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Abstract: The sound absorption performance of porous ceramisite is determined by its pore 

structure, which is mainly governed by a foaming agent and heating rate during a foaming process. 

By tuning the heating rate and foaming agent concentration, ceramisite with different pore 

structures was prepared by using flyash, cement, quick lime, and plaster as raw materials as well as 

ammonium acetate as a low-temperature decomposition foaming agent in this work. The phase 

composition, microstructure, and sound absorption performance of the prepared porous ceramisite 

were investigated. Results demonstrate that the apparent porosity and the pore diameter increased 

with the increase of foaming agent concentration, accompanied with the broadening of the pore 

diameter distribution. The apparent porosity is positively correlated with heating rate until the 

temperature is higher than 20 °C·min−1, while the pore diameter is negatively correlated. The pore 

diameter distribution becomes narrow as a function of the heating rate. The sound absorption 

performance is positively correlated with the apparent porosity. An optimal pore diameter might 

exist, meaning diameter sizes that are larger or smaller than the optimal diameter are not conducive 

to the optimization of the sound absorption performance of the overall frequency band. It was 

determined that the curing time was not a key factor for optimizing the pore structure. 

Keywords: pore structure; sound absorption performance; porous ceramsite; ammonium acetate; 

heating rate 

 

1. Introduction 

The noise pollution caused by urban railway transit (URT) is becoming increasingly serious due 

to large-scale construction of urban railway transit and the increasing of train velocities. Therefore, 

various measures that can achieve noise abatement have been considered worldwide [1]. A sound 

barrier and/or track acoustic panel made of porous ceramsite, which is a kind of foaming cement-

based aggregate, is quite suitable for sound absorption as both possess remarkable features, such as 

high sound absorption, fire-resistance, anti-seismic abilities, being weather-proof, anti-corrosiveness, 

a light weight, and non-toxicity [2,3]. Hence, they have been widely used to abate the noise pollution 

caused by URT in recent years [4–6]. It has been proved experimentally that the performance of the 

sound barrier and/or track acoustic panel is predominated by a pore structure, which is mainly 

determined by the pore structure of the porous ceramsite [2,7–9]. Therefore, it is useful to explore 

various approaches for preparing ceramsite using desirable pore structures. 
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Among the approaches that can achieve porous ceramsite, chemical foaming process is a 

desirable route to prepare ceramsite with tunable pore structure [10,11], in which surfactant [12–14], 

carbonate [15], carbon powder [16], SiC [17], H2O2 [18,19], aluminum powder [19], and protein [20] 

are traditionally used, respectively. However, although the mentioned foaming agents could achieve 

porous ceramsite, the foaming processes are generally performed either at high temperature or for a 

long duration, which makes the pore structure hard to tailor. Low-temperature decomposable 

ammonium salts could also be used as a foaming agent for the preparation of porous ceramsite via 

the foaming process. Since such foaming agents decompose at a relatively low temperature, it is much 

easier to tailor the pore structure when they are used for ceramsite preparation. Therefore, it is worth 

exploring such foaming agents. 

In our previous work [2], (NH4)2CO3, a low-temperature decomposition ammonium salt, was 

used to prepare porous ceramsite. It was found that the curing duration, heating rate, and foaming 

agent concentration exerted remarkable influences on the pore structure [2,3]. However, although 

low-temperature decomposition ammonium salt was used as foaming agent in previous work, the 

works concerning low-temperature decomposition foaming agent are rare to our knowledge. 

The thermal decomposition mechanism of the foaming agent governs the formation of pores 

while preparing porous ceramsite via a foaming process. However, unfortunately, it was rarely 

considered in previous works. To explore different foaming agents, ammonium acetate was used in 

the present work. The effects of the foaming agent concentration, heating rate, and curing duration 

on the pore structure, apparent porosity, and sound absorption performance were investigated. Due 

to the limitation of previous works in which the thermal decomposition of forming agent was rarely 

investigated, the decomposition mechanism was not available and hence it was difficult to control 

the pore forming process. For the decomposition mechanism of ammonium acetate in cement-based 

materials to be understood thoroughly, Thermogravimetry (TG) and Differential Scanning 

Calorimetry (DSC) techniques were used. 

2. Experimental Section 

2.1. Raw Materials 

The raw materials used for ceramsite preparation containing fly-ash, cement, gypsum, and quick 

lime with a respective mass ratio of 25:5:2:1 were obtained from Ouweimu Machinery Manufacturing 

Co., Ltd. (Liuzhou, China). The components and proportion of fly-ash were determined according to 

the Methods for Chemical Analysis of Cement [21] and presented in Table 1. The used foaming agent, 

ammonium acetate (analytical purity grade), was purchased from Xilong Chemical Co., Ltd. 

(Guangzhou, China). 

Table 1. Chemical composition of fly ash. 

Component SiO2 Al2O3 Fe2O3 CaO MgO SO3 TiO2 K2O Na2O LOI 

Proportion (wt.%) 57.8 26.5 5.8 4.1 1.7 0.6 0.3 0.8 0.2 2.2 

2.2. Determination of Thermal Decomposition Mechanism of Ammonium Acetate and Heat-Treatment 

Temperature of Ceramsite 

For the decomposition mechanism of ammonium acetate to be understand thoroughly, the 

thermal decomposition of ammonium acetate was investigated by Thermogravimetry (TG) and 

Differential Scanning Calorimetry (DSC) techniques by using a simultaneous thermal analyzer (STA 

449 F3, Netzsch, Selb, Germany), during which the heating rate is maintained to be 5 °C·min−1 in the 

range of 20–300 °C under a N2 atmosphere. To determine the thermal decomposition of ammonium 

acetate within ceramsite, the following samples were used for thermal analysis, respectively: (1) pure 

ammonium acetate powder, (2) ceramsite containing 1.83 wt.% ammonium acetate solution and raw 

powder with a mass ratio of 1:5 without curing, and (3) ceramsite containing 1.83 wt.% ammonium 

acetate solution and raw powder with a mass ratio of 1:5 after curing for 12 h. 
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2.3. Preparation of Ceramsite 

In line with our previous work [2,3], 3.0 kg of raw mixture and 600.0 g of water was used for 

each preparation. Prior to pelletizing of the ceramsite, a weighed amount of ammonium acetate was 

transferred into a container with water to obtain a foaming agent solution with concentrations of 0, 

0.5, 0.7, 1.0, and 1.83 wt.%, respectively. The pelletizing was performed on a ZL-500 disk granulating 

machine from Machinery Equipment Co., Ltd. (Zhengzhou, China), during which the foaming agent 

solution was sprayed to homogenously moisten the powder mixture. The pelletizing process was 

continued until a spherical ceramsite with the desired average diameter was achieved. 

Prior to the heat treatment, the heating temperature and duration were determined to be 150 °C 

and 10 min based on the TG/DSC analytical results. The obtained ceramsite was then put into an oven 

for heat treatment at 150 °C, during which the heating rate was set to be 0, 3, 5, 10, 15, 20, and 30 

°C/min, respectively. After being heated at 150 °C for 10 min, the samples were naturally cooled down 

to room temperature. (Figure 1). 

 

Figure 1. The heat treatment of the obtained ceramsite. 

2.4. Pore Structure Characterization and Properties Evaluation 

As for sound-absorption, the apparent porosity is the dominant factor. In the present work, the 

apparent porosity p was measured by the traditional drainage method on the basis of the Archimedes 

principle [22]. Although some biases which might be induced by the physic basis, pore shape, 

accessibility of interior pores, and air within the pores could be inherent [23], mercury intrusion 

porosimetry (MIP) was still widely used to assess the pore size distribution in many research because 

of the limitation of the other characterization methods. Therefore, in the present work, the pore size 

distributions of the specimens were measured using an AutoPore IV9500 Automatic Mercury 

Porosimeter (Micromeritics, Norcross, GA, USA) with a pressure range of 0–207 MPa. 

The micro-morphology of the sample was characterized by field emission scanning electron 

microscopy (SEM, Zeiss Sigma, Jena, Germany). The mineral composition was characterized by X-

ray diffractometry (Bruker, Karlsruhe, Germany). 

According to The Measurement of the Sound Absorption Coefficient and Acoustic Impedance in the 

Acoustic Impedance Tube (GB/T 18696.2-2002) [24], the sound-absorption coefficient of the specimen 

was tested using an AWA6128 standing-wave tube sound absorption test system from Hangzhou 

Aihong Instrument Co., Ltd. (Hangzhou, China). The standard cylindrical specimens with a diameter 

of 10 cm were made from the ceramsite. The sound waves with frequency ranging 200–2000 Hz 

emitted from the loudspeaker are incident on the surface of material perpendicularly in the tube, 

causing the sound waves to reflect back and forth in the pipeline to form a standing wave sound field 

(Figure 2). Thus, the maximum and minimum sound pressure will be distributed alternately along 

the tube axis. Hence, the values can be measured by moving the probe microphone, and therefore, 

the sound absorption coefficient can be evaluated according to Equation (1). When both the 

maximum and the minimum sound pressure are measured, Equation (2) can be used: 
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; |�|���  is the sound pressure maximum, |�|��� is the 

sound pressure minimum, �����
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 is the sound 

pressure level minimum. 

 

Figure 2. Schematic diagram of standing-wave tube method. 

As a key mechanical performance index, the compressive strength largely dominates the 

practical application of ceramsite. Thus, it was evaluated by using an automatic digital compression 

testing machine from Tiancheng Testing Machine Manufacturing Co., Ltd. (Ji’nan, China) according 

to Lightweight Aggregates and Test Method (GB17431.2-2010) [25]. 

Analysis of variance (ANOVA) test was carried out for the data obtained from the samples in 

order to investigate the effects of the variables used in the sample preparation on the apparent 

porosity and cylinder compressive strength [26]. Following the determination of the significant 

differences of the factors, comparative analysis of the mean values of the samples were carried out in 

order to determine which groups showed those differences. The confidence interval for statistical 

tests was 95% (α = 0.05) in the study. IBM SPSS software, version 23, was used for the statistical 

analyses. 

3. Results and Discussions 

3.1. TG-DSC Thermal Analysis 

As illustrated in Figure 3, for pure ammonium acetate, the TG curves shows that the initial and 

final decomposition temperatures are about 64 °C and 162 °C, respectively. The decomposition could 

be detected sharply with a mass loss of about 80% within 110–150 °C, giving gaseous NxOx and 

ammonia (Figure 3a) [27]. The DSC curve further proves the above conclusion. Tow endothermic 

peaks at 113 °C and 148 °C are observed due to physical dissolution and chemical decomposition of 

ammonium acetate. Compared with pure foaming agent, the initial and final temperatures of 

foaming agent of the ceramsite containing ammonium acetate without curing are significantly 

reduced to 25 °C and 70 °C, respectively, during which the mass loss is about 16% and an endothermic 

peak is observed at 60.8 °C (Figure 3b). As for the sample containing ammonium acetate after curing 

for 12 h, the first and second weight-loss range from 25 °C to 50 °C and from 110 °C to 150 °C, 

respectively, in which two endothermic peaks are observed at 42 °C and 127 °C [28,29]. 

The thermal decomposition of ammonium acetate is affected by temperature and pH value. 

Without the effect of pH value, it would decompose completely below 160 °C (Figure 3a). However, 

for the ammonium acetate which existed in ceramsite, the mixture of cement, quicklime, flyash, 

gypsum, and water will provide an alkaline environment due to the hydration of cement, flyash, and 

quicklime, which helps to greatly reduce the initial and final temperatures. Moreover, it could be 

observed from Figure 3b,c that curing would exert an influence on the decomposition of the foaming 

agent. The longer the curing time is, the lower the final decomposition temperature becomes, 
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implying that ammonium acetate can be used as an foaming agent to prepare porous materials at low 

temperature. Therefore, in the present work, the heat treatment temperature could be set to be 20–

150 °C in line with the TG/DSC results. 

 

Figure 3. TG and DSC curves of: pure ammonium acetate (a) and ceramsite containing 1.83 wt.% 

ammonium acetate solution and raw powder with a mass ratio of 1:5 without curing (b) and after 

curing for 12 h (c). 

3.2. Apparent Porosity 

Figure 4 shows the variation curve of apparent porosity as a function of heating rates and 

foaming agent concentration. It can be seen that the ammonium acetate concentration and heating 

rate exert great influence on apparent porosity, respectively. Apparently, the apparent porosity 

increases significantly with the increase of the foaming agent concentration. When the foaming agent 

was not engaged for ceramsite preparation, the apparent porosity ranged from 20.3% to 20.8%; 

however, conversely, the use of foaming agent would result in a remarkable increase of apparent 

porosity. The higher the used foaming agent concentration is, the higher the apparent porosity will 

be, especially for those with a foaming agent concentration higher than 1.0 wt.%. Moreover, high 

heating rate contributes significantly to high apparent porosity. It is worth mentioning that, a heating 

rate of 20 °C·min−1 would favor the formation of porous ceramsite with a higher apparent porosity. 

However, as the heating rate further increases to 30 °C·min−1, the apparent porosity decreases slightly. 
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Figure 4. Effects of the foaming agent concentration and heating rate on the apparent porosity of the 

ceramsite. 

A two-way analysis of variance (ANOVA) test was carried out for the data obtained from the 

samples and the results are shown in Table 2. The ANOVA findings on the effect of the factors 

‘heating rate’ and ‘foaming agent concentration’ on the apparent porosity of the ceramsite listed in 

Table 2 showed statistical significance (p-value = 0% < 5%). The statistical model explained 96% of the 

variability observed, 40% was attributable to the heating rate, 43% to the foaming agent 

concentration, and 13% to the interaction between them [26]. 

Table 2. Results of two-way ANOVA. 

Source of Variation 
Type III Sum 

of Squares 
Df 

Mean 

Squares 
F p-Value 

Corrected model 1394.569 a 34 41.017 92.475 0.00 (5.8382 × 10−80) 

Intercept 97794.425 1 97794.425 220484.157 0.00 (1.0034 × 10−225) 

heating rate 581.440 6 96.907 218.483 0.00 (1.7185 × 10−68) 

foaming agent concentration 624.861 4 156.215 352.198 0.00 (5.4974 × 10−72) 

Interaction between heating rate 

and foaming agent concentration 
188.268 24 7.845 17.686 0.00 (2.2857 × 10−31) 

Error 62.096 140 0.444   

Total 99251.090 175    

Corrected total 1456.666 174    

Df: degree of freedom. a R2 = 0.957 (corrected R2 = 0.947). 

Ideally, the elastic modulus and surface ultimate tension of matrix are assumed to be fixed 

values [30,31]. When ammonium acetate was introduced into the matrix, the decomposition of the 

foaming agent would result in an increase of pressure and hence numerous bubbles appeared within 

the matrix. The higher the foaming agent concentration is, the more the amount of gas derived from 

the decomposition of foaming agent becomes, hence leading to more bubbles forming within the 

ceramsite, resulting in thinner walls between neighboring bubbles. According to the Young–Laplace 

formula [32–34], the formation of pore in cement-based composite is just the process of balancing the 

paste pressure, that is the pore internal pressure and cement paste surface tensile force of three 

interactions with each other. Therefore, the pressure gradient caused by the difference of the radius 

of the curvature between two neighboring bubbles which promotes the radius tends to be the same. 

When the pressure gradient is large enough to overcome the surface tensile force, the air bubbles’ 

breakage will occur, resulting in connected or open pores within the ceramsite [33]. That is the reason 

why a higher foaming agent concentration resulted in higher apparent porosity. 

Furthermore, the formation of a porous structure depends on the competition of gas bubbles 

and polycondensation reactions which result in hardening [35]. For a single component system, the 
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relationship of the pressure and temperature could be evaluated by the Clapeyron Equation when 

two phases of solid and gas are in equilibrium [36]: 

�� ��⁄  =  ΔH� (T ∙ ΔV�)⁄  (3) 

When temperature rises from T to (T +  ��), the pressure should increase from � to (� + ��) 

accordingly to maintain the balance, which in turn results in an enlarged volume of bubbles and 

hence thinner walls between neighboring bubbles. When the pressure gradient is large enough to 

overcome the surface tensile force, the air bubbles’ breakage will occur, resulting in connected or 

open pores within the ceramsite [33]. As a higher heating rate would result in a higher dT, the bubbles 

would be subject to a higher pressure gradient according to the Clapeyron Equation. As a result, the 

open pores extend inward continuously, resulting in higher apparent porosity. When the heating rate 

is low, the decomposition of foaming agent is low, producing a small amount of gas, while the small 

pressure gradient makes the bubbles grow slightly. At the same time, the heat distribution uniformity 

results in a uniform distribution of thermal stress, and the equilibrium of surface tension and pressure 

inside the bubble will be established easily, hence more closed pores because of more trapped gas 

inside the ceramsite. However, a higher heating rate will not only result in a higher dP and a more 

rapid decomposition of foaming agent, but will also accelerate the polycondensation reactions greatly. 

Therefore, an equilibrium between the two influence factors would reach resultantly [35]. With the 

heating rate further increases, the polycondensation reactions will be dominant. Hence, the formed 

pores will shrink inwards due to the hydration of the matrix surrounding the pores, which results in 

a slight decrease of apparent porosity. 

3.3. Microstructure of the Obtained Ceramsite 

3.3.1. Effect of Foaming Agent Concentration on the Micromorphology of the Ceramsite 

In order to study the effect of foaming agent concentration on the microstructure of the 

ceramsite, the samples treated at a heating rate of 20 °C·min−1 with various foaming agent 

concentrations were selected as a probe for SEM and mercury intrusion porosimetry measurements. 

The results indicate that when the foaming agent concentration is 0.5 wt.%, only a few pores could 

be seen (Figure 5a). The pore diameter distributions located at about 5–700 nm and 800–4000 nm were 

relatively narrow, which is consistent with traditional porous concrete [35]. Moreover, for the latter, 

it was dominated by the pores with a diameter ranging from 800–200 nm (the black curve in Figure 

5e). With the increase of ammonium acetate concentration, increasing pores could be seen obviously, 

together with larger pore diameter and wider pore diameter distribution. With the concentration 

reaching 1.83 wt.%, a porous structure could be obtained, the pore diameter become bigger, and the 

diameter distributions at 5–700 nm and 800–4000 nm become much wider in comparison with those 

of the samples obtained using lover foaming agent concentrations, which further confirms the result 

of the apparent porosity in Section 3.1. 
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Figure 5. SEM images of cross-section of the samples obtained at a heating rate of 20 °C·min−1 with 

various foaming agent concentrations of: (a) 0.5, (b) 0.7, (c) 1.0, and (d) 1.83 wt.% as well as the pore 

diameter distributions of the samples (e). 

As illustrated in Section 3.2, the effect of ammonium acetate on the pores is attributed to the 

change of the internal pressure in the bubbles caused by the decomposition of ammonium acetate. 

As demonstrated that the particle packing, evaporation of water, and decomposition of foaming 

agent would result in the formation of pores, respectively. At a low foaming agent concentration, the 

particle packing and evaporation of water would dominate pore formation. With the increase of 

ammonium acetate concentration, a larger amount of bubbles is provided in comparison with low 

foaming agent concentration. The differences in the radius of curvature between two neighboring 

bubbles promotes the radius being the same, that is to say, it favors the integration of bubbles [35], 

which results in bigger and open pores. 

3.3.2. Effect of Heating Rate on Microstructure of the Ceramsite 

The samples prepared using a foaming agent concentration of 1.83 wt.% and heat-treated at 

various heating rates of 3, 5, 10, 15, and 20 °C·min−1 were selected for SEM and mercury intrusion 

porosimetry characterizations to evaluate the effect of the heating rate on the microstructure of the 

sample. As illustrated in Figure 6, the heating rate has a significant effect on the pore structure of 

ceramsite. With a heating rate of 3 °C·min−1, flocculent hydration products of fly ash are observed 

attaching to the surface (Figure 6a), which indicates that the hydration degree of fly ash is relatively 

low [37]. The pore diameter distributions located at ca. 5–700 nm and 800–4000 nm are wide and the 

pores with big diameter are dominant. When the heating rate increases from 3 to 20 °C·min−1, the 

amount of formed pore increases, while the pores with smaller diameter will predominate and the 

pore diameter distribution becomes narrower, especially for the sample prepared with a heating rate 

of 20 °C·min−1 (Figure 6f). 

A one-way ANOVA test was run to study the effect of the heating rate on the cylinder 

compressive. As shown in Table 3, the univariate analysis findings on the effect of the factor heating 
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rate on the cylinder compressive strength of the ceramsite showed statistical significance (0% < p-

value = 0% < 5%) [26]. 

Table 3. Results of one-way ANOVA. 

Source of Variation Type III Sum of Squares Df Mean Squares F p-Value 

Corrected model 6.526 a 6 1.088 64.067 0.00 (4.6559 × 10−15) 

Intercept 528.146 1 528.146 31111.877 0.00 (3.3763 × 10−44) 

Heating rate 6.526 6 1.088 64.067 0.00 (4.6559 × 10−15) 

Error 0.475 28 0.017   

Total 535.147 35    

Corrected total 7.001 34    

Df: degrees of freedom. a R2 = 0.932 (corrected R2 = 0.918) 

 

 

Figure 6. SEM images of cross-section of the samples obtained with foaming agent concentration of 

1.83 wt.% and heated at heating rates of: (a) 3, (b) 5, (c) 10, (d)15, and (e) 20 °C·min−1 as well as the 

pore diameter distribution of the samples (f). 

The heating rate determines not only the change of thermal stress caused by heat conduction 

effect and the growth rate of bubble internal pressure, but also the heating duration and 

polycondensation reactions [35]. When the heating rate is relatively low, a long heating duration 

enables excessive free water in the capillary to evaporate [28], the heat distribution uniformity results 

in uniform distribution of thermal stress, and the equilibrium of surface tension and pressure inside 
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the bubble is established easily, hence there are fewer open pores because there is more trapped gas 

inside the ceramsite [33,38]. At the same time, hydration products like C–S–H gels were further 

stripped down, which made the structure of hydration products more densified [39]. With the heating 

rate increase, the decomposition rate of foaming agent and the polycondensation of reactions became 

rapid. Before the equilibrium between them was reached, the pressure gradient external and internal 

bubbles would overcome the surface tension quickly according to Clapeyron Equation, and hence 

more connected and open pores within the ceramsite were produced. However, as the heating rate 

further increases, the polycondensation reactions will predominate greatly [35]. Hence, the formed 

pores will shrink inwards due to the hydration of the matrix surrounding the pores, leading to a 

slight decrease of the pore diameter and a narrower diameter distribution [40], as schematically 

shown in Figure 7. 

 

Figure 7. Diagram for the formation mechanism of pores. 

It has been demonstrated that pore size and porosity is usually vital to the mechanical 

performance [41]. Therefore, the variation of cylinder compressive strength and apparent porosity as 

a function of heating rate of the ceramsite obtained with a foaming agent concentration of 1.83 wt.% 

was conducted to further confirm the microstructure. As shown in Figure 8, with the heating rate 

increasing from 0 to 20 °C/min, the apparent porosity possesses an increasing trend; however, when 

the heating rate further increases to 30 °C/min, it decreases slightly because of the pores’ shrinkage 

caused by the hydration of the matrix surrounding the pores [35,40]. As for the cylinder compressive 

strength, with the heating rate increasing from 0 to 30 °C/min, it by and large decreases as a function 

of the heating rate, indicating that a higher porosity results in a lower compressive strength [41]. As 

for the obtained porous ceramsite, the compressive strength is ≥3.0 MPa, which meets the 

requirement of sound absorbing materials as a cylinder compressive strength of ≥2.0 Mpa is needed 

for a sound absorbing panel or sound barrier [42]. 
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Figure 8. Variation of cylinder compressive strength and apparent porosity as a function of heating 

rate of the ceramstie obtained with foaming agent concentration of 1.83 wt.%. 

3.4. XRD Analysis 

To determine the mineralogical characteristics of the samples, three ceramsite samples were 

used for XRD characterization: (a) without foaming agent or heat-treatment, (b) with heat-treatment, 

and (c) with both foaming agent and heat-treatment. As shown in Figure 9, the main components of 

the three samples are calcium, carbonate, mullite, and hydration products of C–S–H and C–H, 

respectively. The characteristic reflection peak of ettringite derived from hydration is weakened after 

being heat-treated, which is attributed to the poor thermal stability of ettringite [43]. At the same 

time, a new phase, Katoite (a kind of calcium aluminosilicate hydrate product) was observed after 

heat treatment because it has better thermal stability than ettringite [39]. Moreover, the diffraction 

peak of C–S–H was maintained in almost all the samples, implying that the bond between CaO and 

silicate cannot be destroyed at such temperature [29,44]. Therefore, it further confirmed that a heat-

treatment temperature of 150 °C is harmless for the cement-based ceramsite materials. 

 

Figure 9. XRD patterns of the ceramsite: (a) without foaming agent or heat-treatment, (b) with heat-

treatment, and (c) with both foaming agent and heat-treatment. 
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3.5. Sound Absorption Performance 

3.5.1. Effect of Foaming Agent Concentration on Sound Absorption Performance 

Figure 10 shows the sound absorption coefficient of the sample with different ammonium 

acetate concentrations in the frequency range of 200 to 2000 Hz. When the concentration of 

ammonium acetate is 0.5 wt.%, its sound absorption performance in frequency range of 200–500 Hz 

is excellent, while poor in the rest frequency range. As the concentration of ammonium acetate 

solution increases, the sound-absorption coefficient located at 200–630 Hz decreases, while enhanced 

in the range of 630–2000 Hz. When the concentration of ammonium acetate solution is 1.83 wt.%, the 

sound absorption performance is optimal in the whole frequency range, with a sound-absorption 

coefficient variation of 0.4–0.60 in the range of 200–630 Hz and 0.47–0.57 in the range of 630–2000 Hz. 

This is due to the increase of pore size and porosity. It is also proven that ammonium acetate is also 

an effective foaming agent for the regulation of pore structure of porous ceramsite. 

  

Figure 10. Effect of foaming agent concentration on the sound-absorption coefficient. 

As illustrated previously, a low foaming agent concentration results in low apparent porosity 

and small pore size. Hence, such small pores whose size is close to being nano-sized would favor the 

absorption of low-frequency noise because of strong scattering, reflection, and refraction of the 

acoustic energy [45,46]. However, ceramsite with a small pore size and low porosity means a 

relatively dense structure, meaning the medium-high frequency sound wave will find it much more 

difficult to penetrate the porous material, resulting in poor acoustic consumption [6]. As the foaming 

agent concentration increases, the sound-absorption performance in low frequency (200–630 Hz) 

seems to be more sensitive to the changing of the pore size. This may be because the sound wave 

with low frequency can more easily penetrate the porous material than that with a high frequency, 

resulting in a poor sound absorption in low frequency [47,48]. 

3.5.2. Effect of Heating Rate on Sound Absorption Performance 

Figure 11 shows the sound-absorption coefficient in a frequency range of 200–2000 Hz of the 

samples prepared at different heating rates. Obviously, the heating rate affects the sound-absorption 

performance of the samples significantly. At a heating rate of 3 °C·min−1, a strong sound-absorption 

could be detected only around 1200 Hz. As the heating rate increases, besides strong sound-

absorption in the range of 800–2000 Hz, the sound-absorption in 200–630 Hz increases significantly, 

providing a sound-absorption coefficient peak gradually within this frequency range. When the 

heating rate is 20 °C·min−1, an optimal sound-absorption performance during the whole frequency 

range appeared, providing a sound-absorption coefficient of 0.32–0.60 in 200–800 Hz and 0.47–0.57 
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in 800–2000 Hz, respectively. This is consistent with the effect of foaming agent concentration on the 

sound absorption performance [47,48]. 

 

Figure 11. Effect of heating rate on the sound-absorption coefficient of the samples prepared with a 

foaming agent concentration of 1.83 wt.%. 

4. Conclusions 

By exploring the thermal decomposition mechanism of ammonium acetate, a porous ceramsite 

was prepared using fly-ash, cement, gypsum, quick lime, and ammonium acetate via a foaming 

process in this study. The effects of foaming agent concentration and heating rate on the micro-

structure of the ceramsite and its sound absorption performance were studied. The results show that 

the ammonium acetate can be used as foaming agent for preparation of porous materials at low 

temperature. The apparent porosity increases significantly with the increase of the foaming agent 

concentration—when foaming agent was not engaged for ceramsite preparation, the apparent 

porosity ranged from 20.3 to 20.8; however, conversely, the use of foaming agent would result in a 

remarkable increase of the apparent porosity. The higher the used foaming agent concentration is, 

the higher the apparent porosity will be. Moreover, a high heating rate contributes significantly to a 

high apparent porosity. It is worth mentioning that a heating rate of 20 °C·min−1 would favor the 

formation of a porous ceramsite with a higher apparent porosity. As the heating rate further increases 

to 30 °C·min−1, the apparent porosity would decrease slightly. Heat-treatment helps to provide 

Katoite, derived from the decomposition of Ettringite. The sound absorption performance is 

positively correlated with the apparent porosity. A too large or too small pore size is not conducive 

to a good sound-absorption performance. 
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