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Abstract: The aim of the study was to clearly determine whether selected modern medical materials
and three dimensional printing allow for satisfactory viability of human osteoblasts, which is
important from the point of view of the subsequent osseointegration process. Moreover, as
implants are produced with various topography, the influence of surface roughness on viability of
bone cells was evaluated. To conduct the research, primary human osteoblasts (PromoCell) were
used. Cells were seeded on samples of glass-reinforced polyetheretherketone (30% of the filling),
Ti6 Al4V manufactured with the use of selective laser melting technology and forged Ti6Al4V with
appropriately prepared variable surface roughness. To assess the viability of the tested cells the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used. Results showed that all
evaluated materials do not exhibit cytotoxic properties. Moreover, on their basis it can be concluded
that there is a certain surface topography (designated i.a. as roughness equal to approx. Ra = 0.30 um),
which ensures the highest possible viability of human osteoblasts. On the basis of the received data,
it can also be concluded that modern glass-reinforced polyetheretherketone or Ti6Al4V produced
by rapid prototyping method allow to manufacture implants that should be effectively used in
clinical conditions.
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1. Introduction

One of the crucial tests evaluating the biocompatibility of medical materials is the cytotoxicity test,
originally used by Mosmann, which assesses cells’ viability by reducing the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) to an insoluble purple formazan [1,2]. The feature to
convert tetrazolium salts to formazan is characteristic for metabolically active cells, as this process
occurs due to oxidoreductive enzymes (primarily succinate dehydrogenase) in living mitochondria [3].
In the case of damaged or dead cells, this process proceeds with less intensity or does not take place
completely [4]. For this reason, the quantity of product in the form of formazan crystals is proportional to
the number of living cells that are being tested at a given moment [3]. After dissolution in appropriate
solvents, the crystals have a maximum absorbance at wavelength (A) of about 492-570 nm [5,6].
By spectrophotometric absorbance measurements of cell and its background, it is possible to determine
cells’ viability [7]. The MTT test is widely used to assess the activity of epidermal or osteoblast
cells [1,8].

Osteoblasts are a product of mesenchymal stem cells differentiation and are responsible for bone
formation and its remodeling, while in in-vivo conditions they form, rich in ossein, type I collagen [9].
It is an organic intercellular substance, secreted by osteoblasts, that provides flexibility and endurance
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to a bone. During the mineralization process, ossein is transformed into bone plates, while during
maturation osteoblasts undergo osteogenesis and form osteocytes [10]. Currently, Saos-2 cell line is
systematically used to assess the biocompatibility of the examined materials with bone tissue [11].
These cells were firstly derived from an 11-year-old Caucasian girl suffering on osteosarcoma by Fogh
in 1973 [12]. Saos-2 are characterized by features typical to osteoblasts, including similar process of
differentiation, which allows their use as osteoblast-like cells to assess biocompatibility. Despite other
substantial advantages, such as their common availability (low costs) or well- described properties,
Saos-2 features some disadvantages, among which is the formation of the extracellular matrix that
differs from the one created by normal osteoblasts, which may negatively influence the results of the
carried out tests [13]. Currently, there are few studies using the primary human osteoblasts that would
present actual biofunctionality of tested materials [14—16]. This is mainly due to their high costs as
well as the long and relatively difficult process of their isolation [17].

Most of the currently performed MTT tests are carried out on porous surfaces applied to the
previously prepared surface of the material [18,19]. Despite the positive effect of the porous layers,
polished surfaces are still used (in the case of implants for direct skeletal attachment of limb prosthesis
these surfaces find their use in some variants of the medullary part of the intraosseous transcutaneous
amputation prosthesis system), which also allows us to obtain appropriate osseointegration [20].

Currently, there is a growing tendency to use orthopedic implants made of plastic
composites, characterized by relatively small and similar stiffness to bone’s [21]. For this reason,
polyetheretherketone (PEEK) composites are widely used due to their satisfying mechanical and
biological features [22].

It is generally accepted, and confirmed by several experiments that PEEK is non-toxic material in
in-vivo conditions [23-25]. However, current research on the biological properties of PEEK and its
composites, with the use of MTT test, suggests that during its wear, friction products (small particles of
broken and separated material) with a size of 0.23-2.00 um may be formed, that can be characterized
by certain toxicity to tissues, however which is acceptable in terms of its intensity. This suggests
that the damaged surface may also exhibit some cytotoxic features. These and the remaining tests
on PEEK composites, were carried out mainly for carbon fillings, which directly creates the need to
conduct similar research over glass-reinforced PEEK (PEEK GRF) [26-29]. PEEK GRF with 30% of the
reinforcement (PEEK GRF30) finds its use in i.a. modular implants for direct skeletal attachment of
limb prosthesis, as it allows to reduce stress-shielding intensity due to relatively low, and comparable
to bone’s, stiffness [30]. In the authors’” knowledge, there are no studies that would include the analyses
of cells viability on PEEK GREF, characterized by pre-damaged surface, reflecting the damage that
can be created due to the high stresses achieved in this process generated during the implantation of,
e.g., press-fit implant.

In the case of the need of higher mechanical properties or individual adaptation of the
implant’s shape to the patent’s anthropometric parameters, as often as plastic composites, methods of
3-dimensional printing with metallic alloys are in common use [23]. In this case, the most widely used
is the selective laser melting (SLM) together with Ti6Al4V titanium alloy powder (due to the method
used, it is often called Ti6Al4V SLM) [24].

Titanium and its alloys have an excellent tensile strength to density ratio and high resistance to
corrosion and fatigue [31]. However, at the same time, literature sources report numerous technological
problems [32,33]. The solution to the technological deficiencies of powder metallurgy is incremental
techniques that allow us to generate complex surfaces and obtain materials of high purity [24]. What is
more, the generative SLM technology allows us to create implants with high geometric complexity
and properly shaped biomechanical properties corresponding to the characteristics of bone tissue,
as well as porosity and roughness enabling cell proliferation and implant osseointegration with the
surrounding tissue [34,35].

Literature reports show that in recent years a large group of patients has been successfully treated
with the use of custom-made implants that were manufactured using SLM [36-38]. As these reports
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are relatively recent, little is still known about the biocompatibility of metallic implants produced by
additive technologies. However, it is well-known knowledge that implant topography influences
osteoblast proliferation and differentiation, hence the conclusion that surface modification of titanium
implants can improve or deteriorate osteoblastic cell-implant interaction [39]. This means that there is
a need to carry out appropriate tests clearly confirming the effectiveness of SLM as a technique for
producing implants with Ti6Al4V SLM.

Analyzing the above-mentioned materials simultaneously with the use of the same methods
would create a possibility not only to determine their actual biofunctionality but also to objectively
compare metal and composite polymer as well as manufacturing techniques, which are often used for
implants designated for the same purpose (implants for direct skeletal attachment of limb prosthesis,
spinal implants, etc.). Currently, the literature is usually limited to analyses of metallic or composite
material, omitting simultaneous research on described materials, providing the results that have to
be interpreted and which cannot be directly compared due to the evaluation of different variables or
the use of different methods. Moreover, there is no comprehensive research that approximates the
influence of surface topography (considering various roughness parameters such as Ra, Rp, Rv or Rz)
of materials described in this section (i.e., PEEK GRF30 and Ti6Al4V SLM) on viability of human
osteoblasts, which was the aim of presented article.

2. Materials and Methods

2.1. Preparation of Samples and Modifications of Their Surface

In order to conduct the research, nine samples of PEEK GRFE30, Ti6Al4V SLM as well as forged
Ti6Al4V were prepared. The samples were cylindrical with a diameter of 10 mm and height of 5 mm.
PEEK GRF30 samples were manufactured by injection molding, Ti6Al4V SLM samples were created
with consideration of appropriate laser beam’s parameters (diameter = 0.10 mm, power = 190 W,
speed = 500 mmy/s, energy density = 127 J/mm?3, porosity < 0.5%) and thickness layer of 0.03 mm with
subsequent recrystallization annealing (850 °C for two hours), while Ti6Al4V by forging (at 900 °C)
also with subsequent recrystallization annealing (800 °C for one hour). The front (tested) surfaces of
the samples were machined first with sandpaper using its gradation from 120 to 2000.

Subsequently, front faces of eight samples of each material (leaving one polished) were mechanically
damaged by their single and manual linear displacement of 100 mm sandpaper surface. Constant
pressure was maintained during the movement of the sample. Each of eight samples was treated with
sandpaper of different gradation: 240, 400, 600, 800, 1000, 1200, 1500 and 2000. The obtained surface
roughness reflects the possibility of implant damage during i.a. its pressing into reamed medullary
cavity, that generates high stresses in the process, as was indicated in the one of the authors recent
paper [40].

The surfaces were then examined using a confocal microscope (LEXT OLS4000, Olympus Tokyo,
Japan) to determine the effect of the previously performed modification in the surfaces roughness.
In the microscope’s software, nine profile lines with a length of 100 um were applied to the central part
of the sample at fixed distances of 10 pm (Figure 1). For the profiles obtained, the individual surface
roughness was determined (Raj_g, Rp1-9, Rvi_g and Rz _g). Afterwards, their values were averaged to
approximate the overall surface roughness for the tested sample.
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Figure 1. The method of applying profile lines to determine the average roughness of the tested surface:
1—tested sample, 2—analyzed area and 3—profile line.

2.2. Evaluation of Primary Human Osteoblasts with the Use of MTT Test

Primary human osteoblasts (Human Osteoblasts, PromoCell, Heidelberg, Germany), isolated
from cancellous bone of femoral head, were used in the study. The conducted tests for the presence
of bacteria (including mycoplasma) and fungi (including yeast) in cells were negative. Furthermore,
no HIV-1 and hepatitis B or C virus were detected in the cells” donor. The cells were from the second
passage. Cytotoxicity tests were performed in accordance with ISO 10993-5:2009 [41].

Cells were subcultured in an incubator (Incubator Galaxy 170R(S) HTD, Eppendorf AG,
Wesseliing-Berzdorf, Germany), accordingly to the manufacturer’s instructions (at 37 °C, in an
atmosphere containing 5% CO; and 95% humidity; the medium was changed after one day). Obtaining
normal growth of the culture enabled the transfer of the part of the cells to a vessel containing fresh
medium (so-called passaging). The passage was as follows: the cell suspension was washed several
times with warm PBS solution. The cells were then separated from the vessel walls using a DetachKit
with a pH of 7.4—a solution containing 0.04% trypsin and 0.03% versenic acid. Then, a medium
containing an additional trypsin inhibitor was added to the tube. The resulting solution was transferred
to sterile tubes, placed in a centrifuge (1200 rpm) and centrifuged for 3 min at room temperature to
separate the cells from the solution. Viable cells were resuspended in medium (changed every two
days) and transferred to more culture vessels. The passaging was carried out several times after the
cells reached full confluence (degree of coverage of the culture vessel surface).

On the sixteenth day after the start of culture (passage 6/7/8), cells were seeded on the surface of the
samples placed in a 24-well plate. The samples were sterilized before starting their cultivation. The risk
of microbial contamination was reduced by briefly immersing the samples in 70% isopropanol and
rinsing with deionized water, followed by steam sterilization at 121 °C for 20 min (Systec VX-VE, Systec
GmbH Labor-Systemtechnik, Linden, Germany)—it provides oxide film facilitating cells to attach to the
implant surface and not causing inflammatory reactions in long-term in vivo tests. After sterilization
process, the samples were transferred to a 24-well cell culture plate.

Then, osteoblasts, in a density of 50,000 per well, were cultured on samples of analyzed materials
as well as on the bottom of wells to obtain control samples. The number of osteoblasts and their
viability was determined using an automated cell counter (EVE, NanoEnTek, Seoul, Korea), which
allows us to count cells as well as distinguish live cells from dead ones. The counter’s detection system
is based on staining cells with trypan blue. As only dead cells are stained, it is possible to reject their
number from the total number of cells. This allowed us to prepare suspensions containing 50,000 live
osteoblast cells that were cultured on the surfaces of tested samples. After culturing, 1 mL of growth
medium, optimized for in-vitro culturing of osteoblasts used (Osteoblast Growth Medium, PromoCell),
was added to each well.

Accordingly to the standard, the samples were placed between two negative controls (NC). NC is
a non-toxic control that involves cells growing on the surface of a well. Empty wells were filled with
phosphate buffered saline (PBS) to maintain uniform evaporation of liquids from the plate. Cell growth
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lasted for 48 h. After first 24 h, a positive control (PC) of 0.2% Triton X-100, was added. The 0.2%
solution was prepared from 100% one by a series of dilutions using PBS firstly to obtain 10% and
then to obtain 1% solution. Subsequently, 0.2 mL of a 1% triton solution was added to 0.8 mL of
growth medium in wells of the plate, which were designated as PC. The triton is a lysing reagent,
i.e., destroying cell membranes, which causes a significant decrease in viability of osteoblasts that can
be considered as cytotoxic property [42]. After 48 h of culturing osteoblasts on samples, the MTT test
was carried out on the basis of the cells manufacturer instructions. Formazan crystals precipitated
by the reduction of the tetrazolium salt were dissolved using a 70% solution of isopropanol with
HC1 at a concentration of 0.04 mol. Cells viability was determined as a percentage value related to
the average results obtained for NC (Equation (1)). Prior to the viability calculations, 100 pL of the
obtained dissolved formazan crystals were collected from each well and transferred to a 96-well plate.
This procedure was repeated six times. Finally, the obtained values were averaged. As a threshold
value, below which the material was considered as cytotoxic, 70% of the value obtained for the NC

was taken.
Cells viability (%) = (Ao/Anc) X 100%, 1)

where: Ap—absorbance of osteoblasts and (Anc)—average absorbance of all negative controls on the
left and right side of the plate.

The absorbance of osteoblasts was measured using a plate reader (VICTOR X4, Perkin Elmer,
Waltham, MA, USA), for A of 570 nm and 650 nm (determined on the basis of the ISO standard).
The cells studied are characterized by a partial absorption of the electromagnetic wavelength of 570 nm,
while they are permeable to a wavelength of 650 nm that is only partially absorbed by the background,
which also partially absorbs a wavelength of 570 nm. To calculate the absorbance of osteoblasts,
the absorbance obtained for A = 570 nm was subtracted from the absorbance obtained when using
A = 650 nm (Equation (2)).

Ao = (=" (As7on — Agson))in, @

where: A570—absorbance at A = 570 nm, A650—absorbance at A = 650 nm.
Similarly, the parameter (Anc) was measured (Equation (3)).

Anc =05 ((ane =1 (AncLs70n — ANCLss0n))/D) + (ané =1 (ANcrs7on — ANCReson)/n),  (3)

where: Ancrsyo—absorbance of the NC placed on the left side of the plate for A = 570 nm,
Ancreso—absorbance of the NC placed on the right side of the plate for A = 650 nm.
For comparative purposes, the mean absorbance of the PC was also determined (Equation (4)).

Apcszo = (Zn=6 =1 (Apcszon — Apceson))/n, 4)

where: Apcsyg—absorbance of the PC for A = 570 nm and Apcgsop—absorbance of the PC for A = 650 nm.
Due to spatial limitations, the tests were carried out in three series, six samples in each, using the 6th,
7th and 8th passage of the cells sequentially. In-vitro tests were carried out six times in each series.
The obtained absorbance results were consistently referred to the calculated parameters obtained
in each series. A schematic diagram of an exemplary arrangement of samples in a single series is
presented in Figure 2.

Finally, the obtained averaged results characterizing the tested materials were statistically
processed using a one-way ANOVA and the Tukey’s test for multiple comparisons (i.e., a test of
significant differences between averaged values), and values for which a p value <0.05 was assumed as
statistically significant.
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Figure 2. Exemplary arrangement of the samples during the MTT test.

3. Results and Discussion

3.1. The Influence of Mechanical Treatment on Surface Roughness

The exemplary surfaces of PEEK GRF30, Ti6Al4V SLM and Ti6Al4V obtained after mechanical
treatment with sandpaper are presented respectively in Figures 3-5. Enlarged areas chosen for
determining surfaces roughness are presented in Supplementary (Figures S1-53). Each image was
obtained with the use of confocal microscope during the measurements of surface roughness. Moreover,
the surface topography obtained for previously presented samples is presented in Supplementary,
again respectively for PEEK GRF30 (Figures S4-512), Ti6Al4V SLM (Figures S13-521) and Ti6Al4V
(Figures 522-530).
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Figure 3. Surface condition of PEEK GRF30 samples obtained after treating it with the sandpaper of
various gradations (magnification x426).



Materials 2019, 12, 4189

1500 gradation

§

i
800 gra

ation
i

7 of 14

Figure 4. Surface condition of Ti6Al4V selective laser melting (SLM) samples obtained after treating it
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Figure 5. Surface condition of Ti6Al4V samples obtained after treating it with the sandpaper of various
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The influence of mechanical treatment on the surface roughness of samples of tested materials is
presented in Figure 6.
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Figure 6. Surface roughness for individual methods of surface preparation.

The first observable feature, before analyzing the results of the MTT test, is the variable influence
of the mechanical treatment with sandpaper of various gradations on the surface roughness of PEEK
GRF30 and Ti6Al4V SLM as well as Ti6Al4V. With the use of the same paper gradation or the same
polishing process, different surface roughness were obtained for both tested materials. The roughness
obtained for PEEK GRF30 was in some cases even twice as high as the roughness obtained for Ti6Al4V
SLM or Ti6Al4V, e.g., after treatment with sandpaper of 240 gradation the roughnesses values (Ra) were
1.31 pm, 0.75 pm and 0.63 um for PEEK GRF30, Ti6Al4V SLM and Ti6Al4V respectively. The differences
can be caused by the pulling out the glass fibers located on the surface of PEEK GRF30. It results in
creating visible microholes that influence the surface roughness. Nevertheless, in some cases, similar
surface roughness values were obtained (although by treatment with paper of different gradations),
which allowed further and objective comparison of cells viability for a similar surface condition of the
materials tested. Moreover, a small standard deviation suggests a small spread in the results, indicating
a relatively regular surface. The obtained values for the polishing treatment are close to the values
reported in the literature (Ra = 0.1 pm), which means that the surfaces used in analyses were prepared
correctly [43,44].

3.2. Determination of Osteoblasts Viability Using MTT Test

Figure 7 shows the viability of osteoblasts in relation to the roughness of tested materials.
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Figure 7. Viability of osteoblasts in relation to the roughness of tested materials.



Materials 2019, 12, 4189 9of 14

Table 1 presents all the obtained values of the remaining parameters clearly defining the topography
of the obtained surfaces to clearly present their influence on osteoblasts viability.

Table 1. Surface roughness parameters (Ra, Rp, Rv and Rz) and their influence on cells viability.

Surface Roughness Parameter Cells Viability
. Surface o
Material Treatment Ra (um) Rp (um) Rv (um) Rz (um) (% NC)
Mean SD Mean SD Mean SD Mean SD Mean SD
Polished 0.181 0.004 0.630 0.055 1.040 0.170 1.669 0.124 62.72 7.07

2000 gradation ~ 0.234 0.027  0.899 0.084 1.737  0.272 2.736 0.419 76.54 2.07
1500 gradation ~ 0.287  0.030 1.027  0.097 2384 0.186 3327 0399 131.15 6.81
1200 gradation ~ 0.403 0.043 1.198 0.099 2.765 0.329 4.132 0.688 101.26 491

CI:EE;) 1000 gradation ~ 0.552 0.015 1.463 0.341 2.962 0.592 4213 0.265 93.08 4.16
800 gradation 0.784 0.022 2.594 0.488 3.104 0.610 5.850 1.045 85.31 4.96

600 gradation 0.893 0.041 3.074 0.390 3.922 0.571 6.642 0.696 82.03 1.78

400 gradation 1.104 0.028 3.844 0356  4.382 0.471 8.256 0.144  82.58 3.30

240 gradation 1.315 0.038  9.353 0.400 7.750 0543 16.569 1.319 77.64 2.19

Polished 0.192 0.024 0.558 0.091 0.789 0.101 1.347  0.166  103.86 2.49

2000 gradation ~ 0.208 0.012 0.629 0.070 0.793 0.184 1.423 0.234  110.16 3.71

1500 gradation ~ 0.211 0.012 0.704 0.057  0.831 0.088 1.502 0.155 112.67 3.25

Ti6Al4V 1200 gradat?on 0.219 0.016 0.953 0.200 0.906 0.083 1.825 0.208 118.07 935
SIM 1000 gradation ~ 0.230 0.007 1.116 0.225 1.217  0.140 2437 0215 12587  4.05

800 gradation 0.313 0.017 1.221 0.076 1.541 0.163 2.820 0.362 140.85 592
600 gradation 0.352 0.006 1.579 0.252 2225 0.107 3464 0528 110.76 6.48
400 gradation 0.549 0.021 2.232 0.603 2.681 0.479 4.656 0.851  118.36 3.84
240 gradation 0.753 0.017  2.469 0.701 3.238 0.630 5707 0361 113.35 1.50

Polished 0.118 0.019 0.512 0.107  0.531 0.031 1.105 0.034 117.11 2.28

2000 gradation ~ 0.152 0.008 0.575 0.018 0.651 0.156 1.162 0.191 13470 18.65

1500 gradation ~ 0.205 0.006 0.582 0.073 0.749 0.078 1.330 0.022  176.03 8.76

1200 gradation ~ 0.247  0.025 0.755 0.083 1.046 0.070 1.801 0.126 17351 6.62

Ti6Al4V 1000 gradation ~ 0.291 0.008 0.972 0.281 1.071 0.201 2.163 0.057 163.87 853
800 gradation 0.324 0.017 1.092 0.148 1.510 0.200 2482 0.441 121.79 7.72

600 gradation 0.358 0.065 1.275 0.179 1.629 0.111 3.028 0.678 96.76 1.63

400 gradation 0.485 0.025 1.659 0.343 1.952 0.398 3.288 0.409  100.19 8.30

240 gradation 0.631 0.014  2.582 0.237  3.390 0.419 5972 0.318 89.67 1.59

Finally, Figure 8 presents the average viability of cells on the tested materials to the overall
evaluation of their cytotoxicity.
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Figure 8. Averaged value of cells viability on tested materials (** significance to negative control
(NC)—for p < 0.01 and **** significance to NC—for p < 0.0001).
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When analyzing results presented in current subsection, a significant difference between the cells
viability of the tested materials is observable. For surface roughness of Ra < 0.3 pm, cells viability on
Ti6Al4V was nearly twice as high as in the case of PEEK GRF30. For Ra > 0.3 um, cells viability on both
materials was similar. It can also be noted that the optimal roughness, in the case of the materials tested,
was approx. 0.2-0.3 um (maximum cells viability was 176.03%, for Ti6Al4V with Ra = 0.2 um while the
highest viability of 131.15% for PEEK GRF30 was with of Ra = 0.29 um). What is more, further analysis
can also indicate that for polished PEEK GRF30 sample (Ra = 0.18 um), cell viability was below 70%
(in this case the viability was 62.72%). This suggests the lack of sufficiently high biocompatibility and
the need to change the surface condition of polished PEEK GRF30.

When analyzing the results for Ti6Al4V SLM, it can be noticed that, as in the case of two other
materials, the viability of osteoblasts rises with the increase of roughness from the one obtained during
the polishing process. It should be taken into account that surface state characterized by Ra = 0.30
um also allowed to achieve the highest possible cells viability. Again, with further increase in surface
roughness, osteoblasts viability was decreasing however, it was maintained on higher level in relation
to PEEK GRF 30 and Ti6Al4V. It can be caused by the presence of microholes formed in the process of
3D printing, which most likely improve the surface topography in terms of cells viability.

The results suggest that there may exist a certain surface condition, different from polished,
on which osteoblast cells are characterized by a higher viability. This statement is confirmed in the
available literature, according to which the Ra value of 0.3 um, is optimal for achieving adequate cell
viability [45]. This is also confirmed by other studies, which state that external cracks on surfaces can
positively affect the viability of osteoblasts [46].

The results obtained also indicate that the cell viability was small for significant roughness, i.e., in
this case resulting from the machining outer surface of the material with the low gradation sandpaper.
Surface damage may occur during the implantation of press-fit implant (due to the high stresses)
like an implant for direct skeletal attachment of limb prosthesis. It can result in reduction of its
biocompatibility and consequently lowered possibility of obtaining appropriate primary stabilization.
This would explain the reason for removal of ITAP implants from individual cases of its use in dogs
after limb amputation due to osteointegration failure [20].

A similar effect on the cells viability can be noticed while analyzing the influence of three more
parameters describing surface topography (i.e., Rp, Rv and Rz). On their basis it can be also concluded
that the roughness slightly higher than the one obtained after polishing, allows us to increase osteoblasts
viability. This confirms previously presented conclusions determined on the dependency presented in
Figure 8.

3.3. Future Work

In the future the authors plan to conduct the evaluation of cytotoxicity of PEEK GRF30 and Ti6Al4V
SLM with consideration of different topographies, which were considered in the presented study, as well
as to use more samples in order to obtain more comprehensive research. Different topographies could
be created via mechanical treatment, carried out in more than one direction to create, e.g., bidirectional,
circumferential or random damage in samples surface. This could provide a better understanding
of the influence of various roughness on human osteoblasts viability. Moreover, the authors also
consider examining the effect of wear particles on the cells response as some studies suggest that
above-mentioned debris may have a potential role in bone resorption around orthopaedic implants.

4. Conclusions

Cells viability studies are basic research conducted to evaluate biocompatibility of the implant,
allowing us to estimate the tissue response after its implantation. The study with the use of MTT
test, presented in the paper, allowed the initial evaluation of functionality of PEEK GRF30, Ti6Al4V
SLM and Ti6Al4V in post-implantation conditions in typical polished state or after surface damage in
longitudinal direction.
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The general results indicate that the biocompatibility requirements were fulfilled by all of the
tested materials. However, when selecting appropriate material for implants, surface roughness should
be taken into account, which could significantly influence the viability of human osteoblasts.
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