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Abstract: We synthesized Ni/Si-codoped TiO2 nanostructures for photoelectrochemical (PEC) water
splitting, by electrochemical anodization of Ti-1Ni-5Si alloy foils in ethylene glycol/glycerol solutions
containing a small amount of water. The effects of annealing temperature on PEC properties of
Ni/Si-codoped TiO2 photoanode were investigated. We found that the Ni/Si-codoped TiO2 photoanode
annealed at 700 ◦C had an anatase-rutile mixed phase and exhibited the highest photocurrent density
of 1.15 mA/cm2 at 0 V (vs. Ag/AgCl), corresponding to a photoconversion efficiency of 0.70%,
which was superior to Ni-doped and Si-doped TiO2. This improvement in PEC water splitting
could be attributed to the extended light absorption, faster charge transfer, possibly lower charge
recombination, and longer lifetime.
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1. Introduction

Photoelectrochemical (PEC) water splitting, as a clean and efficient approach for hydrogen
production, has attracted extensive attention since Fujishima reported water splitting at TiO2

semiconductor photoelectrode [1,2]. As a typical transition metal oxide, TiO2 is one of the most
suitable photocatalytic materials for water splitting due to its high chemical stability, inexpensive and
noncorrosive nature as well as strong catalytic activity [3,4]. However, the practical application of TiO2

as a photocatalytic material is limited by its two obvious shortcomings. One is the relatively large
intrinsic band gap (3.2 eV for anatase and 3.0 eV for rutile), resulting in an inefficient utilization of
solar energy [5]. The other is the high recombination rate of photogenerated electrons and holes in the
TiO2 nanostructure, which inhibits the migration of photogenerated electrons and holes to the surface
of the photocatalyst [6].

In order to solve the above problems, scientists have made continuous efforts to enhance
visible-light absorption and/or facilitate the charge separation, like doping metal elements (Zr, Bi,
Ru, Ni, etc.) [7–11], doping non-metallic elements (Si, N, P, etc.) [12–14], surface decoration [15],
and sensitization with dye [16]. Among these methods, doping metal and/or non-metallic elements in
TiO2 has been extensively investigated. Usually the transitional metals are more likely to be chosen as
dopants due to their multiple valence states. The incorporation of transition metal in TiO2 creates some
defects in the lattice by altering the charge carrier equilibrium concentration. These defects can serve
as the shallow trap states in the band gap, which is beneficial to suppressing the charge recombination
and thereby enhances PEC activity [17,18].

For example, Ni-doped TiO2 is considered to be one of the most effective photocatalytic materials
and it has been widely studied by various groups. Sharma et al. [19] prepared Ni-doped TiO2 through
a sol-gel dip coating method and found a strong enhancement of optical absorption and a bandgap
narrowing when compared to the undoped TiO2. Barmeh et al. [20] fabricated a Ni-doped TiO2
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thin film using spray coating method and reported that the photocatalytic activity of Ni-doped TiO2

was remarkably enhanced since the existence of Ni2+ could efficiently suppress the recombination of
photogenerated electron-hole pairs on the surface of the photocatalyst. Dong et al. [21] synthesized
Ni-doped TiO2 through anodizing Ti-Ni alloys and investigated the effect of Ni-doping content
on photocatalytic activity. The results showed that Ni-doped TiO2 nanotubes fabricated on Ti-1
wt.% Ni alloy exhibited better PEC activity than those on Ti-10 wt.% Ni alloy. In low-Ni doped
TiO2, Ni 3d orbit states were introduced in the band gap just below the conduction band minimum
of TiO2. These impurity states could serve as shallow trap centers for photogenerated electrons
and holes, and therefore reduced the recombination. Nevertheless, excessive Ni dopants could
induce electron-hole recombination centers when serving as deep donors, hindering the generation of
photocurrent. In addition, many other transition metal dopants like Zn, Mo, and Fe have been found
to be efficient dopants for improved photocatalytic activity of TiO2 [22–25].

However, metal doping in TiO2 is complicated by the drawbacks of poor thermal stability, possible
photo-corrosion, and expensive ion implantation equipment [26]. From this perspective, non-metal
doping has attracted great attention and has been proven to be an effective approach to improve
the photocatalytic activity of TiO2. Zhou et al. [27] reported that doping of N in the TiO2 lattice
could broaden the absorption spectrum of TiO2, resulting in significantly enhanced optical absorption
under visible light at the wavelength less than 500 nm. Although doping of S had a similar effect,
it was difficult for S to be incorporated into the TiO2 lattice due to its large atomic radius. Among
other non-metal promising candidates, the Si element is particularly attractive due to its low cost,
nontoxicity, and rich resource. It has been demonstrated that Si doping in TiO2 could generate Si-O-Ti
bond, which could accelerate the charge transfer and thereby improve the photocatalytic activity [28].
Chen et al. [29] prepared Si-doped TiO2 nanorod films through a hydrothermal method, and reported
that Si doping improved the hydrophilicity of TiO2 by increasing the effective semiconductor/electrolyte
interface area, which might account for the improvement in PEC performance.

Metal/non-metal codoping is another effective approach to improve the photocatalytic
characteristics of TiO2. Numerous studies have revealed that an appropriate amount of metal/non-metal
codoping could achieve effective synergistic effects on photocatalytic activity [30,31]. For example,
in V-N doped TiO2, the V dopant improved visible light absorption while the N dopant suppressed the
recombination of photogenerated electrons and holes. The synergistic effect resulted in a three-time
photocatalytic efficiency of V-N doped TiO2 compared to the undoped TiO2 [31]. Generally, electronic
coupling between two dopants is crucial to realize synergistic effects of metal/non-metal codoping [18].
On the other hand, phase interface in TiO2 is critically important for the charge transfer process. Recent
studies have reported that TiO2 with an anatase-rutile mixed phase showed enhanced photocatalytic
activity compared to pure anatase (or rutile) phase [3,32]. For the mixed phase TiO2, interface defects
at the interface of anatase and rutile could serve as charge trapping sites for charge carriers, thereby
contributing to a better charge separation.

Electrochemical anodization of titanium is a relatively simple and facile method to prepare
vertically oriented and highly ordered TiO2 nanotube arrays, which are considered to be effective
structures for PEC activity [33]. Anodization of multicomponent titanium alloy can not only dope
foreign elements in TiO2 but also modify TiO2 nanostructures. In our previous works, we have
reported the fabrication of Ni-doped TiO2 and Si-doped TiO2 [6,12,21], but few works have been
reported on the fabrication of Ni/Si-codoped TiO2 and the relevant PEC properties. In this work,
we successfully fabricated Ni/Si-codoped TiO2 nanostructures by anodizing Ti-Ni-Si ternary alloy.
The effects of Ni/Si-codoping and annealing temperatures on PEC water splitting properties were
investigated. High-efficiency PEC water splitting properties with Ni/Si-codoped TiO2 photoanode
were achieved.
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2. Materials and Methods

As-cast Ti-1Ni-5Si (wt.%) alloy specimens with a dimension of 20 mm × 10 mm × 1 mm were
homogenized at 725 ◦C for 10 h, and then cooled down to room temperature.

Ni/Si-codoped TiO2 thin films were synthesized by electrochemical anodization of the alloy
samples. Before electrochemical anodization, the alloy plates were mechanically polished with emery
papers, followed by ultrasonic cleaning in ethanol and deionized water for 10 min and 20 min,
respectively. The electrochemical experiments were carried out in a two-electrode system with the
alloy plate as a working anode and Pt foil as a counter electrode. Electrochemical anodization was
performed at 40 V for 90 min in a solution of ethylene glycol/glycerol containing 0.30 M (NH4)2SO4 and
0.4 M NH4F and 2 vol.% deionized water. All of the experiments were carried out at room temperature.
To obtain crystalline phases, as-anodized samples were annealed at elevated temperatures (550 ◦C,
650 ◦C, 700 ◦C, and 750 ◦C) for 2 h.

The structural, morphological characterization and crystalline phases of the oxide films were
characterized with scanning electron microscope (SEM, FEI SIRION 200, USA) and X-ray diffractometer
(XRD, Rigaku Ultima IV, Japan) with a scan range (2θ value) from 10◦ to 80◦. The chemical compositions
and chemical states of oxide films were analyzed by energy dispersive spectroscope (EDS, INCA
X-ACT, Oxford, UK) and X-ray photoelectron spectroscopy (XPS, AXIS Ultra DLD, Kratos, Japan).
The diffuse reflectance absorption spectra of the prepared samples were measured by a UV-visible
spectrometer (Lambda 750S, Perkin Elmer Inc., USA) with BaSO4 as a reference.

The PEC measurements were carried out in a three-electrode system with the oxide photoanodes
as the working electrodes, Pt foil as the counter electrode and Ag/AgCl as the reference electrode in
1 M KOH (pH = 13.6) solution. All of the photoanodes had an active geometric area of about 1 cm2.
A 150 W Xe lamp (Lanpu XQ350W, China) was used as an illumination source. The irradiance intensity
was controlled at air mass (AM) 1.5 G illumination (100 mW/cm2). Linear sweep voltammograms
(LSVs), which were characteristic of photocurrent-voltage curves, were measured at a scan rate of
50 mV/s. Electrochemical impedance spectroscopy (EIS) analysis was used to understand the charge
transfer process at the interfaces of photoelectrodes and electrolyte. All of the EIS measurements were
carried out at the open circuit potential from 10−1 Hz to 105 Hz and under AM 1.5 G illumination
condition. The Mott–Schottky plots were obtained at a frequency of 1000 Hz in dark conditions.

3. Results and Discussion

Before anodization, it was necessary to study the microstructure of the ternary alloy substrate.
Figure 1a shows a SEM image of the homogenized alloy. Similar to the as-cast alloy reported in our
previous work, the gray region, black region, and bright strip-like region were the α-Ti matrix, Ti5Si3
phase, and Ti2Ni phase, respectively [34,35]. The XRD pattern of the alloy (Figure 1b) further proved
the existence of the α-Ti and Ti5Si3 phases [36]. However, the Ti2Ni phase was not found due to its low
content. Figure 1c shows the EDS element mappings of the marked region in Figure 1a. As expected,
Si and Ni elements were rich in the Ti5Si3 and Ti2Ni phase region, respectively.

Figure 2 shows typical SEM images of Ni/Si-codoped TiO2 nanostructures fabricated on the
homogenized alloy. According to the phase distributions shown in Figure 1, the α-Ti, Ti2Ni, and Ti5Si3
phase regions were marked in Figure 2a. Apparently, different phases showed different anodization
characteristics of surface anodization. Highly ordered nanotubes grew at the α-Ti phase region
(Figure 2b). The average outer diameter, wall thickness, and length of the nanotubes were 70, 12,
and 1260 nm, respectively. As shown in Figure 2c, the regular nanoporous structure with an average
pore diameter of 25 nm was observed at the Ti5Si3 phase region. However, only corrosion pits were
observed at the Ti2Ni phase region (Figure 2d). It was known that the electronegativity of Ti, Si,
and Ni was in the order of Ni > Si > Ti, supporting that a chemical dissolution rate in the fluoride
ions solution was in the order of Ti2Ni > Ti5Si3 > Ti. Therefore, nanopores and etching pits, rather
than nanotubes, were observed at the Ti5Si3 and Ti2Ni phase region, respectively. The EDS results
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(Figure 2e,f) showed the appearance of Ti, Ni, Si and O at the Ni/Si-codoped TiO2 layer, demonstrating
the successful Ni/Si doping.Materials 2019, 12, x FOR PEER REVIEW  4 of 13 
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Figure 2. Typical SEM images of Ni/Si-codoped TiO2 nanostructures. (a) Low-magnification image of
the nanostructures, (b–d) high-magnification images of the nanostructures formed at the α-Ti region,
Ti2Ni region and Ti5Si3 region, respectively, (e) EDS results of Ni/Si-codoped TiO2 layer, (f) EDS element
mappings of Ti, O, Ni and Si elements for Ni/Si-codoped TiO2 layer in (e).
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Figure 3 shows the effects of annealing temperature on the crystalline structure of Ni/Si-codoped
TiO2 samples. Obviously, the as-anodized samples exhibited an amorphous nanostructure except
for the existence of α-Ti phase and Ti5Si3 phase of the alloy substrate. Therefore, heat treatment at
elevated temperatures was necessary to transfer the amorphous nanostructure into a well-crystallized
anatase and/or rutile phase. It can be seen that only anatase (101) and (200) peaks at 2θ values of 25.4◦

and 48.1◦ (JCPDS card number 21-1272) [37], respectively, were observed for the samples annealed at
500 ◦C and 550 ◦C. Rutile (110) and (101) peaks at 27.4◦ and 54.3◦ (JCPDS card No. of 21-1276) [38],
respectively, began to appear when the annealing temperature increased to 600 ◦C, demonstrating the
starting temperature of phase transformation. It was reported that the starting temperature of phase
transformation was 550 ◦C for Ni-doped TiO2 samples [21], suggesting that Si doping in TiO2 could
suppress the phase transformation from anatase to rutile due to the Si-O-Ti bond, which was consistent
with the literature [39,40]. Another study showed that Si-doped TiO2 prepared by the anodization
method had the same starting temperature of phase transformation (600 ◦C) [12], but the phase ratio of
rutile/anatase in Ni/Si-codoped TiO2 was slightly higher than that in Si-doped TiO2. This indicated
that Ni doping was in favor of facilitating the phase transformation.
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different temperatures.

The possible mechanism might be contributed to the high-spin Ni2+ [41], similar ion radius of Ni2+

(0.072 nm) and Ti4+ (0.068 nm) [42], and the linear chain configuration [43]. With a further increase
in annealing temperature, anatase peaks gradually diminished in intensity and rutile peaks became
dominant. Moreover, no detectable diffraction peaks of Ni-related oxides or Si-related oxides were
observed in the XRD patterns, which should be attributed to the doping of Ni and Si atoms into the
TiO2 lattice by forming the Ni–O–Ti bond [44] and Si–O–Ti bond [45]. This was further confirmed by
the XPS analysis. It is no doubt that no characteristic peaks of Ti2Ni phase were observed due to the
preferential dissolution during anodizing.

The UV-vis absorption spectra of Ni/Si-codoped TiO2 samples annealed at different temperatures
were employed to investigate the optical properties. As shown in Figure 3b, all samples exhibited
a sharp absorption peak near 320 nm, suggesting the existence of an anatase-like TiO6

2− octahedral
phase [46]. The visible light absorption edges were about 407, 422, 445, and 463 nm for the samples
annealed at 550, 650, 700, and 750 ◦C, respectively. The corresponding band gap energies were 3.05, 2.94,
2.78, and 2.68 eV, respectively, which were calculated by the Kubelka–Munk function [3]. In comparison
with the pure anatase possessing a band gap of 3.0 eV, the anatase sample annealed at 550 ◦C exhibited
a slight blue shift of absorption edges due to the quantum size effect created by Si doping [47]. Samples
annealed at 650, 700, and 750 ◦C showed enhanced absorption in visible region, which might result
from the synergistic effects of anatase-rutile mixed phase and the introduced doping levels serving as
shallow trap sites.

On the one hand, interface defects at the anatase/rutile interface and band alignments increased
the non-radiative transition of charge carriers. Also, the carrier mobility/diffusivity and potential
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barrier in different phases were completely different, which suppressed the charge recombination [32].
On the other hand, doping levels created by hybridization of Si 3p orbital, Ni 3d orbital and O 2p
orbits [48] were located in the forbidden gap. Additional photogenerated electronic transitions from the
valence band to these doping levels and from these doping levels to the conduction band would result
in a remarkable reduction of absorption energy. Compared to Ni/Si-codoped TiO2 sample annealed at
650 ◦C, Ni/Si-codoped TiO2 sample annealed at 700 ◦C exhibited a remarkable red-shift in the visible
light range due to its better crystallinity [49]. Furthermore, it had a smaller band gap energy (2.78 eV)
than that of Si-doped TiO2 (2.82 eV) [12] and Ni-doped TiO2 (3.02 eV) [50], which further demonstrated
the positive synergistic effects of Si and Ni doping.

Figure 4 shows typical XPS spectra of Ni/Si-codoped TiO2 samples annealed at 700 ◦C. Figure 4a
shows the presence of Ti, O, Ni and Si elements on the surface of Ni/Si-codoped TiO2. The inset shows
that only a weak peak at 855.9 eV was observed in the Ni 2P3/2 spectrum of Ni2+ ion [11] due to its
low doping. As shown in Figure 4b, the peaks at 458.6 eV and 464.4 eV were indexed to Ti 2P3/2 and
Ti 2P1/2 peaks, respectively, indicating the presence of Ti4+ state on the nanostructure surface [51].
In Figure 4c, the Si 2p peak at 102.8 eV exhibited a negative shift compared to the Si 2p peak of silica gel
(103.3 eV), indicating the formation of Si–O–Ti bonds in the nanostructure and consequently confirming
a successful doping of Si in TiO2 lattice [52]. The peak at 529.7 eV of O 1s (Figure 4d) indicated the
existence of Ti–O–Ti bond, which was consistent with the previous report [28]. In addition, the peak
value of 531.5 eV was between 529.7 eV (Ti–O–Ti) and 533.0 eV (Si–O–Si), further confirming the
formation of Si–O–Ti bond [53].
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Figure 5 presents the PEC water splitting properties of Ni/Si-codoped TiO2 photoanodes annealed
at different temperatures under illumination or in darkness. As shown in Figure 5a, the dark
photocurrents of photoanodes could be negligible, implying the absence of drastic PEC water splitting
behavior. As can be seen, annealing temperature had an important effect on the water splitting behavior
of Ni/Si-codoped TiO2 photoanodes. Obviously, the photocurrent density increased with increase
of the annealing temperature until 700 ◦C, after which the LSV curve exhibited a remarkable drop,
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implying the optimal annealing temperature of 700 ◦C. Surface defects like oxygen vacancies played a
crucial role in PEC water splitting properties. When the annealing temperature was further raised to
750 ◦C, excessive oxygen vacancies were created in the lattice, which might act as recombination centers
for charge carriers and resulted in the reduction of photocurrent density. Among all photoanodes,
Ni/Si-codoped TiO2 photoanode annealed at 700 ◦C exhibited the highest photocurrent density of
1.15 mA/cm2 at 0 V (vs. Ag/AgCl). This value was about 1.40 times and 1.35 times as high as those of
Si-doped TiO2 [12] and Ni-doped TiO2 [21], respectively, which demonstrated that the Ni/Si codoping
significantly enhanced the PEC water splitting.
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Figure 5. Photoelectrochemical (PEC) water splitting properties of Ni/Si-codoped TiO2 photoanodes
annealed at different temperatures. (a) Linear sweep voltammetry (LSV) curves, (b) transient
photocurrent density versus time curves, (c) photocurrent density versus time curve for photoanodes
annealed at 700 ◦C, and (d) photoconversion efficiencies versus applied potential curves.

Figure 5b shows the transient photocurrent response of photoanodes annealed at different
temperatures. All photoanodes displayed a rapid photocurrent response. Ni/Si-codoped TiO2

photoanode annealed at 700 ◦C exhibited a photocurrent density of 1.15 mA/cm2 at 0 V (vs. Ag/AgCl),
higher than those of photoanodes annealed at 550 ◦C (0.59 mA/cm2), 650 ◦C (0.84 mA/cm2), and 750 ◦C
(0.38 mA/cm2). This result was in good agreement with the above LSV results. Furthermore,
the durability measurement of Ni/Si-codoped TiO2 photoanode annealed at 700 ◦C showed a good
thermal stability after 4 hours of AM 1.5 G (100 mW/cm2) illumination (Figure 5c).

The photoconversion efficiency η can be estimated as [33]:

η = I(1.23 − VRHE)/Jlight (1)

where I is the photocurrent density at 0 V (vs. Ag/AgCl), Jlight is the irradiance intensity of 100 mW/cm2,
and VRHE is the reversible hydrogen potential, which can be acquired using the expression of VRHE
= VAg/AgCl + 0.059 pH +0.1976, where VAg/AgCl is the measured potential against Ag/AgCl electrode,
and the value of pH is 13.6 (1.0 M KOH aqueous solution). The photoconversion efficiencies of
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Ni/Si-codoped TiO2 photoanodes annealed at different temperatures were presented in Figure 5d. It can
be seen that Ni/Si-codoped TiO2 photoanode annealed at 700 ◦C performed a higher photoconversion
efficiency of 0.70% at −0.54 V (vs. Ag/AgCl), compared to those of Ni/Si-codoped TiO2 photoanodes
annealed at 550 ◦C (0.34% at −0.53 V), 650 ◦C (0.51% at −0.58 V), and 750 ◦C (0.17% at −0.43 V).
Moreover, this maximum photoconversion efficiency was also higher than those of the reported
Si-doped TiO2 (0.54%) [12] and Ni-doped TiO2 (0.67%) [21], demonstrating a more positive effect of
Ni/Si codoping that single Ni or Si doping.

The intrinsic electronic structures of semiconductors could significantly affect the PEC performance.
Mott–Schottky analysis was performed to determine the semiconductor type and obtain the flat band
potential as well as donor density of the semiconductor. The Mott–Schottky equation is shown as [54]:

C−2 = (2/e0εε0Nd) [(V − VFB) − kT/e0] (2)

where C, Nd, e0, ε, ε0, V, VFB, k and T represent the interfacial capacitance, the donor density of n-type
semiconductor, the electron charge (1.602 × 10−19 C), the dielectric constant of the semiconductor,
the vacuum permittivity (8.854 × 10−12 F/m), the applied potential bias at the electrode, the flat band
potential, the Boltzmann’s constant (1.38 × 10−23 J/K), and the absolute temperature, respectively.

Figure 6a shows Mott–Schottky plots of Ni/Si-codoped TiO2 photoanodes annealed at different
temperatures. All samples exhibited positive slopes, revealing n-type semiconductor as expected.
The VFB values were calculated from the extrapolation of the line to 1/C2 = 0 [55]. The Ni/Si-codoped
TiO2 photoanode annealed at 700 ◦C, exhibited a more negative VFB value (−0.85 V), suggesting a
larger driving force to charge separation and consequently a more effective charge separation [56].
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Meanwhile, the donor density Nd can be determined from the linear slopes in Mott–Schottky
plots, according to the following equation:

Nd = (2/εε0e0) [d(1/C2)/dV]−1 (3)
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where e0 = 1.602 × 10−19 C, ε is the dielectric constant of the semiconductor (60 has been assumed for
the oxide layer on Ti [57]), ε0 = 8.854 × 10−12 F/m, and d(1/C2)/dV is the positive liner slope in the
plots. Usually a smaller positive liner slope means a higher donor density. The calculated Nd values
of the photoanodes annealed at 550, 650, 700, and 750 ◦C were 1.14 × 1019, 1.30 × 1019, 1.83 × 1019,
and 4.12 × 1019 cm−3, respectively. Although the Ni/Si-codoped TiO2 photoanode annealed at 750 ◦C
had a high concentration of donor density, which could improve the conductivity of the photoanodes,
its excessive oxygen vacancies in the lattice might instead act as the recombination centers for the
photogenerated electron and holes and thus harm PEC water splitting [58].

Electrochemical impedance spectra (EIS) were performed on Ni/Si-codoped TiO2 photoanodes
annealed at different temperatures to better understand the charge transfer process at the
photoelectrode/electrolyte interface, and the corresponding Nyquist plots are shown in Figure 6b.
The inset shows the relevant proposed equivalent circuit model, where Rs stands for the resistance
of electrolyte, Rct for a charge-transfer resistance of photoanode/electrolyte interfaces, and RCPE

for the capacitance phase element [59]. In general, the semicircle diameter is characteristic of the
interface charge transfer resistance (Rct). Obviously, the Ni/Si-codoped TiO2 photoanode annealed
at 700 ◦C featured the smallest diameter than other photoanodes. As illustrated in the fitting of
solid curves in Figure 6b, the estimated Rct value for the Ni/Si-codoped TiO2 photoanode annealed
at 700 ◦C was 364 Ω. This value was smaller than those of the photoanodes annealed at 550 ◦C
(728 Ω), 650 ◦C (649 Ω), and 750 ◦C (1347 Ω). This suggests a faster charge transfer rate at the
photoelectrode/electrolyte interface of Ni/Si-codoped TiO2 photoanode annealed at 700 ◦C, therefore
enhancing the PEC properties [12,21,60,61]. These results were well consistent with the results of the
Mott–Schottky measurements.

To investigate the charge recombination kinetics of Ni/Si-codoped TiO2 photoanodes, transient
open circuit potential (VOC) versus time plots were recorded upon turning off the illumination.
As shown in Figure 6c, negative open circuit potential (OCP) values appeared upon illumination, as the
accumulated photoelectrons in Ni/Si-codoped TiO2 photoanodes made the Fermi level a negative
shift. When turning off the illumination, the decay in VOC occurred due to the charge recombination.
A lower decay rate of VOC indicated slower recombination kinetics. The lifetime of photoelectrons (τ)
before combination is crucial for the PEC properties. It can be estimated by the following equation [33]:

τ = −(kT/e) (dVOC/dt)−1 (4)

where k, T, and e are the Boltzmann’s constant, the absolute temperature, and elementary charge,
respectively. Clearly, the Ni/Si-codoped TiO2 photoanode annealed at 700 ◦C exhibited the lowest
decay rate of VOC than other photoanodes, indicating slower recombination kinetics and a longer
lifetime. These results explain why the Ni/Si-codoped TiO2 photoanode annealed at 700 ◦C presented
better PEC water splitting.

Figure 7 illustrates the possible mechanism of PEC water splitting behavior on Ni/Si-codoped
TiO2 photoanodes. In Ni/Si-codoped TiO2, Ni and Si codoping contributed to an extended visible light
absorption region and a narrower band gap, as analyzed in UV-vis absorption results. It was reported
that after a low Si-doping, the valence band of TiO2 became broadened through hybridizing Si 3s and O
2p states, and the conduction band became broadened through hybridizing Si 3s, Si 3p and Ti 3d states,
resulting in a narrowing band gap. Meanwhile, Ni 3p doping levels were introduced in the band gap
just below the conduction band minimum of TiO2. These hybrid valance/conduction bands with large
dispersion as well as Ni doping levels benefited the mobility of photogenerated electrons and holes.
Once illuminated, photogenerated holes (h+) could quickly oxidize H2O to O2 and H+ (2h+ + H2O(liquid)

→ 2H+ + 1/2O2(gas)). Simultaneously, photogenerated electrons (e−) could effectively transport to the
cathode (Pt) through the external circuit and involved the reduction of H+ to H2 (2H+ + 2e−→H2(gas)),
consequently enhancing PEC water splitting. Based on the principles of PEC water splitting reactions,
attempts towards reducing the recombination rate of photogenerated electron-hole pairs have been
made. Woo et al. [62] prepared N-doped TiO2 microporous structure with an anatase-rutile mixed
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phase through micro-arc oxidation method and used as photoanode for hydrogen generation. Their
study showed that N doping in TiO2 and the increase of rutile content led to more efficient charge
separation compared to undoped TiO2, but the maximum photoconversion efficiency (0.4%) was still
lower than that of Ni/Si-codoped TiO2 photoanodes reported here. Choi et al. [63] prepared highly
ordered TiO2 nanotube arrays through a two-step electrochemical anodization. They reported that the
loading of Au nanoparticles onto the nanotube arrays remarkably increased the photocurrent density
up to 1.67 times. Liang et al. [64] decorated hydrogenation-treated TiO2 with carbon quantum dots
(CQDs). The highest photocurrent density of the composite was six times higher than that of pristine
TiO2. This can be explained in that hydrogenation treatment caused the formation of Ti3+ species and
oxygen vacancies, which could act as shallow donors to suppress the charge recombination. On the
other hand, the decorated CQDs could act as electron reservoirs to trap photogenerated electrons,
thereby reducing the charge recombination rate. All of these studies provide inspiration for designing
modified Ni/Si-coped TiO2 for high-efficient PEC water splitting performance.
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4. Conclusions

In this work, we fabricated Ni/Si-codoped TiO2 nanostructures through anodizing Ti-1Ni-5Si alloy
substrates in ethylene glycol/glycerol solutions containing water. It was found that Ni and Si elements
were successfully doped in the TiO2 nanostructure. The annealing temperature had a great effect on the
PEC properties of Ni/Si-codoped TiO2 photoanodes. The Ni/Si-codoped TiO2 photoanode annealed at
700 ◦C exhibited the best PEC water splitting properties. The highest photocurrent density was about
1.15 mA/cm2 at 0 V (vs. Ag/AgCl), corresponding to a photoconversion efficiency of 0.70%, which
was higher than those of Ni-doped TiO2 and Si-doped TiO2. The extended visible light absorption
range, faster charge transfer, and possibly lower charge recombination as well as longer lifetime were
responsible for the high efficient PEC water splitting.
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