fraction of BCC phase led to high saturation magnetization [27]. Besides Ms and Hc, we used other
important soft magnetic parameters including the initial permeability (µi), the maximum permeability
(µmax), the remanence (Br), and the hysteresis loss (Pu) to evaluate DC soft magnetic properties of
FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs. It is shown in Supplementary Table S1. In comparison to Liu’s
work, we have minor different values of Ms for x = 1.0 and x = 1.5 alloys due to the difference of
preparation samples.

In our work, the fraction of FCC phase increases with increasing Ni addition. The result of AC
magnetic property shows that the increase content of the FCC phase leads to a decrease of AC Br, AC
Hc and Ps, which is beneficial to AC soft magnetic property. The parameters, Br, Hc and Ps, have close
relationships to the microstructure. Our recent work showed the presence of low angle grain boundary
with a misorientation angle between 2–5◦ could reduce dramatically the soft magnetic properties of
Fe-Co-Ni-Al alloys [41]. The reason of the decrease of AC Br, AC Hc and Ps with increasing Ni content
might due to a decrease of low angle grain boundary (2–5◦) resulting in a release of strain concentration.



Materials 2019, 12, 4222 11 of 14

Materials 2020, 13, x FOR PEER REVIEW 10 of 13 

 

at 50 Hz, respectively. The scales of AC Hc and AC Br are in proportion to that of Ph. It can be seen that 
AC Br decreases slightly with increasing Ni content. It is worth noting that the downward trend of 
AC Hc is basically consistent with the downward trend of Ph. This means that the decrease of Ph is 
closely related to AC Hc. When f = 950 Hz, a similar change law can be observed (Figure 10d,e, and f). 
Therefore, Ph can be reduced by decreasing AC Hc for the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs. 

Liu et al. used two magnetic parameters (the saturation magnetization, Ms, and the coercivity, 
Hc) to study the DC magnetic properties of AlCoCuFeNix (x = 0.5, 0.8, 1.0, 1.5, 2.0, 3.0). They found 
that high fraction of BCC phase led to high saturation magnetization [27]. Besides Ms and Hc, we used 
other important soft magnetic parameters including the initial permeability (μi), the maximum 
permeability (μmax), the remanence (Br), and the hysteresis loss (Pu) to evaluate DC soft magnetic 
properties of FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs. It is shown in Supplementary Table S1. In 
comparison to Liu’s work, we have minor different values of Ms for x = 1.0 and x = 1.5 alloys due to 
the difference of preparation samples. 

In our work, the fraction of FCC phase increases with increasing Ni addition. The result of AC 
magnetic property shows that the increase content of the FCC phase leads to a decrease of AC Br, AC 
Hc and Ps, which is beneficial to AC soft magnetic property. The parameters, Br, Hc and Ps, have close 
relationships to the microstructure. Our recent work showed the presence of low angle grain 
boundary with a misorientation angle between 2°–5° could reduce dramatically the soft magnetic 
properties of Fe-Co-Ni-Al alloys [41]. The reason of the decrease of AC Br, AC Hc and Ps with 
increasing Ni content might due to a decrease of low angle grain boundary (2°–5°) resulting in a 
release of strain concentration. 

It is seen from Table 5 that the electrical resistivity, ρ, is 54.7 μΩ·cm for × = 1.00 alloy that is larger 
than 15 μΩ·cm of mild steel. The values of ρ for × ≥ 1.25 alloy are in the range of 67.1−93.3 μΩ·cm, 
which is larger than 60 μΩ·cm of silicon steel and 50 μΩ·cm of grain-oriented Si steel [42]. It indicates 
that the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs have potential applications in motors, generators and 
transformers due to relative low energy loss and high electrical resistivity. 

 
Figure 10. (a) Ph at 50 Hz; (b) AC Hc at 50 Hz; (c) AC Br at 50 Hz (d) Ph at 950 Hz (e) AC Hc at 950 Hz 
(f) AC Br at 950 Hz as a function of x for the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs. 

5. Conclusions 

In summary, we study the AC magnetic properties and microstructure of FeCoNixCuAl (1.0 ≤ x 
≤ 1.75) HEAs. The main results are as follows: 

Figure 10. (a) Ph at 50 Hz; (b) AC Hc at 50 Hz; (c) AC Br at 50 Hz (d) Ph at 950 Hz (e) AC Hc at 950 Hz (f)
AC Br at 950 Hz as a function of x for the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs.

It is seen from Table 5 that the electrical resistivity, ρ, is 54.7 µΩ·cm for × = 1.00 alloy that is larger
than 15 µΩ·cm of mild steel. The values of ρ for × ≥ 1.25 alloy are in the range of 67.1−93.3 µΩ·cm,
which is larger than 60 µΩ·cm of silicon steel and 50 µΩ·cm of grain-oriented Si steel [42]. It indicates
that the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs have potential applications in motors, generators and
transformers due to relative low energy loss and high electrical resistivity.

5. Conclusions

In summary, we study the AC magnetic properties and microstructure of FeCoNixCuAl
(1.0 ≤ x ≤ 1.75) HEAs. The main results are as follows:

(1) The XRD and SEM results show that the alloys contain two phases, namely a BCC phase and an
FCC phase. It is found that increasing the Ni content tends to facilitate the formation of the FCC
phase in these alloys due to lattice distortion. When x ≤ 1.25, Cu is enriched in the FCC phase
and it is depleted in the BCC phase. When x ≥ 1.5, Cu is depleted in the FCC phase and Al is
enriched in the BCC phase. In addition, a Cu-rich phase boundary appears between the FCC and
BCC phases.

(2) The formation of the FCC phase would be conducive to a decrease in the values of AC Br, AC Hc

and Ps, while it is harmful to AC Bm. The decrease of AC Br, AC Hc and Ps with increasing Ni
content might due to a decrease of low angle grain boundary (2–5◦), resulting in a release of strain
concentration. This provides a direction for improvement of the AC magnetic performance in
the future.

(3) With increasing f, the ratio of Ph/Ps decreases. When f ≤ 150 Hz, Ph/Ps is larger than 70%, which
means that Ph mainly contributes to Ps. When f ≥ 800 Hz, Ph/Ps is less than 40% (except for the
x = 1.0 sample), which means that Pe mainly contributes to Ps.

(4) At the same frequency, the ratio of Ph/Ps decreases gradually with increasing FCC phase content.
Pe is inversely proportional to ρ, and Ph is closely related to AC Hc. This provides a direction to
reduce Ps.

(5) With increasing Ni content, the value of ρ increases from 54.7 µΩ·cm to 93.3 µΩ·cm, which is
larger than that of silicon steel. It indicates that the FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs have
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potential applications in motors, generators and transformers due to relative low energy loss and
high electrical resistivity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/24/4222/s1,
Table S1: Direct current (DC) soft magnetic properties of FeCoNixCuAl (1.0 ≤ x ≤ 1.75) high-entropy alloys.
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