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Abstract: The application of flat ends in pressure boilers is inevitably associated with the presence of
stress concentration, which is observed in the vicinity of the junction of the cylinder and the closing
flat plate. The analyzed flat end plates with stress relief grooves fall into the group of solutions
recognized by the respective Standards of Calculations of Pressure Vessels. Unfortunately, no clear
evidence is given in the Standards on how to choose the best groove parameters. This opens up the
problem of the optimal choice of the groove parameters providing a minimum stress level. Even
for the optimal values defining the stress relief groove geometry, certain plastic deformations are
observed in the groove area for materials which exhibit elastic-plastic properties. Such a situation is
completely unacceptable during exploitation, and a suitable reduction of the operating pressure is
necessary. This paper discusses the effectiveness of other designs for flat ends used in pressure vessels.
The proposed modifications took the form of external ribs applied around the top of the endplate
circumference. The dimensions of these ribs were set using parametric optimization. The results
of the study encouraged the authors to perform a more general analysis with the use of topology
optimization. The results of all performed studies proved that the reduction of stress concentration
and the full elimination of plastic deformation are possible. All numerical calculations were made
using the finite element code (FEM), Ansys.

Keywords: pressure vessels; flat ends; stress concentration; parametric optimization; topological
optimization

1. Introduction

In standard applications, commonly-used pressure vessels are closed by ellipsoidal or
hemispherical heads. Their manufacturing process is not cheap, but is well established. The applications
of such heads provide the minimum stress concentration in the vicinity of the junction between the
cylindrical part of the vessel and the closure [1–4]. In certain situations (i.e., small internal diameters),
flat endplates can also be alternatively applied, which are less complex in shape and much cheaper in
fabrication. The main disadvantage of such a design is the presence of the severe stress concentration
in the junction of the flat plate edge and the shell wall of the boiler. In order to reduce the notch effect,
a stress relief groove can be applied, which provides a smoother shape transition in the shell-endplate
junction and releases the stress concentration. Even in this case, due to the lack of continuity of the
curvature along the contour in the area where the inner edge of the cylindrical wall transforms to the
curved one, a certain stress concentration is still observed [5–8]. Effectively modeling the junction
between the pressure boiler wall and the flat head of the boiler has been a challenge for researchers for
many years [1–4,7,9]. Usually, the minimization of the stress peak is achieved by the introduction of
respective functions approximating the curved shape of the shell, which provides continuity of the
curvature on the inner skin of the vessel. However, this approach is still not commonly applied in the
construction of flat heads of boilers due to manufacturing problems.

Materials 2019, 12, 4194; doi:10.3390/ma12244194 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-7475-1577
http://www.mdpi.com/1996-1944/12/24/4194?type=check_update&version=1
http://dx.doi.org/10.3390/ma12244194
http://www.mdpi.com/journal/materials


Materials 2019, 12, 4194 2 of 22

There are two commonly-used boiler codes for the calculation of pressure apparatuses (EN
12952:3 [10], EN 13445-3 [11]). Both suggest the application of a circular shape for the stress relief
groove. However, the choice of the groove parameters is slightly different in each of them. The main
differences between the approaches are illustrated in Figure 1. As shown, the suggested in EN 13445-3
change of the shape relies on the local thickness increase of the cylindrical shell wall in the vicinity of
the shell–endplate connection. This results in a variation of admissible groove parameters calculated
according to the respective code applied in boiler calculations. In previous studies [9,12–14], it was
observed that the geometries of relieve grooves, acceptable from the point of view of the Standard EN
12952:3, may significantly differ in strength, durability, or other engineering parameters. Experimental
tests were performed for the cylindrical pressure vessel with flat ends made from 16Mo3 steel with an
external diameter φ406.4 mm [12]. The nominal pressure was set to pc = 22 MPa on the basis of the
minimal measured wall thickness of the tube. Two kinds of flat ends with different shapes of stress relief
grooves were applied in the experimental tests. Such geometries (optimal and nonoptimal with respect
to the minimum value of the equivalent plastic strain) were selected after numerical optimization (finite
element method). The obtained numerical and experimental results were compared and discussed in
detail in the [12]. The performed numerical studies, verified by the experiments, revealed the presence
of plastic zones which appeared in the cut-out regions. However, the range and the values of the
equivalent plastic deformations varied depending on the groove geometry. The maximal value of the
equivalent plastic strains for the nonoptimal configuration was several times higher than the respective
one for the optimal groove configuration. Detailed results are given in [12]. The presence of such zones
of plastic strains in the vicinities of the weld zones, in which material is also subjected to structural
changes, may lead to a local increase in hardness and decrease in the fracture parameters in the weld
and heat-affected zones [15]. In extreme cases (ductile material, the existence of internal cracks or
voids, etc.), a high-stress concentration for the nonoptimal shape of the stress relief groove may lead to
sudden, premature catastrophic failure. These factors justify the optimization of stress relief grooves in
flat ends; this task has become an important engineering issue. The optimal choice of the structure
parameters becomes particularly important in the case of boilers subjected to cyclic loadings, when the
risk of premature failure exists. Such problems can be analyzed with the application of the fracture
mechanics criteria, which were recently compared and discussed in [16].
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Figure 1. Two recommended designs for boilers with flat ends with stress relief grooves: (a) EN 12952:3
code; (b) EN 13445:3 code.

The main aim of this paper is the optimization of the stress relief groove and flat end geometry with
respect to the Standards EN 13445-3 in order to decrease or eliminate plastic deformation in pressure
vessels. The above standard proposes a slight modification of the cylinder-end area, which relies on the
introduction of a local increase of the pipe wall thickness. First, the effectiveness of such a geometry
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was evaluated. The performed numerical studies show the increase of the maximal equivalent plastic
strain with a local increase in the wall thickness (Figure 1b). That was the reason why the boiler
with a constant, basic wall thickness was chosen for further investigation. The introduced geometry
modifications of the structures relied on the application of circumferential ribs placed along the
outside boundary of the endplate. Two shapes of ribs were studied, i.e., with rectangular and circular
cross-sections. The performed studies resulted in the full elimination of plastic deformations in the
most strenuous area. Following these encouraging results, a more general approach was applied in the
final analysis, i.e., structural topology optimization was performed. Such a technique was recently
successfully used in optimization procedures for different engineering problems [17–20]. Various
combinations of added material were investigated in the optimization of the structural topology.
The application of such an approach also allowed to elimination of plastic deformations and reduction
of stress concentration, with more convenient distribution of the material.

The paper consists of five sections. The introduction to the investigated problems is described
in Section 1. The fundamental theory concerning the design of a flat end with a stress relief groove
according to standards is given in Section 2. The numerical model and description of the material
are depicted in Section 3. The results of the optimization of flat ends are illustrated and discussed in
Section 4. The conclusions are given in Section 5.

2. Stress relief Groove Design

The starting point for calculations of flat ends with a stress relief groove was the assessment of the
endplate thickness, which is calculated using the following formula:

eh = C1 ·C2 ·C3 · di ·

√
pc

f
. (1)

The above equation is valid for the code EN 12952:3. In Equation (1), di is the internal diameter
of the boiler, constants C2 and C3 are set to 1.0 (for boilers with circular cross-sections and endplates
without openings), and constant C1 depends on the ratio between applied pressure pc and the admissible
stress f applied in structure calculations. As a result, C1 varies between 0.41 and 0.82, and is taken from
the plot included in the code. In the case of the code EN 13445-3, the endplate thickness is calculated
as follows:

eh = max
{

C1di ·
√

pc
f , C2di ·

√
pc

fmin

}
, (2)

where the di is the inner boiler diameter measured in the zone where the wall thickness is equal to es

(see Figure 1b). The admissible stress f equals to fmin if the material chosen for the cylindrical and flat
parts of the boiler is the same, and pc is, as previously, the internal pressure. Constants C1 and C2 are
taken from the respective plots presented in the code EN 13445-3.

Regarding EN 12952:3, the following set of Equation (3) is used for the evaluation of the
groove parameters. 

eh1 ≥ es

eh1 + rik ≤ eh

rik ≥ max
{

0.2 · es, 5
}

eh1 ≥ 1.3
( di

2 − rik
)
·

pc
f

, (3)

where es is the shell wall thickness and di the inner boiler diameter, pc is the internal pressure, and f the
admissible stress. The reported set of inequalities defines certain ranges for the groove radius rik and
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the minimum endplate thickness eh1. The obtained admissible values for pairs (rik, eh1) usually cover
certain polygonal areas. When the code EN 13445-3 is used, the set of respective conditions is different.

eh1 ≥ es

eh1 + rd ≤ eh

rd ≥ max
{

0.25 · es, 5
} . (4)

The main difference with the approach defined by set (4) is in the introduction of locally increased
wall thickness es instead of the calculated wall thickness ep (Figure 1b). Additionally, the fourth
condition included in set (3) is no longer present. Besides this, the additional formulae for the lcyl, i.e.,
the length of the reinforced cylindrical part, is introduced in the form:

lcyl =
√
(di + es) · es. (5)

The considered code also recommends that the transition zone in the cylindrical part, in which the
wall thickness increases from ep to es, should be smooth, with the inclination angle γ being not bigger
than 30◦ (see Figure 1). Unfortunately, no clear suggestion is given in the code as to how to assume
the thickness es in the thickened area. This gives certain additional freedom in the designing process
and opens up the possibility of the search for the optimal combination of the investigated structure
parameters (dimensions) in the junction providing the minimum stress concentration. The set of
inequalities presented in Equation (4) results in a triangular area in the (rd, eh1) coordinates, which limits
the values for the lowest thickness in the groove and the radius of the groove. The latest experiments
have shown that the inclination angle of the groove γ (Figure 1a) has no real influence on the stress
concentration when its value exceeds 60◦ [9], so all the numerical calculations presented in the paper
assume an angle value γ = 90◦. In such a case, the problem of the search for optimal parameters
is reduced to the determination of only two design variables when using the EN 12952:3 code, i.e.,
the minimum thickness of the endplate measured at the bottom of the groove, eh1, and the radius
of the groove, rik (see Figure 1a). When using the EN 13445-3 code, the additional, third design
variables appear, i.e., thickness es (see Figure 1b). The aforementioned problem of the search for
optimal values for design variables that provide the minimum stress concentration can be regarded as
parametric optimization, in which the optimal vector of the design variables is obtained on the basis
of an analysis of the sequence of solutions obtained for different combinations of design variables.
Different optimization criteria and optimization tools can be applied in the search for the optimal
groove parameters [21,22]. The most common approach in structural problems is the definition of
the objective function as the minimization of the maximum value of the stress concentration factor,
which is expressed as follows:

Fs = min
{

max
σeqv

σY

}
, (6)

where σY is the yield limit, while σeqv defines the equivalent stress following the von Mises
or Tresca-Guest hypothesis. This formula is fully justified for structures which exhibit only an
elastic response to the applied load, but usually fails in the case of structures where elastic-plastic
deformation may appear, particularly when the hardening modulus is rather small. In such a situation,
the minimization of the maximum value of the equivalent plastic strain seems to be the most convenient:

Fe = min
{
maxεpl_eqv

}
, (7)

where εpl_eqv is the equivalent plastic strain.
In the case of the optimization process including only two design variables, the simple search

method in the admissible design space is one possible solution method. This approach makes it
possible to study the distribution of the objective function over the whole domain, and prevents getting
stuck with the solution in the local minimum. The above approach can also be used in the case of
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three design variables, as in the case of using EN 13445-3 code. Here, for the set value of the shell
thickness es, the area of the search in the sense of the inequalities given in Equation (4) is found. As a
consequence, the bounding values for eh1 and rd become different for different values of es. This means
that the optimal search can be done for the established value of es. As shown, an increase of es reduces
the inner diameter of the cylindrical part, namely di, which, finally, causes a reduction of the endplate
thickness eh, which reduces the limits of admissible changes for the groove radius and the thickness at
the groove bottom.

3. Finite Element Modeling

3.1. Material

The investigated structure was made by means of welding from the steel 16Mo3, which is a low
alloy steel that is widely used in the construction of pressure appliances due to its low-grained structure,
good mechanical properties, and stable behavior after welding and heat treatment processes [23].
Subsequently, the weld area was modeled as having the same mechanical properties as the remaining
part of the structure, and it was assumed that the welded structure was free from residual stresses.
The details of the chemical composition of the material used are given in Table 1.

Table 1. Chemical composition of the low alloy 16Mo3 steel.

Chemical Composition [%], Fe Balance

16Mo3
C Cr Cu Mo Mn N Ni P S Si

0.12 ÷ 0.20 ≤0.30 ≤0.30 0.25 ÷ 0.35 0.40 ÷ 0.90 ≤0.012 ≤0.30 ≤0.025 ≤0.01 ≤0.35

The material properties were designated from the experimental tensile tests. The samples were
cut in longitudinal (seven samples) and transverse (seven samples) directions from the cylindrical pipe.
The investigated material exhibited elastic-plastic behavior with hardening. Slight anisotropy, caused
by manufacturing by rolling, was also observed in the experimental tests. The longitudinal samples
showed a slightly higher yield limit and slightly lower tensile strength than the transverse samples
(Table 2). The lowest yield limit (σY_MIN = 274.1 MPa) was observed for one of the transverse samples
(the corresponding tensile strength was equal to σu = 442.5 MPa).

The numerical model of the material behavior was calibrated on the basis of the performed
experimental tensile tests. Following the real stress-strain curve, the region of plastic deformation can
be modeled as a nonlinear one, but to stay on the safe side, the linear hardening in the region of plastic
deformations was used [24]. Finally, for calculation purposes, it was assumed that the Young modulus
E = 2.1 × 105 MPa, while the hardening module Et = 780 MPa, and the elastic Yield limit σY = 270 MPa
and the tensile strength σu = 440 MPa, and the maximum strain εmax = 0.22. A comparison of the real
tension test curve and the assumed numerical analysis stress-strain curve is shown in Figure 2.

Table 2. Material properties of 16Mo3 steel (SD: standard deviation).

Material Properties

Tensile Strength
σu MPa

Yield Limit σY
MPa Z % A %

16Mo3 longitudinal direction
(7 samples)

441.6
(SD: 8.8)

299.3
(SD: 8.6)

74.9
(SD: 0.5)

36.8
(SD: 1.4)

16Mo3 transverse direction
(7 samples)

449.1
(SD: 4.0)

284.2
(SD: 6.6)

72.3
(SD: 0.8)

33.6
(SD: 1.6)
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3.2. Numerical Model

An analytical solution of the cylindrical shell–flat endplate junction subjected to internal pressure
does not exist, so only certain assessments with various simplifying assumptions can be analytically
undertaken. The results of such considerations are presented, for example, in papers by Kiesewetter [25]
or Schwaigerer [26]. The lack of an analytical solution can be compensated for by using the numerical
simulation and the finite element method, in particular. Here, ANSYS version 13 was applied in
calculations. The all numerical analyses were performed with the use of the APDL facilities. Such
an approach makes it possible to keep the same mesh densities in further optimization simulations.
In this code, various structural problems, including material and geometrical nonlinearities can be
solved. The analyzed structure, i.e., the pressure vessel with flat ends with a stress relief groove,
exhibits axisymmetric properties of geometry and loadings, which means that only the symmetric
quadrant of the axial cross-section can be considered in the analysis. Such a simplification allows for
the application of relatively dense meshes of finite elements, particularly in regions where severe stress
concentrations occur. The area of the stress relief groove is such a region. In order to receive reliable
numerical results, the transition zone of small regular elements around the curved edge of the groove
and its close neighborhood was introduced. The mesh generated in this subarea is adjusted with the
change of the groove radii. Such an adjustment provides the demanded precision of the numerical
calculations. Such a mesh generation helped us to keep the solution error under stress energy below
5% in each of the analyzed examples, which seems to be fully acceptable from an engineering point of
view. Part of one of the used meshes is shown in Figure 3a with the groove, a curved area, magnified
in the left bottom quadrant of the plot. In Figure 3b, the full analyzed numerical model is shown
with the applied boundary conditions and with the internal pressure being applied as the load. Here,
along edge A, the horizontal (radial, in the case of an axisymmetric structure) displacements are
blocked, and along edge B, the vertical (along the vessel axis) displacements are blocked. The ANSYS
PLANE82 plane finite elements with the axisymmetric option activated were used in the calculations.
This finite element is the higher order eight- or six-node plane element with quadratic displacement
approximation. This element is well suited for irregular meshes and analyses of structural problems
with plasticity, creep large deflections, or large strains.



Materials 2019, 12, 4194 7 of 22
Materials 2019, 12, x FOR PEER REVIEW 7 of 22 

 

  
(a) (b) 

Figure 3. Finite element model: (a) part of the mesh in the flat endplate; (b) load—internal pressure 

and boundary conditions along edges A and B. 

The applied technique of numerical modeling of the vessels with flat ends was experimentally 

verified for two kinds of stress relief grooves calculated with respect to the Standard EN 12952:3. The 

numerically-calculated and experimentally-measured distributions of strains on the outer surface of 

the vessel were compared. The strain gauges were placed in the area corresponding to the stress 

relief groove existing in the flat end [12]. The good agreement between both results (more details in 

[12]) allows for the assumption that the proposed numerical model is reliable for further analysis, as 

presented in the paper. 

4. Results of Parametric Optimization 

4.1. Stress Relief Groove Parameters Optimization Following the STANDARD EN 13445-3 

The detailed results presented below were obtained for a cylindrical shell following the shape 

presented in EN 13445-3 with an external diameter of 406.4 and a basic wall thickness ep = 20 mm. In 

the study, the thickness es was gradually increased from 20.0 mm to 30.0 mm, with a reasonable step 

of 1 mm (see Figure 1b). It appeared that for es = 31 mm, the admissible area for the minimum 

thickness at the groove bottom and the radius of the groove became empty, i.e., there were no 

admissible values fulfilling the set of inequalities (4). Table 3 shows the sets of variables used in 

calculations depending on the increased thickness es. Figure 4 illustrates the admissible areas for the 

(eh1, rd) pairs obtained for the two thicknesses of the reinforced cylindrical shell part (thickness es). 

Table 3. Design parameters: es, di, lcyl, eh, and design variables (eh1, rd) range. 

es di lcyl eh 
rd eh1 

min max min max 

20.00 366.40 0.00 52.14 5.00 32.14 20.00 47.14 

21.00 364.40 89.96 49.24 5.25 28.24 21.00 43.99 

22.00 362.40 91.96 44.89 5.50 22.89 22.00 39.49 

23.00 360.40 93.91 43.95 5.75 20.95 23.00 38.20 

24.00 358.40 95.80 43.36 6.00 19.36 24.00 37.36 

25.00 356.40 97.65 42.54 6.25 17.54 25.00 36.31 

26.00 354.40 99.45 42.08 6.50 16.08 26.00 35.58 

27.00 352.40 101.21 41.16 6.75 14.16 27.00 34.41 

28.00 350.40 102.93 40.36 7.00 12.36 28.00 33.36 

29.00 348.40 104.62 39.68 7.25 10.68 29.00 32.43 

30.00 346.40 106.26 39.01 7.50 9.01 30.00 31.51 

31.00 344.40 107.87 38.34 7.75 - 31.00 - 

12

3

X

Y

Z

X

Y

Z

X

Y

Z

                                                                                

A

B

A

B

Figure 3. Finite element model: (a) part of the mesh in the flat endplate; (b) load—internal pressure
and boundary conditions along edges A and B.

The applied technique of numerical modeling of the vessels with flat ends was experimentally
verified for two kinds of stress relief grooves calculated with respect to the Standard EN 12952:3.
The numerically-calculated and experimentally-measured distributions of strains on the outer surface
of the vessel were compared. The strain gauges were placed in the area corresponding to the stress
relief groove existing in the flat end [12]. The good agreement between both results (more details
in [12]) allows for the assumption that the proposed numerical model is reliable for further analysis, as
presented in the paper.

4. Results of Parametric Optimization

4.1. Stress Relief Groove Parameters Optimization Following the STANDARD EN 13445-3

The detailed results presented below were obtained for a cylindrical shell following the shape
presented in EN 13445-3 with an external diameter of φ406.4 and a basic wall thickness ep = 20 mm.
In the study, the thickness es was gradually increased from 20.0 mm to 30.0 mm, with a reasonable step
of 1 mm (see Figure 1b). It appeared that for es = 31 mm, the admissible area for the minimum thickness
at the groove bottom and the radius of the groove became empty, i.e., there were no admissible values
fulfilling the set of inequalities (4). Table 3 shows the sets of variables used in calculations depending
on the increased thickness es. Figure 4 illustrates the admissible areas for the (eh1, rd) pairs obtained for
the two thicknesses of the reinforced cylindrical shell part (thickness es).

Table 3. Design parameters: es, di, lcyl, eh, and design variables (eh1, rd) range.

es di lcyl eh
rd eh1

min max min max

20.00 366.40 0.00 52.14 5.00 32.14 20.00 47.14
21.00 364.40 89.96 49.24 5.25 28.24 21.00 43.99
22.00 362.40 91.96 44.89 5.50 22.89 22.00 39.49
23.00 360.40 93.91 43.95 5.75 20.95 23.00 38.20
24.00 358.40 95.80 43.36 6.00 19.36 24.00 37.36
25.00 356.40 97.65 42.54 6.25 17.54 25.00 36.31
26.00 354.40 99.45 42.08 6.50 16.08 26.00 35.58
27.00 352.40 101.21 41.16 6.75 14.16 27.00 34.41
28.00 350.40 102.93 40.36 7.00 12.36 28.00 33.36
29.00 348.40 104.62 39.68 7.25 10.68 29.00 32.43
30.00 346.40 106.26 39.01 7.50 9.01 30.00 31.51
31.00 344.40 107.87 38.34 7.75 - 31.00 -
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The optimization process and optimized parameters using the EN 12953:3 code were presented
in papers [9,13]. The performed numerical calculations for the elastic-plastic material exemplified
the presence of the point, where the minimum of the equivalent plastic strains appeared. For all the
analyzed cases, the optimal point appeared on the borderline of the admissible area, where eh1 + rd =

eh, the location of the optimal point was rather close to the maximum admissible value of the groove
radius. When using the code EN 13445-3, if only es is greater than 20.0 mm, then the optimal solution
appears in the corner point C of the admitted area, which corresponds to the maximum admissible
value of the groove radius. The exemplary results for the optimal configurations of the groove radii
rd and the minimum thickness of the endplate eh1, obtained for two different values of es, namely
21.0 mm and 30.0 mm, are presented in Figures 5 and 6, respectively. These are the distributions of the
equivalent von Mises plastic strains in the vicinity of the endplate-shell junction. The obtained results
clearly showed that the maximum values of plastic strains were much more sensitive to the geometry
changes (namely change of es) than the values of equivalent stresses. This justifies the application of
the objective function in the form given in Equation (7). Given the dependency between the maximum
equivalent von Mises plastic strain obtained for the optimal parameters of the groove radii and the
minimum endplate thickness presented in Figure 7, it is clearly seen that the minimum value was
obtained for the shell with no local reinforcement being applied, namely ep = es. This means that the
introduction of the locally-thickened zone proposed in the EN 13445-3 code has the opposite effect to
the expected one; it even deteriorates the structure resistance. Both codes used in the flat endplate
calculations, namely EN 12952:3 and EN 13445-3, result in the presence of plastic deformations in the
groove area which are completely unacceptable in applications where high cyclic loadings are applied
and fatigue failure may appear. In such a case, the reduction of the applied operating pressure is the
only remedy. However certain proposals of modifications of the structure’s topology improving the
structure endurance are possible.
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Figure 7. Maximum equivalent von Mises plastic strain distribution for the optimal radius of the stress
relief groove with respect to the thickness of the reinforced part of the cylindrical shell es.

4.2. Increasing of Bending Stiffness of Flat End by External Rings

If we apply the purely elastic model of the considered structure to the analysis, then a certain
characteristic, structural behavior can be spotted. Detailed study of the maximal meridional (axial)
stress shows that the axial stress in the tube, in the most strenuous cross-section, takes the characteristic
course shown in Figure 8b. As shown, the axial stress varies almost linearly across the pipe wall; only
a certain discrepancy (rapid increase) is observed inside the tube where stress concentration exists.
In such a case, the resulting axial stress may be expressed in the form of the sum of the two components.
The first one, i.e., the constant part, may be attributed to axial movement of the flat end subjected to the
pressure force, while the second one is the result of bending appearing in the flat end. While the stress
attributed to the pressure force cannot be reduced without the reduction of the acting inner pressure,
the normal stress corresponding to bending can be limited by adding some material to the endplate
which locally increases the end-plate stiffness. The simplest remedy seems to be a uniform increase
of the end-plate thickness. Such an investigation was performed, and the results of the numerical
calculations are shown in Figure 9. These studies were performed with the optimal stress relief groove
parameters (rd = 29.206 mm and ep = es = 20 mm). As shown, a full elimination of plastic deformations
was achieved with an additional thickness about 45 mm, which means that the introductory thickness
of the endplate, suggested by the codes, was almost doubled. Such a situation of course raises the
question of the economic aspects of such a design, i.e., with extremely heavy and massive flat ends.
In summary, it means that no simple remedy can be applied to the studied problem.
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Figure 8. Illustration of the bending + tension effect in the axial cross-section of the analyzed vessel
(purely elastic analysis): (a) Distribution of axial (meridional) stresses in the most strenuous part of the
structure; (b) distribution of axial stresses across the pipe thickness.
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Figure 9. Structure with equally increased flat end thicknesses (additional thickness: 45 mm);
(a) distribution of von Mises stress, (b) distribution of maximal equivalent plastic strains and additional
volume value in mm3 with respect to additional flat end thickness.

The application of the biological growth approach proposed by Mattheck [27] may be useful in
this case; this approach respectively adds or removes some material portions in the most and the
least strenuous zones of structure. The engineering application of this approach has been presented
in papers by Burchill, Heller, Waldman, and others [28,29]. Additionally, the proposed modification
of the considered design should be low cost, as simple as possible, and should add or remove some
parts of the material in a relatively easy way. Following these indications, some additional material is
introduced on the outer side of the endplate, while the groove area remains unchanged. The idea of
the proposed approach is illustrated in Figure 10.
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Figure 10. Two concepts of the proposed geometry modifications (part of axisymmetric model
quadrant): (a) cylindrical ring around vessel circumference; (b) cylindrical rounded ring around
vessel circumference.

Here, the material is added in the form of a short cylindrical ring (Figure 10a), or in the form of a
ring with a circular cross-section (Figure 10b). These two rings are placed and welded on the top of the
endplate along its circumference. The preliminary numerical calculations performed for certain values
for both proposals shown in Figure 10 were encouraging; it appeared that a full elimination of plastic
deformations was possible for certain combinations of reinforcing ring dimensions and groove radii.
Such observations encouraged the authors to perform detailed parametric numerical optimization
with the objective function (6). With the application of a ring with a rectangular cross-section, the
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ring thickness (tt), height (hh), the transition radius (R1), and the groove radius (rd) were assumed to
conform to the design variables. In order to simplify the study, the height of the additional ring hh, the
thickness of the ring tt, and the transition radius R1 are expressed by means of three coefficients k1, k2,
and k3, with respect to the cylinder thickness es as follow:

hh = k1 · es

tt = k3 · es

R1 = k2 · k1 · es

. (8)

The choice of the values for coefficients k1, k2, and k3 was justified by the possibility of the use
of finished goods which are accessible on the market. Such an approach guarantees the minimum
economical cost. On the basis of the preliminary study, it was assumed that the aforementioned
coefficients could change within the ranges:

k1 ∈
〈

0.8, 5.25
〉

k2 ∈
〈

0.1, 0.9
〉

k3 ∈
〈

0.8, 1.5
〉 . (9)

The change of the structure shape, namely, of the flat endplate, requires the search for the optimal
combinations of design parameters k1, k2, k3, and rd. Following the former results, it was assumed that
the center of the groove was located on the bottom edge of the endplate.

The numerical optimization problem was investigated by means of the two optimization methods,
namely, the subproblem optimization procedure, which is the zero-order method, and the first order
method, which also takes into account the gradient of the objective function [26,30]. The gradient
method is much more time consuming and appeared to be less effective in the considered problem.
Due to the observed relatively small changes/variations in the objective functions with respect to the
design variable variations, certain difficulties with gradient calculations were encountered during the
process, and problems with the solution convergence appeared. Finally, the results were obtained
by means of the subproblem optimization method. The optimal results are as follows: k1 = 5.033,
k2 = 0.788, k3 = 1.378, rd = 29.76 mm, and the distribution of the equivalent stress for the optimal point
is presented in Figure 11. As shown, the maximum equivalent stress value is below the yield limit,
but still exceeds the allowable stress value, f. Additionally, the case, in which the reinforcing ring
thickness tt has the same thickness as the cylindrical part es, was studied (k3 = 1.0). Such an assumption
eliminates one of the design variables (k3) and seems to be reasonable for application from an economic
and technological point of view. In this case, also the full elimination of the equivalent plastic strains
was achieved for the following optimal values of the design variables: k1 = 4.827, k2 = 0.891, and rd
= 31.616 mm. Figure 12 presents the distribution of equivalent von Mises stresses obtained for the
aforementioned design variable values. As in the previous case, the maximum equivalent stress is
below, but close to, the yield limit value.

A study was also performed for a rounded ring added to the top of the endplate (see Figure 10b);
again, satisfying results were obtained by means of the subproblem optimization method. In this case,
radii R1, transition radius R2, and groove radius rd were assumed as the design variables. As in the
previous analysis, the values of the respective radii were defined by means of the coefficients k1 and k2,
which define the design variables with respect to the shell thickness es as follows:{

R1 = k1 · k2 · es

R2 = k1 · es
. (10)
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On the basis of the preliminary calculations, it was assumed that the aforementioned coefficients would
change within the ranges given below:  k1 ∈

〈
0.5, 2.5

〉
k2 ∈

〈
0.1, 0.9

〉 . (11)

The optimal values of the design variables obtained in the optimization process were as follows:
k1 = 1.9709, k2 = 0.2839, and rd = 28.249 mm; the equivalent stress distribution is shown in Figure 13.
Again, the obtained maximum value of the equivalent stress was high and close to yield limit, but did
not exceed this value, which means that the investigated structure was free from plastic deformations.

All the aforementioned results for the performed optimization show that the complete elimination
of plastic deformations is possible. However, the maximum value of stress is still very high and
demands a certain reduction in the operating pressure. This reduction would be smaller than for
a structure with no reinforcing ring, even with optimally-chosen stress relief groove parameters.
The performed study has shown that it is possible to introduce relatively simple modifications in the
design of the flat end pressure vessel which provide total elimination of plastic deformations.
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Figure 11. Distribution of von Mises stress in the flat end with a cylindrical rounded ring with
parameters es = 20.0 mm, rd = 29.760 mm, k1 = 5.033 k2 = 0.788, and k3 = 1.378: (a) area of the stress
relief groove; (b) cross-section of the quarter-part of vessel.
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es = 20.0 mm, rd = 31.616 mm, k1 = 4.827 k2 = 0.891, and k3 = 1.0: (a) area of the stress relief groove;
(b) cross-section of the quarter-part of vessel.
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Figure 13. Distribution of von Mises stress in flat end with cylindrical rounded ring with parameters:
es = 20.0 mm, rd = 28.249 mm, k1 = 1.9709, and k2 = 0.2839: (a) area of the stress relief groove;
(b) cross-section of the quarter-part of vessel.
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4.3. Topological Optimization of the Stress Relief Groove

The application of topology optimization makes it possible to distribute the material of a body
on the basis of selected criteria [26,31–34]. In this process, the global stiffness, natural frequency, etc.
can be stated as objective criteria. These measures can be optimized with respect to the assumed
constraints (volume or mass reduction). Recent techniques and FE solvers also offer more advanced
topology optimization techniques, the most interesting of which seems to be the stress-based [35] and
fatigue damage-based [36] topology optimization methods. Such methods, with the simultaneous
implementation of the recent multiaxial high-cycle fatigue criteria [37,38], are broadly applicable to
the optimization and construction of structures which are subjected to both static and fatigue loads.
In the performed analyses, the maximization of the structure stiffness was assumed as the objective
function to the volume constraint. The use of such a method in the study is associated with the limited
possibilities of the software used (ANSYS 13 APDL). In such a situation, it should be noted that the
stiffest design is not necessarily equivalent to the design with the optimal, i.e., the smallest, stress
concentration. Because of this, the application of the stress-based topology optimization of pressure
vessels will be the subject of a future study.

In the FE solver (ANSYS 13) [26], topology optimization can be performed with the use of
structural static compliance (SSC). SSC determines the energy of the work done on the investigated
structure by the external loads. The minimization of SSC is equivalent to the maximization of the
structure static stiffness. For application in the FE code, the compliance function (SSC) can be defined
as:

SSC =

∫
V

f u dv +
∫
S

t u ds +
∑

i

Fiui, (12)

where f is body forces, u is displacements, t is traction forces, Fi is the point load on i-th node, S is the
surface area, and V is the volume.

In the optimization of the topology, the volume of the base structure is removed. Such a reduction
of volume leads to an increase of SSC (reduction of stiffness). The main goal of the performed analysis
is to find the best distribution of the material of the structure in order to achieve the minimum SSC (the
maximal static stiffness) value, subject to the assumed volume reduction. Such calculations are made
with the application of the method, which is known as the Solid Isotropic Material with Penalization
Method. This is undertaken by the introduction of the pseudo-densities ηj for each finite element of
the model. Such pseudo-densities can be defined as a fraction of the material density:

η j = ρ j/ρ0, (13)

where ρj is the density of the considered j-th element and ρ0 is the density of the base material.
The pseudo-densities are assumed as design variables in the topology optimization process.

The stiffness, Kj, of a particular element of the optimal structure is determined by the pseudo-densities
ηj using the penalization method in the following way:

K j = (η j)
kK0, k > 1, (14)

where K0 is stiffness of the base material and k is the equivalent for penalization power, usually
k = 3 [32,34].

The application of the above formulae leads to the two following cases: Kj > 0, i.e., material exists,
and Kj = 0, i.e., no material existence. This is controlled by the values of the pseudo-densities ηj (ηj ∈

<0−1>) and penalization power k.
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A mathematical model of the applied topology optimization can be summarized as follows:

Find η = (η1, η2, ..., ηn)
T

Minimize SSC(η) = H j
Tu

Subject to :


V =

n∑
j=1

η jv j ≤ V∗

0 < ηmin ≤ η j ≤ 1
H j = K ju

, (15)

where: V* is the amount of material at our disposal, V is volume after optimization, and η1, η2, . . . ηj
are the design variables.

Topological optimization of the analyzed flat ends was performed with the use of the
aforementioned mathematical model and the ANSYS 13 software. As observed in the previous
section, in order to reduce the equivalent stress and to eliminate plastic strains, it was necessary
to add some portions of material outside the area of the flat end. In the previous section, certain
modifications of the structure followed the common engineering practice that was presented and
discussed. However, the question still remains as to whether the reduction of the stress concentration
can be achieved using a more optimal distribution of the added material. Such a problem was solved
by means of applied topological optimization. Different geometries of the flat end with added material
have been used as the initial starting models. In all the performed studies, the material was added only
outside the structure. This was caused by the limitations included in the respective Standards [10,11].
The topology optimizations were made with the application of the Optimality Criteria Method (OC)
and the Sequential Convex Programming approach (SCP). Only the most reasonable and optimal
solutions are presented in the following section.

Several calculation attempts were performed; below, the results of only two studies with different
material arrangements are presented. A common feature of both proposals was the introduction of
the additional material only outside the vessel, in the vicinity of the area where the maximum stress
concentration was observed. Only this added material was subjected to the topology optimization,
due to the conditions given in Standards [10,11]. In the first example, the thickness of the flat end
was uniformly increased. The optimal solution (Figures 14b and 15b) was obtained from a structure
with an increased initial thickness of the endplate set to 120 mm (Figure 14a). The obtained maximal
possible reduction of the added volume was equal to 72% for SCP (Figure 14b) and 74% for the OC
method (Figure 15b). In both cases, the von Mises stress was slightly lower than the yield stress.

Detailed calculations of the topological optimization were performed with the structure volume
reduction, which was reduced with a 5% step. The SSC and von Mises stress values were kept under
control during this process. In each step, the structure with the maximum volume reduction was
considered optimal only if the von Mises stress remained below the yield limit. The distribution of
the controlled SSC process and the maximum von Mises stress values is illustrated in Figure 14c.
The respective calculations were performed for both methods in ANSYS, namely, the SCP and OC
methods. In both considered cases, small differences in the final volume reductions were observed. The
main difference in the structure geometry was observed in the results of the OC method. In the optimal
structure, additional ribs were present between the curvilinear part and flat end using this approach.
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The second presented proposal relied on the introduction of additional material mainly around
the top part of the cylindrical pipe and the connection pipe–endplate. Also, some material, rigidifying
the vessel bottom, was placed on the top of the endplate. Detailed calculations were performed with
the use of the OC method, and the optimal configuration was obtained for the volume reduction
using 77% of the added material (Figure 16b). The dependency between the SSC, the maximum
von Mises stress, and the percentage of additional volume reduction are illustrated in Figure 16c.
The surprising course of changes of the SSC parameter when crossing 60% was due to the change
of the final geometry, as illustrated in Figure 17a. The final, optimal distribution of the additional
volume is shown in Figure 17b; it corresponds to 77% of the additional volume reduction. Such a
nonsmooth change in the structure geometry results in a rapid change in the SSC value when moving
from 60% to 65% of the additional volume. The rapid change of the SSC has no influence on the
maximum value of the von Mises stress. The distribution of the von Mises stress for 60% and 77% of the
additional volume reduction are presented in Figure 18a,b. The geometry which was the result of the
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topological optimization, in this case, was rather complex and difficult to manufacture. Summarizing
the first studied proposal, the model illustrated in Figures 14 and 15 seems to be more convenient and
better-suited to practical applications.

Materials 2019, 12, x FOR PEER REVIEW 18 of 22 

 

Summarizing the first studied proposal, the model illustrated in Figures 14 and 15 seems to be more 

convenient and better-suited to practical applications.  

 

 

 

 

 

(a) 

 

 

 
(b) 

 

(c) 

Figure 16. Topology optimization, geometry 2, OC method: (a) starting structure; (b) optimized 

structure with 77% volume reduction; (c) distributions of SSC and von Mises stress with respect to 

the volume of the structure. 

 
(a) 

 
 

(b) 

Figure 17. Distribution of averaged nodal pseudo-densities, geometry 2, OC method: (a) optimized 

structure with 60% volume reduction; (b) optimized structure with a 77% volume reduction. 

  

Figure 18. Distribution of von Mises stress, geometry 2, OC method: (a) optimized structure with 

60% volume reduction; (b) optimized structure with a 77% volume reduction. 

Figure 16. Topology optimization, geometry 2, OC method: (a) starting structure; (b) optimized
structure with 77% volume reduction; (c) distributions of SSC and von Mises stress with respect to the
volume of the structure.

Materials 2019, 12, x FOR PEER REVIEW 18 of 22 

 

Summarizing the first studied proposal, the model illustrated in Figures 14 and 15 seems to be more 

convenient and better-suited to practical applications.  

 

 

 

 

 

(a) 

 

 

 
(b) 

 

(c) 

Figure 16. Topology optimization, geometry 2, OC method: (a) starting structure; (b) optimized 

structure with 77% volume reduction; (c) distributions of SSC and von Mises stress with respect to 

the volume of the structure. 

 
(a) 

 
 

(b) 

Figure 17. Distribution of averaged nodal pseudo-densities, geometry 2, OC method: (a) optimized 

structure with 60% volume reduction; (b) optimized structure with a 77% volume reduction. 

  

Figure 18. Distribution of von Mises stress, geometry 2, OC method: (a) optimized structure with 

60% volume reduction; (b) optimized structure with a 77% volume reduction. 

Figure 17. Distribution of averaged nodal pseudo-densities, geometry 2, OC method: (a) optimized
structure with 60% volume reduction; (b) optimized structure with a 77% volume reduction.

Materials 2019, 12, x FOR PEER REVIEW 18 of 22 

 

Summarizing the first studied proposal, the model illustrated in Figures 14 and 15 seems to be more 

convenient and better-suited to practical applications.  

 

 

 

 

 

(a) 

 

 

 
(b) 

 

(c) 

Figure 16. Topology optimization, geometry 2, OC method: (a) starting structure; (b) optimized 

structure with 77% volume reduction; (c) distributions of SSC and von Mises stress with respect to 

the volume of the structure. 

 
(a) 

 
 

(b) 

Figure 17. Distribution of averaged nodal pseudo-densities, geometry 2, OC method: (a) optimized 

structure with 60% volume reduction; (b) optimized structure with a 77% volume reduction. 

  

Figure 18. Distribution of von Mises stress, geometry 2, OC method: (a) optimized structure with 

60% volume reduction; (b) optimized structure with a 77% volume reduction. 

Figure 18. Distribution of von Mises stress, geometry 2, OC method: (a) optimized structure with 60%
volume reduction; (b) optimized structure with a 77% volume reduction.



Materials 2019, 12, 4194 19 of 22

4.4. Discussion

The design of pressure vessels implies optimal shaping with respect to the stability and strength
of the shell. Due to the application of such structures in petrochemical, chemical, as well as nuclear
applications, the safe and reliable performance of pressure vessels is a very important engineering
issue. The performed analyses revealed that the recommendations included in the standards [10,11] are
not sufficient to optimally design the parameters of the endplate stress relief groove in flat endplates.
Moreover, it was observed that significant plastic deformations may occur in the boundary area
of the stress relief groove if nonoptimal values for the groove parameters are used in the design.
The performed calculations revealed that the geometries of flat ends with a circular stress relief groove
proposed in the standards (EN 13445-3) allow only for a reduction (i.e., for an optimal combination of
rd and eh1), but not a complete elimination, of the plastic strains. However, the presence of such plastic
strains is unacceptable in many practical applications. The elimination of excessive elastic-plastic
deformations in the groove area demands certain modifications in the structure design. On the basis of
a series of numerical tests, simple, technologically-justified modifications were proposed (see Figure 10).
Next the optimization of their dimensions was performed. From the proposed shapes of the reinforcing
rings, a full elimination of plastic deformations was achieved when optimal values for design variables
were set. However, the level of equivalent stress was still high in the groove area, which demanded
the reduction of the operating pressure. Such a design modification and the obtained analysis results
became the inspiration for a more general approach in which the topology optimization was applied.
Here, two concepts were incorporated.

The first one relied on a uniform increase in the endplate thickness with added material being
placed on the outside boundary of the endplate. The second one proposed an increase in the tube
thickness in the junction area of the tube and the endplate. Most of the added material was placed
outside the top part of the tube, but a certain amount of material was used to locally increase the
endplate thickness in the vicinity of the outer diameter. Both proposals gave satisfactory results in
terms of plastic deformation elimination. However, the von Mises stress still remained close to the
yield limit. The reduction of the added volume values exceeded 70% in both cases. The optimal
structure configurations after topology optimization were of a rather complex shape, including internal
ribs. A comparison of the obtained optimal results is summarized in Table 4. The volume of the whole
vessel was about 4.0 × 107 mm3. The volumes of the single endplate with optimal configurations of the
stress relief groove are given in Table 4. In order to compare the obtained solutions in the last column
of Table 4, the increase in the weight of the optimal flat end with added material is also presented.

Table 4. Comparison of optimal designs parameters of flat ends with stress relief grooves.

Geometry Parameters σmax
eqv MPa εpl_eqv

Initial Flat End
Volume mm3

Increase of Flat
End Weight

Modification of flat end
geometry with respect to EN

13445-3

es = 21 mm,
rd = 28.24 mm,

ep = 20 mm

271.80
(Figure 5) 158.9 × 10–5 5.50 × 106 -

Modification of flat end
geometry with respect to EN

13445-3

es = 30 mm,
rd = 9.01 mm,

ep =20 mm

272.70
(Figure 6) 315.1 × 10–5 6.57 × 106 -

Increase of flat end thickness
es = 20 mm,

rd = 28.11 mm,
ep = 45 mm

269.21
(Figure 9a) 0 5.50 × 106 105%

cylindrical ring around vessel
circumference

es = 20 mm,
rd = 29.760 mm,

k1 = 5.033,
k2 = 0.788,
k3 = 1.378

259.24
(Figure 11) 0 5.37 × 106 85%

es = 20 mm,
rd = 31.616 mm,

k1 = 4.827,
k2 = 0.891,

k3 = 1.0

263.78
(Figure 12) 0 5.21 × 106 76%
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Table 4. Cont.

Geometry Parameters σmax
eqv MPa εpl_eqv

Initial Flat End
Volume mm3

Increase of Flat
End Weight

cylindrical rounded ring
around vessel circumference

es = 20 mm,
rd = 28.249 mm,

k1 = 1.9709,
k2 = 0.2839

253.48
(Figure 13) 0 5.49 × 106 103%

TO, geometry 1

es = 20 mm,
rd = 28.11 mm,
Added volume
reduction 72%,
SCP method

269.1
(Figure 14c) 0 5.50 × 106 79%

es = 20 mm,
rd = 28.11 mm,
Added volume
reduction 74%,

OC method

269.0
(Figure 15c) 0 Ok 5.55 73%

TO, geometry 2

es = 20 mm,
rd = 28.11 mm,
Added volume
reduction 77%,

OC method

264.7
(Figure 18b) 0 5.50 × 106 76%

5. Conclusions and Further Study

The performed numerical investigations confirmed the presence of strong stress concentrations in
the area of the groove. A comparative study of flat endplates with grooves was performed following
the code EN 13445-3, used in parallel with EN 12952-3, in standard calculations of pressure appliances.
The results of that analysis proved that the local increase of the thickness es in the transition head-shell
zone did not improve the structure’s endurance. Then, a boiler with ep = es = 20 mm and optimal stress
relief groove parameters was chosen for further study.

On the basis of engineering practice, the two proposed geometric modifications (see Figure 10)
were studied and optimized with respect to the introduced design variables (see Equations (8)–(11)).
As a result, the successful elimination of plastic deformation was observed. However, the maximum
stress was still on a high level. A more general approach to the structure geometry modification was
presented in two proposals used in the optimization of the topology. In the consequence full elimination
of plastic deformations in the groove area was achieved. Such an approach (topology optimization)
gives rise to more convenient material distribution compared to simple parametrical optimization.

In all the considered structures with modified geometries, full elimination of plastic deformations
was reached. On the basis of the performed analyses, as well as the obtained optimized structures, it can
be concluded that topological optimization is the most useful in optimizing the structural geometry.

Future investigations will concentrate on noncircular [21,22], easy to manufacture grooves, whose
shapes will be determined by parametrical or stress-based topology optimization. One additional area
of further investigations concerns the application of vessels with noncircular (elliptical or rectangular)
cross-sections and with stress relief grooves. These are included in both calculation codes, namely, EN
12952:3 and EN 13445-3. In this case, the junction between the flat endplate and the shell is not the
only zone where stress concentrations are observed. In such cases, bending of the shell walls appears,
which depends on the length of the constructed vessel. This can also alternatively limit the maximum
applied inner pressure.
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