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Abstract: In this study, the influence of the addition of rare earth oxides on the phase composition
and density of KNN piezoelectric ceramics was investigated. The initial powders of Na2CO3 and
K2CO3 were dried at 150 ◦C for 2 h. Then, a powder mixture for synthesis was prepared by adding a
stoichiometric amount of Nb2O5 and 5 and 10 wt % overabundance of Na2CO3. All powders were
mixed by ball-milling for 24 h and synthesized at 950 ◦C. The phase composition of the reaction
bed was checked by means of X-ray diffraction (XRD). It had an appearance of tetragonal and
monoclinic K0.5Na0.5NbO3 (KNN) phases. Then, 1 and 2 wt % of Er2O3 and Yb2O3, were added to
the mixture. Green samples of 25 mm diameter and 3 mm thickness were prepared and sintered
by hot pressing at 1000 ◦C for 2 h under 25 MPa pressure. The final samples were investigated via
scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS), XRD, Rietveld,
and ultrasonic methods. Phase analysis showed tetragonal and orthorhombic KNN phases, and a
contamination of (K2CO3·1.5H2O) was present. The obtained KNN polycrystals had a relative density
above 95%. Texturing of the material was confirmed as a result of hot pressing.
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1. Introduction

Piezoelectrics are seen as an important material group due to their place in a great variety of
functional applications, ranging from simple sensors [1,2] to the interiors of the most advanced
apparatuses, such as the atomic force microscope (AFM) [3]. In general, piezoelectricity stands for a
reversible process of acquiring an electrical charge in solid material by applying mechanical stress.
Materials that generate a measurably useful current are known as piezoelectrics and include various
single crystals, organic materials, and perovskite ceramics.

In engineering and various industries, lead-based perovskites are predominantly used when
piezoelectric effects are pursued. The most notable example of excellent electromechanical properties
is witnessed in Pb(Zr,Ti)O3-based ceramics (PZT ceramics) [4]. Therefore, such materials have
been widely studied and optimized for commercial and scientific usage, resulting in relatively
simple processing methods and industry prevalence [5,6]. However, with constantly increasing
awareness about health-endangering materials, the necessity of alternative, nonhazardous solutions
has emerged. Compositions based on K0.5Na0.5NbO3 (KNN) are a possible alternative to replace
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lead-based piezoelectrics. Due to the significant piezoelectric response obtained by numerous
teams [5,7–9], KNN-based materials have been widely researched, including in this study.

In a perovskite-type ABO3 structure, A-site cations are either alkaline earth elements or rare-earth
elements, with B-site cations being transition metals. Theoretical structure consists of A cations
occupying cuboctahedral coordination positions in the middle of eight corner-sharing BO6 octahedrons.
Due to the specific structure and composition, perovskites have plenty of conductive properties used
in material sciences, including significant piezoelectricity. The piezoelectric effect is directly derived
from the noncentrosymmetric structure of materials. Such structures are electrically neutral, but lack
symmetrical arrangement. Therefore, when mechanical stress is applied, and such structure shifts,
it does not maintain a neutral charge [4]. The high magnitude of electromechanical effects obtained in
perovskites is derived from the ordering tendency present in those materials, mainly the shift of B
cations [4].

K0.5Na0.5NbO3 has a similar structure to BaTiO3, which consists of two phases, ferroelectric
K1-xNbO3 and antiferroelectric NaxNbO3. Both phases have different ferroelectric transitions,
crystallizing in a perovskite structure, with different symmetries. The phase transitions of KNN
depend on the K/Na ratio [10]. To synthesize the basic structure of KNN, K, and Na carbonates are
used in conjunction with Nb2O5 [5]:

K2CO3 + Na2CO3 + 2Nb2O5 → 4K0.5Na0.5NbO3 + 2CO↑2.

The main challenge emerging during KNN sintering is the densification of the obtained polycrystals.
There are a few possible reasons that may cause this issue. During the thermal processing of KNN,
evaporation of sodium is commonly reported [11,12]. Oxygen vacancies tend to appear during sintering
processes [13]. Additionally, sintering of pure KNN is limited by lack of a liquid phase, resulting in a
porous microstructure. Densification could be enhanced by the addition of various dopants. Rare-earth
elements (REE) are reportedly used to address this issue due to the creation of a liquid phase and a
high tolerance factor allowing for ion substitution in the perovskite structure [14].

REE oxides are used to significantly improve the piezoelectric properties of KNN-based materials.
It was reported that the addition of these oxides resulted in a stabilizing and lowering dissipation
factor in piezoelectric ceramics because of A-site ion substitution. The addition of two REEs was
highlighted for the purpose of this study, ytterbium and erbium. Studies by Li et al. indicated that
Yb3+ replaces both sodium and potassium (A site) and niobium (B site) in KNN structures, but each
substitution can be promoted by changing the concentration of those cations. A low concentration
(<0.25%) results in A-site substitutions, with Yb3+ cations acting as donor ions, while increased
concentration (>0.25%) results in B-site substitutions, with Yb3+ cations acting as acceptor ions [15].
When a Yb3+ cation acts as a donor dopant, it causes the reduction of oxygen-vacancy concentration
that appeared during sintering [16]. Elimination of vacancies is desired in that case to maintain the
electrical resistance of KNN material. This phenomenon may lead to the desired deformation of
a crystal structure [17]. The addition of Er2O3 has been investigated by Zhao et al. [18,19], and it
enhances the photoluminescence properties of KNN ceramics. It also increases the coupling effects of
mechanical-electrical luminescence. Er2O3 doping results in the appearance of a liquid phase during
sintering, which is beneficial for material densification.

The aim of this study was to obtain a dense KNN-based material that could be used as a lead-free
piezoelectric stress sensor. To achieve that two simultaneous approaches were investigated. First, 1 and
2 wt % amounts of Er2O3 and Yb2O3 as doping materials were proposed. Second, in order to increase
the overall density of the material, uniaxial hot pressing in a graphite mold was employed instead of
commonly used pressureless sintering. Such a process has a positive effect on texturing a polycrystal
microstructure, which is desirable in this type of material due to the improvement of piezoelectric
properties [20,21]. Additionally, it was expected that high pressure decreases sintering temperature,
which, in turn, prevents alkali evaporation and reduces the effect of donor ions, increasing the KNN
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melting point. This allows to manufacture more stoichiometric K0.5Na0.5NbO3 material after thermal
processing [22,23].

2. Materials and Methods

Experiments were performed with commercially available powders of Nb2O5 produced by
Changsha Easchem Co. Ltd. (Changsha, China, 99.7% purity); K2CO3 and Na2CO3 powders were
produced by Lach-Ner (Neratovice, Czech Republic; 99.5% purity). In order to synthesize KNN,
these powders were used as reactants for processing. To remove residual water from the samples,
K2CO3 and Na2CO3 powders were dried at 150 ◦C for 12 4 and then kept in a desiccator between
each step of the preparation process. Subsequently, K2CO3, Na2CO3, and Nb2O5 powders were
initially mixed in ceramic mortar with an additional 5 and 10 wt % of Na2CO3 in order to avoid
sodium deficiency due to evaporation during synthesis. The prepared powder mixture was then
dry-homogenized in a ball mill for 24 h with low rotary speed. Silicon nitride milling media were
used. Due to their high wear resistance, samples were unlikely to feature any contamination from
this process. Next, the mixture was placed in a furnace inside an Al2O3 crucible at 950 ◦C for 2 h
to complete KNN synthesis. Set amounts of Er2O3 and Yb2O3 sintering agents, shown in Table 1,
were added to obtain KNN powder. Then, powders were additionally homogenized for 24 h in a
rotary mill with the use of Si3N4 grinding media. Finally, circular green samples with a diameter of
25 mm and 3 mm thickness were prepared by hot pressing at 1000◦ C for 2 h of dwell time under
25 MPa pressure in a graphite mold in Ar gas flow. Due to differences in the atomic radius between
K+ (0.133 nm) and Na+ (0.097 nm), sodium evaporates more easily during KNN sintering. A higher
amount of K+ ions present in the KNN structure leads to a larger distance of the crystal face and results
in a 2θ decrease of KNN patterns, which was confirmed by Jiang [24]. The procedure of KNN sample
preparation is presented in Figure 1.

Table 1. Sample composition.

Sample ID K0,5Na0,5NbO3 (wt %) Er2O3 (wt %) Yb2O3 (wt %)

Reference sample 100 - -
E1 99 1 -
E2 98 2 -
Y1 99 - 1
Y2 98 - 2
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X-ray diffraction analysis was performed using a PANalytical X-ray diffractor (XRD, Almelo,
The Netherlands) equipped with Cu tube, and X-pert HighScore software (version 3.0e) was used in
order to designate sample phase composition. Scanning-electron-microscopy (NOVA NANO SEM
200, FEI EUROPE COMPANY, Czech Republic, Brno) observations with energy-dispersive X-ray
spectroscopy (EDS of EDAX, Brno, Czech Republic,) analysis were performed using NOVA NANO
SEM 200 equipped with an EDAX EDS analyzer (FEI, Brno, Czech Republic). Helium density of the
prepared samples was measured using gas pycnometer AccuPyc II 1340 (Micrometrics, Norcross,
GA, USA). Material texturing was examined by ultrasonic measurement using a CT-3 apparatus
(Unipan Ultrasonic, Warsaw, Poland) equipped with a 1 MHz ultrasonic head.

3. Results

Figure 2 shows the overall morphological appearance of the products after the synthesis of the
initial reactant mixtures of a stoichiometric K/Na molar ratio. Coarse particles with size in the range of
4–10 µm and partially sintered fine grains with dimensions of about 1 µm are visible in Figure 2A,
B, respectively. In both cases, particles were strongly agglomerated. However, individual shapes of
coarse grains are clearly distinguished. Particles shown in Figure 2B were five to eight times finer in
comparison to those shown in Figure 2A.
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Figure 2. Scanning-electron-microscopy (SEM) images of products after synthesis with 1/1 K/Na molar
reactants ratio: (A) coarse agglomerated particles and (B) partially sintered crystallites.

Figure 3 shows SEM images of material synthesized with 5 wt % excess Na2CO3 amount. It can
be seen that morphology was different than that for the sample with stoichiometric K/Na composition.
Coarse particles with 8–10 µm size were covered by a thin layer of very fine crystallites with a size
of 1–2 µm. Extensive formation of agglomerates was observed, as well as that an excess amount
of Na2CO3 positively affected the nucleation of fine particles. Such finer grain-size distribution is
expected to improve the overall density of polycrystals due to more efficient milling needed prior
to sintering.

As seen in Figure 4, in the case of 10% sodium carbonate addition, powder morphology was
significantly more uniform than that of the rest of the synthesized powders. It was characterized by a
large amount of agglomerates formed from the cubical shapes of the particles. Deviation in size of the
single crystallites varied I the range of 5–10 µm. Overabundance of 10 wt % Na2CO3 allowed for more
homogeneous grain growth during KNN synthesis at 950 ◦C.
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Initial evaluation of the morphology of the synthesized KNN powders showed that the sample
with 5 wt % overabundance of Na2CO3 was better suited for further processing. In order to check the
phase composition of this powder, qualitative and quantitative XRD analysis was performed as shown
in Figure 5. The presence of two different KNN phases was detected, tetragonal K0.5Na0.5NbO3 and
monoclinic K0.3Na0.7NbO3. It was shown that synthesis conditions were correctly chosen to complete
the reaction between reagents. After KNN synthesis, only about 19 wt % of tetragonal K0.5Na0.5NbO3

was obtained. Therefore, monoclinic K0.3Na0.7NbO3 (81%) are expected to transform into orthorhombic
KNN phase after the sintering process with Er2O3 and Yb2O3 dopants, according to literature data [4].
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The addition of a sintering agent in the form of rare metals oxides Er2O3 and Yb2O3 had a
significant effect on the phase composition of the samples, as shown in Figure 6.
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When qualitatively compared, the same phases were present in both samples, with an additional
ErNbO4 and Er2O3 phase in the material doped by Er2O3. The quantity of erbium niobate increased
and Er2O3 decreased with the addition of erbium oxide to the starting mixture. A similar increase in
case of ytterbium niobate was seen in samples with ytterbium oxide introduced. However, quantitative
analysis indicated that Yb2O3 substantially changed the sintering process in terms of acquiring
tetragonal and orthorhombic KNN phases. Qualitative XRD phase-composition analysis showed that
the synthetized powder obtained at 950 ◦C was composed of two KNN phases and contaminations,
and it is presented in Table 2. A proportionally increasing amount of tetragonal and orthorhombic
KNN was observed. The presence of dipotassium carbonate sesquihydrate (K2CO3·1.5H2O) was
observed in each sample, which formed as the result of water absorption due to the hygroscopic
properties of K2CO3. Water could be absorbed during extraction from the hot pressing (HP) apparatus
or removal of the graphite foil layer used during the HP process, but the latter was performed in
isopropanol to prevent such a reaction. K2CO3 appeared in the dense sintered material due to the
reaction between the graphite form or graphite foil and the green KNN sample. XRD measurements
were conducted on the material surface, and graphite was nonetheless not found in further EDS
analysis of the fractured samples (Table 3), which may suggest that this effect occurred mainly on the
material surface. The internal part of the sample was also free of water in comparison to the surface.
Results indicated that Yb2O3 addition had a better effect on the final composition of the sintered
samples than that of Er2O3. The overall amount of tetragonal and orthorhombic KNN phases was
higher in samples containing Yb2O3. In Samples Y1 and Y2, the total weight percentage of the KNN
phases exceeded 50% of the material. The appearance of orthorhombic KNN was the result of the
phase transformation of the monoclinic phase detected in the powder after synthesis at 950 ◦C.

Table 2. Composition of sintered samples in weight percentage.

Sample ID Figure No K2CO3•1.5H2O
(%)

t-KNN
(%)

o-KNN
(%)

ErNbO4
(%)

Er2O3
(%)

YbNbO4
(%)

Yb2O3
(%)

E1 6A 67.4 23.0 8.0 0.7 1.0 - -
E2 6C 61.9 28.0 8.6 1.1 0.4 - -
Y1 6B 47.1 35.2 16.7 - - 0.4 0.6
Y2 6D 33.9 44.0 20.3 - - 1.2 0.6

Table 3. SEM EDS weight percentage for samples shown in Figure 8.

Sample and Point Figure No. K (%) Na (%) Nb (%) O (%) Yb (%) Er (%)

Y1-1 8A 13 6 58 19 4 -
Y1-2 8A 12 6 57 21 4 -
Y2-1 8B 15 5 57 20 3 -
Y2-2 8B 8 9 56 23 4 -
E1-1 8C 16 4 61 14 - 5
E1-2 8C 15 4 63 14 - 4
E2-1 8D 12 3 68 11 - 6
E2-2 8D 10 8 53 26 - 3

The existence of K2CO3 in the hot-pressed materials was also examined in the volume of the
material by two methods. First, the selected material was gently pulverized in a ceramic SiC mortar,
followed by XRD analysis, which is shown in Figure 7A. Second, the surface layer of KNN + 1%
Er2O3 was mechanically removed, and the result is illustrated in Figure 7B. This confirmed that
K2CO3 was not present in the sample volume. Phase analysis showed the existence of tetragonal and
orthorhombic KNN with the addition of ErNbO4 or YbNbO4. This indicated that K2CO3 only formed
on the material surface.
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Figure 7. XRD analysis of (A) pulverized KNN +1% Yb2O3 and (B) KNN + 1% Er2O3 with mechanically
removed thin surface layer.

XRD data analysis with a comparison to the reference material showed differences in the
lattice-parameter values of KNN structures induced by erbium and ytterbium dopants (Figure 7).
The lattice parameters of pure orthorhombic KNN were a,b = 5.5200 Å, and c = 13.7840 Å. In the case
of 1% Yb2O3 addition, they were a,b = 5.6042 Å, and c = 13.7703 Å. For 2% Yb2O3 addition, they were
a, b = 5.6031 Å, and c = 13.7727 Å. Therefore, lattice-structure deformation was visible in the shrinkage
of the “a” and “b” parameters, and in the elongation of the “c” parameter. A similar situation was
observed in erbium doped samples with a visibly higher shrinkage of the “c” parameter (Figure 8A).
In case of a tetragonal structure, the “c” parameter was elongated with the addition of Yb2O3, differing
from samples in the orthorhombic structure (Figure 8B). In both structures, higher additions of dopants
led to a decrease of the “a” lattice parameter, which agreed with data from the literature [15].
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(a and b parameters overlapped).

Figure 9 shows samples with 1 and 2 wt % addition of Er2O3 and Yb2O3 sintering agents. It can
be seen that both types of material had similar morphology. In the case of samples containing 1 wt %
oxide additions, grains were bigger than those for materials with 2 wt % additions. This indicates that
more of the sintering agent caused fine KNN grains to appear. This was confirmed by EDS analysis,
as shown in Table 3.
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Figure 9. SEM sample images with different sintering agents and energy-dispersive X-ray spectroscopy
(EDS point analysis marked on images): (A) 1% Y2O3, (B) 2% Y2O3, (C) 1% Er2O3, and (D) 2% Er2O3.

The sample density is presented in Table 4. All prepared materials were characterized by high
relative density above 95%, with the highest of 99.4% in the addition of 2% Er2O3. The 5 wt % excess
of Na2CO3 caused non-uniform grain-size distribution after the synthesis process. The addition of
rare-earth sintering agents of Er2O3 and Yb2O3 with high pressure and temperature during hot pressing
allowed good powder compaction, which led to obtaining dense polycrystals.

Table 4. Density of obtained samples.

Sample
ID

NaCO3 Excess
(wt %)

Sintering
Aid

Sintering-Aid
Amount (wt %)

Hot Pressing
Temperature (◦C)

Helium Density
(g/cm3)

Relative
Density (%)

E1 5 Er2O3 1 1000 4.40 ± 0.02 96.8
E2 5 Er2O3 2 1000 4.54 ± 0.02 99.4
Y1 5 Yb2O3 1 1000 4.34 ± 0.04 95.6
Y2 5 Yb2O3 2 1000 4.45 ± 0.03 97.8

KNN polycrystal analysis revealed the anisotropic feature of their microstructure. Ultrasonic
measurements were conducted in two different directions on each sample, as indicated in Figure 10.
The difference in longitudinal ultrasonic-wave velocity measured in the “a” and “c” directions was
higher than 45% and reached almost 95%. Wave velocities differed significantly for each sample,
so texturing of the material as an effect of applied pressure during the hot-pressing process was observed.
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4. Discussion

In order to prepare high-quality KNN powder after synthesis, overabundance of Na2CO3 was
necessary because of the expected evaporation of sodium during thermal processing. The morphology
of KNN powders made from reactants after synthesis showed that material containing 5 wt % excess
of Na2CO3 allowed the formation of coarse and fine particles due to the presence of fine grains;
the appearance of liquid phase was expected that could lead to improved density after sintering.
XRD analysis of the 5 wt % Na2CO3 synthesized powder showed the presence of two phases: tetragonal
K0.5Na0.5NbO3 and monoclinic K0.3Na0.7NbO3. After homogenization with Er2O3 and Yb2O3 dopants,
and subsequent hot pressing, the monoclinic phase transitioned into orthorhombic K0.5N0.5NbO3.
However, contamination of K2CO3·1.5H2O was detected on the surface of all materials due to a
reaction with the graphite mold and exposure to the atmosphere. The addition of Er2O3 resulted in the
appearance of small amount of ErNbO4 in the final samples. The formation of ErNbO4 during hot
pressing reduced the porosity of the samples. Ultrasonic-wave-velocity examination in the parallel
and perpendicular direction to the HP axis indicated the texturing of the sintered material.

Results showed that hot pressing was an efficient method to obtain dense KNN polycrystals.
However, to avoid unwanted carbon diffusion to the sintered material, nonreactive isolation should
be applied during sintering. There are two possible solutions: first, change the mold material from
graphite to alumina. Second, including an additional protective cover between graphite and the inner
material layer.

5. Conclusions

• Synthesis of a powder containing 5 wt % excess of Na2CO3 resulted in the appearance of fine
crystals and coarse grains, beneficial for densification during sintering due to the appearance
of liquid.

• Dipotassium carbonate sesquihydrate (K2CO3·1.5H2O) appeared at the surface of the material due
to the reaction with carbon derived from the graphite mold and later exposure to the atmosphere.
The thin carbonate layer could be mechanically removed.

• The addition of sintering agents resulted in the transformation of the monoclinic phase into
orthorhombic KNN in the final samples.

• Hot pressing allowed us to obtain samples with relative density over 95%.
• It was confirmed that hot pressing was beneficial for KNN texturing after sintering.
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