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Abstract: 1-Butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6])/DNA and
1-methyl-3-propylimidazolium hexafluorophosphate ([C3MIM][PF6])/DNA mixtures were prepared
and characterized by high-pressure infrared spectroscopy. Under ambient pressure, the imidazolium
C2–H and C4,5–H absorption bands of [C4MIM][PF6]/DNA mixture were red-shifted in comparison
with those of pure [C4MIM][PF6]. This indicates that the C2–H and C4,5–H groups may have certain
interactions with DNA that assist in the formation of the ionic liquid/DNA association. With the increase
of pressure from ambient to 2.5 GPa, the C2–H and C4,5–H absorption bands of pure [C4MIM][PF6]
displayed significant blue shifts. On the other hand, the imidazolium C–H absorption bands of
[C4MIM][PF6]/DNA showed smaller frequency shift upon compression. This indicates that the associated
[C4MIM][PF6]/DNA conformation may be stable under pressures up to 2.5 GPa. Under ambient
pressure, the imidazolium C2–H and C4,5–H absorption bands of [C3MIM][PF6]/DNA mixture displayed
negligible shifts in frequency compared with those of pure [C3MIM][PF6]. The pressure-dependent
spectra of [C3MIM][PF6]/DNA mixture revealed spectral features similar to those of pure [C3MIM][PF6].
Our results indicate that the associated structures of [C4MIM][PF6]/DNA are more stable than those of
[C3MIM][PF6]/DNA under high pressures.
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1. Introduction

Deoxyribonucleotide acid (DNA) molecules, which are double-helical biopolymers comprised
of attached nucleotides, are well known to serve as genetic information carriers [1–5]. Because of
the Watson–Crick interaction, that is, hydrogen bonding between nucleobase pyrimidine and purine,
and base–base interaction (π–π stacking), DNA molecules can exist in stable conformations at ambient
temperatures in cell nuclei [2,3]. The expected applications of DNA are far more than what current
research can offer, because evidence increasingly suggests that DNA molecules are programmable
in well-defined structures for 3D designing and topology [4,5]. Shih et al. [6] have discovered that
ss-DNA can be configured into double-helical struts linked at the branched junctions, and two kinds
of noncovalent motifs (double-crossover and paranemic-crossover struts) facilitate the formation of
triangulated objects, such as tetrahedra or octahedra. Several studies [5–9] have also clarified that the
specific associations and hydrophobic interactions make nucleic acid a promising candidate for the
production of designable building blocks via self-assembly. In addition, various investigations show
that the behaviors of self-assembly and electrostatic trapping of DNA can be used in drug delivery [8]
and nanoelectronics [9].

Ionic liquids (ILs) are recognized as superb green solvents because of their low vapor pressure and
recyclability, as well as several other unique characteristics [10–15], such as high electric conductivity
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and being great stabilizers for biomaterials and nucleic acids [16]. Particularly, ILs containing
imidazolium-ring cation are considered excellent biocompatible (or bioactive) substances, amorphous
liquids with designable subunits, and ion-conductive materials [10–13]. The alkyl side chain of an
imidazolium cation may participate in aggregation and association with anions in bulk ILs, although
the hydrophilic and Coulomb forces remain the dominant interactions [11–15]. On top of that, several
reports [17–24] show that the hydrophobic alkyl chains can stabilize biopolymers like nucleic acids via
forming the association through electrostatic interactions between the DNA molecule and cations of IL.

DNA molecules can associate with cations of IL via the negatively charged backbone and
hydrophobic groove interaction of DNA [19–24]. The cluster structure of ILs can be disturbed by
mixing with an additive-like DNA via electrostatic interaction between the cation head group of ILs
and phosphate anion of DNA and hydrophobic association between the alkyl part of IL cation and
the groove region or nitrogenous base of DNA [19–24]. Part of base pairs (pyrimidine and purine),
which interact via hydrogen bonding and stacking, are easily attracted to alkyl tail of ILs with
noncovalent interaction, hydrophobic interaction, or van der Waals force. Several researchers [19–22]
have suggested that the chemical structure of the cationic head group of ILs determines the electrostatic
interaction to a certain extent, whereas the alkyl chain length of the cation is responsible for the
stability of groove association. Ghoshdastidar et al. [25] have reported that ILs can rescue DNA by
forming a complex via specific trapping force in water solutions. Moreover, as the lifetime of DNA in
aqueous solutions is strictly limited by hydrolysis, Tateishi-Karimata et.al. [16] suggested that the more
stable the DNA–IL association is, the longer storage time of DNA can become. It is currently deemed
that the stability of DNA can be attributed to five factors: the Watson–Crick interaction, base pair
stacking, conformational entropy, hydration, and cation binding [16]. The conformation of DNA–IL
complexes in an aqueous solution or in neat ILs reveals that the durability depends on the hydration
and cation binding, which can be adjusted by varying ILs and constituent concentrations. The ILs that
can spontaneously self-assemble and specifically attach to groove and backbone structures allow to
skillfully control the DNA structure [19,20,25].

High pressure allows to force ions or molecules into close-range to enhance the interactions
between them, which makes it a useful and effective technique. Previous studies [26–28] revealed
that pure ILs have an anisotropic cluster structure, and the hydrogen-bonding network can be easily
disturbed by adding various materials under high-pressure conditions. Deemyad et al. [29–31]
concluded that pressure can induce superconductivity and electronic properties modification of
Cu2I2Se6 by a structural change. The electronic responses, optoelectronic properties, energy band
gaps, and crystal structures of different materials, such as semiconductors [29], perovskites [30],
and piezochromic materials [31], can be varied by compression. For example, IL-β-cyclodextrin
(IL-β-CD) associated forms under low pressures can be turned to dissociated structures with the
pressure increase [26]. The studies of pressure-dependent confinement effect of ILs indicated that
interfacial IL–silica interactions tend to weaken the cation–anion interactions under high pressure [27].
In this study, we demonstrate that high pressure may provide a unique insight into the stabilization of
DNA–IL associations and key interactions between DNA and IL.

2. Materials and Methods

Samples were prepared using deoxyribonucleic acid sodium salt from salmon testes
(DNA, Sigma-Aldrich, St. Louis, MO, USA), 1-butyl-3-methylimidazolium hexafluorophosphate
([C4MIM][PF6], ≥97.0%, Sigma-Aldrich), and 1-methyl-3-propylimidazolium hexafluorophosphate
([C3MIM][PF6], 99.0%, UniRegion Bio-Tech, Taoyuan, Taiwan). IL ([C3MIM][PF6] or [C4MIM][PF6])
and DNA aqueous solution (1.6 wt%) were mixed with the volume ratio of 1:1, and the mixture
was sonicated at 30 ◦C for 30 min. Then, the mixture was centrifuged at 12,000 rpm for 10 min.
The sample solution was separated into two phases. We note that [C3MIM][PF6] and [C4MIM][PF6] are
hydrophobic (water-insoluble) ionic liquids. The lower IL phase was removed, and the upper aqueous
solution was collected and dried to obtain the DNA–IL mixtures.
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High pressure (up to ~2 GPa) was generated using a diamond anvil cell (DAC) with a diamond culet
size of 0.6 mm. The DAC contained two type-IIa diamonds, which are suitable for mid-infrared (mid-IR)
measurements. IR spectra were measured using a Fourier-transform (FT) spectrophotometer (Spectrum
RXI, Perkin-Elmer, Naperville, IL, USA) equipped with a lithium tantalite detector. To enhance the
intensity of passed infrared beam, a five-beam condenser was combined with the FT spectrometer.
To eliminate the influence of absorption of the diamond anvils, the absorption spectra of the DAC
were measured first and subtracted from those of the samples. A 0.25 mm thick Inconel gasket with
a 0.3 mm diameter hole was prepared to hold the sample. To reduce the absorbance of the samples,
transparent CaF2 crystals were placed into the holes and compressed prior to inserting the samples.
A resolution of 4 cm−1 (data point resolution of 2 cm−1) and 1000 scans were chosen for the high
pressure data. Pressure calibration was performed following Wong’s method [32,33]. The spectra
of samples at ambient pressure were obtained by putting samples in a cell with two CaF2 windows.
To obtain the amount of water in the DNA mixtures (ca. 9 wt%), a moisture analyzer (MS-70, A&D
Company, Tokyo, Japan) was used.

3. Results and Discussion

Figure 1 shows the IR spectra of (a) pure [C4MIM][PF6] and (b) [C4MIM][PF6]/DNA mixture
recorded under ambient pressure. The IR spectrum of pure [C4MIM][PF6] in Figure 1a shows two
imidazolium peaks at 3124 and 3169 cm−1, which correspond to the vibrational absorption bands of
C2–H and C4,5–H on the imidazolium ring, respectively [26–28]. The other three bands in the region of
2850–3000 cm−1 in Figure 1a are assigned to the alkyl C–H vibrational modes on the cation tail of pure
[C4MIM][PF6] [26–28]. The curve fitting and deconvolution of pure ionic liquids spectra were performed
with Lorentzian peaks. In Figure 1b, the baseline absorption bands in the region of 3000–3300 cm−1 may
be attributed to the hydrogen-bonded O–H or N–H absorption bands. Comparing pure [C4MIM][PF6]
(Figure 1a) with the [C4MIM][PF6]/DNA mixture (Figure 1b), evident differences in the spectral features
of the C2–H and C4,5–H bands can be observed. The C2–H and C4,5–H absorption bands of the
[C4MIM][PF6]/DNA mixture are slightly red-shifted to 3113 and 3154 cm−1, respectively, compared
with those of pure [C4MIM][PF6] at ambient pressure (Figure 1). On the other hand, the alkyl C–H
absorption bands in Figure 1b do not reveal a significant frequency shift for the [C4MIM][PF6]/DNA
mixture at ambient pressure. The results in Figure 1 indicate that DNA molecules may interact with the
imidazolium ring of [C4MIM][PF6], and the local structures of C2–H and C4,5–H are influenced by DNA.
We noticed that the imidazolium C–H absorption bands of [C4MIM][PF6]/DNA are relatively broad in
bandwidth in Figure 1b compared with those of pure [C4MIM][PF6] in Figure 1a. The imidazolium C–H
local structures of [C4MIM][PF6]/DNA may exist in multiple imidazolium C–H–DNA conformations
such as strong complexation, weak association, and mild (or negligible) interactions. The curve fitting
and deconvolution of imidazolium C–H bands for [C4MIM][PF6]/DNA were performed with Gaussian
functions, and the spectra were subtracted by a straight line prior to deconvolution to avoid the
interference from the baseline. Figure S1 (see Supplementary Materials) shows the infrared spectra of
(a) pure [C4MIM][PF6] and (b) [C4MIM][PF6] with saturated water. As revealed in Figure S1, the C–H
absorptions are almost identical for pure [C4MIM][PF6] and [C4MIM][PF6] with saturated water owing
to the hydrophobicity of [C4MIM][PF6]. Thus, the peak shifts observed in Figure 1 may be attributed
to the interactions between IL and DNA instead of the interactions with residual water molecules.
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the C4,5–H, C2–H, and alkyl C–H bands underwent an extraordinary blue shift to 3182, 3132, and 2978 
cm−1, respectively. In addition, the alkyl C–H absorption bands at approximately 2978 and 2950 cm−1 
in Figure 2b show the decrease in absorption ratio (I2978/I2950) with the increase of pressure from 
ambient (Figure 2a) to 0.4 GPa (Figure 2b). These results indicate that the pressure-enhanced 
interactions may disturb the hydrogen-bond network and change the local structures. With the 
further increase of pressure from 0.4 to 2.5 GPa (Figure 2b–g), the C–H absorption bands (C4,5–H, C2–
H, and alkyl C–H) show mild blue shifts and broadening of the bandwidths. The effect can be 
understood as follows: the applied pressure forces [C4MIM]+ cations and [PF6]− anions to move 
closer, which enhances the interaction between them. 
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Figure 1. IR spectra of (a) pure [C4MIM][PF6] and (b) the [C4MIM][PF6]/DNA mixture recorded under
ambient pressure.

Figure 2 shows the IR spectra of pure [C4MIM][PF6] obtained at (a) ambient pressure and
(b) 0.4, (c) 0.7, (d) 1.1, (e) 1.5, (f) 1.8, and (g) 2.5 GPa. When the pressure was increased to 0.4 GPa
(Figure 2b), the C4,5–H, C2–H, and alkyl C–H bands underwent an extraordinary blue shift to 3182, 3132,
and 2978 cm−1, respectively. In addition, the alkyl C–H absorption bands at approximately 2978 and
2950 cm−1 in Figure 2b show the decrease in absorption ratio (I2978/I2950) with the increase of pressure
from ambient (Figure 2a) to 0.4 GPa (Figure 2b). These results indicate that the pressure-enhanced
interactions may disturb the hydrogen-bond network and change the local structures. With the further
increase of pressure from 0.4 to 2.5 GPa (Figure 2b–g), the C–H absorption bands (C4,5–H, C2–H,
and alkyl C–H) show mild blue shifts and broadening of the bandwidths. The effect can be understood
as follows: the applied pressure forces [C4MIM]+ cations and [PF6]− anions to move closer, which
enhances the interaction between them.
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Figure 3 shows the IR spectra of the [C4MIM][PF6]/DNA mixture obtained at (a) ambient pressure
and (b) 0.4, (c) 0.7, (d) 1.1, (e) 1.5, (f) 1.8, and (g) 2.5 GPa. As shown in Figure 3, baseline absorption is
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present for the [C4MIM][PF6]/DNA mixture in all of the spectra (Figure 3a–g), which is attributed to the
absorption bands of hydrogen-bonded O–H or N–H. With the increase of pressure to 0.4 GPa, the C2–H
and C4,5–H absorption bands reveal mild blue shifts to 3115 and 3158 cm−1, respectively (Figure 3b).
The alkyl C–H bands in the range from 2850 to 3000 cm−1 are also blue-shifted because of the pressure
increase (Figure 3b). In agreement with our experimental results, several researchers [16,19,20,24,25]
suggested that [C4MIM]+ cations can be easily bound into the minor groove structure of DNA molecules
by the electrostatic force and van der Waals interactions. In comparison with pure [C4MIM][PF6] at the
pressure of 0.4 GPa (Figure 2b), the C2–H and C4,5–H absorption bands of [C4MIM][PF6]/DNA mixture at
0.4 GPa (Figure 3b) show smaller frequency shifts under compression. Previous studies [26–28] revealed
that high pressure can enhance the cluster structure interaction and lead to a band frequency shift.
The hydrogen-bond network of an IL cluster structure may be disrupted, as some added molecules
(such as DNA) may disturb the associations of ILs or cut large aggregations to small pieces. With the
further increase of pressure from 0.4 to 2.5 GPa (Figure 3b–g), the C–H bands do not show significant
frequency shifts; however, the C–H absorption bands reveal subtle-continuous band-broadening.
DNA may protect imidazolium cations from approaching molecules or ions under applied pressure,
which makes the associated [C4MIM][PF6]/DNA structure stable under up to 2.5 GPa pressure.
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(c) 0.7, (d) 1.1, (e) 1.5, (f) 1.8, and (g) 2.5 GPa.

Figure 4 shows the pressure dependence of C–H stretching frequencies of pure [C4MIM][PF6]
and the [C4MIM][PF6]/DNA mixture. The imidazolium C4,5–H and C2–H stretching bands for pure
[C4MIM][PF6] (Figure 4A,B) show drastic blue shifts in the pressure range from ambient to 0.7 GPa
and mild blue shifts in the pressure range from 0.7 to 2.5 GPa. Previous studies indicated [26–28]
that high pressure can easily shorten the imidazolium C–H bonds by the enhancement of weak
C–H hydrogen bonding, which leads to a blue shift. Blue shifts of the pure [C4MIM][PF6] C–H
stretching band in Figure 4A,B may be related to the C–H . . . F interaction between imidazolium
C–H bands (C4,5–H and C2–H) and [PF6]− under increased pressure. For the C4,5–H and C2–H
imidazolium vibrational bands of the [C4MIM][PF6]/DNA mixture (Figure 4A,B), mild band shifts
were observed as the pressure was increased from ambient to 2.5 GPa. The imidazolium C–H
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band shifts for the [C4MIM][PF6]/DNA mixture do not display similar trends to the results of pure
[C4MIM][PF6] (Figure 4A,B). The DNA molecules may somehow prevent ILs from forming the
hydrogen-bond network at high pressures. In other words, pure [C4MIM][PF6] may form large cluster
structures under high pressures, while the stable [C4MIM][PF6]/DNA structures prevent [C4MIM][PF6]
from aggregation. The alkyl C–H bands of the cation for pure [C4MIM][PF6] in Figure 4C show blue
shifts at the pressure increase from ambient to 0.7 GPa and slight frequency shifts in the pressure
range from 0.7 to 2.5 GPa. While the alkyl C–H absorption bands for the [C4MIM][PF6]/DNA mixture
(Figure 4C) underwent blue shifts under pressures below 0.7 GPa, the alkyl C–H bands showed no
significant frequency shifts at pressures above 0.7 GPa. The vibrational-band shifts of the C4,5–H and
C2–H absorption bands of mixtures in Figure 4A,B show different trends in comparison with those for
the alkyl C–H bands in Figure 4C. This indicates that local associations between imidazolium C–H
(C4,5–H and C2–H) and DNA are dominant in the mixture, and the interactions between alkyl C–H
and DNA are not sufficiently strong to fully disturb the alkyl C–H–anion interactions under high
pressures. The band-shift differences under high pressures may be attributed to the differences in
the interaction magnitudes of electrostatic association, hydrophobic interaction, and van der Waals
force [1,16]. The IR spectra of [C4MIM][PF6]/DNA (ambient and cycled back to ambient) are shown
in Figure S2 (see Supplementary Materials), and the spectra are reversible upon pressure cycling.
Pressure-induced reversible unfolding of biomolecules has drawn the attention of researchers [34].
Pressure denaturation leads to a more controlled perturbation to the structures of biomolecules than
chemical or temperature denaturation. High-pressure NMR (with high resolution) may provide the
sensitive approach in studies of the pressure-induced denaturation problems [34].

To investigate the interactions between DNA and ILs with various alkyl-chain lengths, combining
[C3MIM][PF6] and DNA may provide more hints on the effect of the DNA–IL association. Figure 5
shows the IR spectra of (a) pure [C3MIM][PF6] and the (b) [C3MIM][PF6]/DNA mixture recorded
under ambient pressure. The IR spectrum of pure [C3MIM][PF6] in Figure 5a reveals the C–H
absorption bands at 3172 (C4,5–H), 3124 (C2–H), and 2965 (alkyl C–H) cm−1. The C–H absorption
frequencies of pure [C3MIM][PF6] in Figure 5a are similar to those of pure [C4MIM][PF6] in Figure 1a
at ambient pressure. In Figure 5b, the imidazolium C–H (C4,5–H and C2–H) band frequencies of the
[C3MIM][PF6]/DNA mixture show slight frequency shifts compared with those of pure [C3MIM][PF6]
in Figure 5a. The imidazolium C–H frequency shifts induced by DNA in Figure 5 are fairly small in
comparison with those for [C4MIM][PF6]/DNA in Figure 1. Thus, the weak associated configurations
with DNA may be the dominant species for the [C3MIM][PF6]/DNA mixture instead of the species of
strong complexation for [C4MIM][PF6]/DNA. It should be noted that the alkyl C–H band at 2972 cm−1

of the [C3MIM][PF6]/DNA mixture in Figure 5b shows a mild blue shift in comparison with the alkyl
C–H absorption band of pure [C3MIM][PF6] in Figure 5a. The band shifts of alkyl C–H for pure
[C3MIM][PF6] and the [C3MIM][PF6]/DNA mixture in Figure 5 may be attributed to the local structure
changes of the alkyl C–H groups induced by the presence of DNA molecules.
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provide the sensitive approach in studies of the pressure-induced denaturation problems [34]. 
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ambient pressure.

The pressure-dependent IR spectra of pure [C3MIM][PF6] and the [C3MIM][PF6]/DNA mixture
are shown in Figures 6 and 7, respectively. The C–H absorption bands of pure [C3MIM][PF6] and the
[C3MIM][PF6]/DNA mixture display similar band shifts and spectral features upon compression.
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Figure 8 shows the pressure dependence of the C–H stretching frequencies of pure [C3MIM][PF6]
and the [C3MIM][PF6]/DNA mixture. The C4,5–H and C2–H stretching bands (Figure 8A,B)
of pure [C3MIM][PF6] and the [C3MIM][PF6]/DNA mixture show similar band-shift tendencies
under compression. The imidazolium band-shift results of [C3MIM][PF6]/DNA in Figure 8A,B are
remarkably different from those of [C4MIM][PF6]/DNA in Figure 4A,B. The differences may be
attributed to the stronger association between [C3MIM]+ and [PF6]− caused by more symmetric and
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easier packing of [C3MIM]+ than that of [C4MIM]+. Namely, cations with short alkyl side chain may
favor the local cation–anion structures at high pressures. Cations with a longer alkyl side chain may lead
to larger binding forces with DNA. This observation is consistent with the arguments reported in the
literature [22,35]. In other words, the difference in alkyl side chain lengths may cause various effects on
the stabilization of IL/DNA associations at high pressures. Figure 8C shows the pressure dependence of
alkyl C–H band shifts for pure [C3MIM][PF6] and the [C3MIM][PF6]/DNA mixture. The splitting of the
alkyl C–H band for pure [C3MIM][PF6] occurs at the pressure of 0.7 GPa. The splitting may be attributed
to the phase transition and pressure-induced local structural organization. For [C3MIM][PF6]/DNA,
the pressure required to split the alkyl C–H band changed to 1.1 GPa (Figure 6C). Thus, the presence of
DNA indeed disturbs the local structure of alkyl C–H groups of cations in a [C3MIM][PF6]/DNA mixture.
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4. Conclusions

In this study, high-pressure measurements were performed to investigate the stabilization of
DNA–IL associations. Pressure-dependent studies revealed that [C4MIM][PF6]/DNA association
is stable up to the pressure of 2.5 GPa. DNA molecules prevent [C4MIM][PF6] from forming the
hydrogen-bond network under high pressures. Nevertheless, the pressure-dependent IR spectra of pure
[C3MIM][PF6] and the [C3MIM][PF6]/DNA mixture display similar band shifts and spectral features.
The alkyl C–H side chain may play a non-negligible role in IL/DNA associations. Cations with longer
alkyl side chain can possibly provide stronger binding interactions with DNA.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/24/4202/s1,
Figure S1: Infrared spectra of (a) pure [C4MIM][PF6] and (b) [C4MIM][PF6] with saturated water. Figure S2: IR
spectra of [C4MIM][PF6]/DNA obtained at (a) ambient pressure and (b) cycled back to ambient.
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