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Abstract: The fillers of ordinary and pyrolytic basic oxygen furnace (BOF) slag were selected to
investigate the properties of their asphalt mastic. XRF (X-Ray Fluorescence) was used to analyze
chemical composition of fillers. Meanwhile, SEM (Scanning Electron Microscope) and AIMS
(Aggregate Image Measurement System) were utilized to explore meso-morphology, angularity and
sphericity. Penetration, softening point and viscosity of asphalt mastic were discussed, while the
rheological properties of asphalt mastic were studied by means of DSR (dynamic shear rheometer)
and BBR (bending beam rheometer) tests. The experimental results show that chemical composition
of different types of BOF slag is similar. The grinding energy consumption of pyrolytic BOF slag
is higher than that of limestone and ordinary BOF slag. It is not recommended that pyrolytic
BOF slag filler is produced by grinding process. The micro-texture structure of ordinary BOF slag
filler is more abundant and their angularity index is about 15% higher than that of limestone filler.
The stiffness modulus and rutting factor of asphalt mastic with ordinary BOF slag filler is higher
than that of limestone filler. Meanwhile the incorporation of BOF slag filler will further reduce the
low-temperature flow performance of asphalt mastic. The effect of pyrolytic BOF slag filler on the
performance of asphalt mastic is less than that of ordinary BOF slag. Ordinary BOF slag filler can
effectively improve high temperature anti-rutting stability of asphalt mixture. Ordinary BOF slag has
a useful application prospect as filler in asphalt mixture.

Keywords: BOF slag filler; asphalt mastic; morphological characteristics; rheological properties

1. Introduction

Steel slag is a common by-product of the steelmaking industry, and its output is about 10% to
15% of steel production in the world [1–3]. As a major type of steel slag, basic oxygen furnace (BOF)
slag has strong alkalinity, rich angularity, tough surface characteristics and relatively good mechanical
properties [4]. BOF slag is widely used as aggregate in asphalt mixtures in related research [5–7].
Pasetto et al. and Wu et al. [8–10] demonstrated that BOF slag aggregates improve performance of
asphalt mixtures, such as moisture stability, high temperature deformation resistance, abrasion and
skid resistance. BOF slag is an ideal substitute for natural aggregates in asphalt mixture.

Asphalt mixtures consist of asphalt binder, aggregate, and mineral filler. Asphalt mastic, which
refers to mixture of asphalt binder and mineral filler, determines the final mechanical properties of
asphalt mixture. Previous studies [11,12] have demonstrated that the properties of asphalt mastic are
the factors influencing the rutting resistance and low-temperature crack resistance of asphalt mixtures,
while the properties of filler are closely associated with the asphalt mastic. Many researchers [13–17]
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have proved that performances of asphalt mastic are affected by the volume content of fillers and
performances of fillers like surface characteristics, alkalinity and size, as well as physical-chemical
interaction between asphalt and fillers.

Xiao et al [18,19] discussed the feasibility of BOF slag as mineral filler in asphalt mixtures and
the results show that the asphalt mastic with BOF slag filler has better high-temperature rheological
properties than that of limestone filler. Qiu et al [20] examined the low-temperature fracture properties
of asphalt mastic using steel slag powder. The results showed that the steel slag powder–asphalt
system had higher fracture resistance than conventional systems and steel slag powder can diminish
the severity of low-temperature reversible aging of modified asphalt. Song et al [21] demonstrated that
the steel-making dust would be an alternative to the ordinary mineral filler to improve the performance
of asphalt mortars and reduce the harm of the dust to the environment at the same time.

With the rapid development of highway construction projects and the consequential deterioration
in high-quality mineral filler, there is an urgent need to broaden the source of the fillers that can be
used in asphalt mixtures. Meanwhile, lots of numerous micro fillers are produced in the crushing
process and magnetic separation of BOF slag [22]. The utilization of BOF slag as filler in asphalt
mixture has attracted more concern. Furthermore, different types of BOF slag have different properties.
Meanwhile, the difference in physicochemical properties of fillers and their influence on asphalt mastic
is still unknown.

This study attempted to evaluate the feasibility of different types of BOF slag used as mineral
filler to replace limestone filler (LF) in asphalt mixtures. All types of fillers were obtained by grinding
3–5 mm particle size range aggregates with the same processing conditions. It was found that 90% of
all types of fillers could pass through 0.075 mm sieve. Figure 1 illustrates the research program on the
characteristics of different types of BOF slag filler and their influence on properties of asphalt mastic.
Firstly, chemical composition of different types of BOF slag filler was evaluated by XRF. Secondly,
the geometrical properties of BOF slag filler were examined, such as meso-morphology and angularity
and sphericity. Thirdly, the basic physical properties of asphalt mastic were discussed including
penetration, softening point and viscosity. Finally, the rheological properties of asphalt mastic were
studied at both low and high temperatures.Materials 2019, 12, x FOR PEER REVIEW 3 of 16 
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2. Materials and Methods

2.1. Raw Materials

Pen 60/80 bitumen binder, provided by Panjin Co., Ltd., Liaoning, Panjin, China, was used in
this research. The basic properties of bitumen binder are shown in Table 1. They are all within the
requirement specifications of China.

Table 1. Basic properties of the bitumen binder in this research.

Properties Values Specifications

Penetration [0.1 mm] 64 60–80
Penetration index −0.6 −1.5–1.0

Softening point [◦C] 46.9 ≥46
Ductility, 5 cm/min, 15 ◦C [cm] 167 ≥100

Dynamic viscosity (60 ◦C) [Pa·s] 172 ≥160
Density [g/cm3] 1.021

Three types of BOF slag fillers and limestone filler were employed in this research. The limestone
(L) was provided by Hubei province in China. Type A BOF slag (BS-A) was obtained from ironworks
in Hubei province in China, while Type B BOF slag (BS-B) and pyrolytic BOF slag (PBS) were obtained
from ironworks of Baotou in Inner Mongolia, China. BS-A and BS-B were basic oxygen furnace slag,
and PBS was pyrolytic BOF slag which was treated with a hot stuffing process during the BOF slag
cooling step.

All types of fillers in this research were obtained by grinding 3–5 mm particle size range aggregates
with the same processing conditions. A ball mill was used and the time of the grinding was 60 min,
5,000 g for each sample and the rotating speed was 120 r/min. After grinding, more than 90% of all
types of fillers could pass through the 0.075 mm sieve. The labels are as follows: limestone filler (LF),
type A BOF slag filler (BSF-A), type B BOF slag filler (BSF-B), pyrolytic BOF slag filler (PBSF).

The basic properties of the four types of fillers are shown in Table 2. It can be deduced that
the density of BOF slag is higher than that of LF. The density of BSF-A and BSF-B is almost equal,
while they are about 18% higher than that of LF. Among them, the density of PBSF is the highest,
which is attributed to the higher content of Fe2O3 and the hot stuffing process during BOF slag cooling
step. The difference in hydrophilic coefficient of the four fillers is virtually negligible. However,
the water absorption of BOF slag fillers is higher than that of LF, which is due to the particular pore
structure of the surface of BOF slag.

Table 2. Basic properties of four types of fillers.

Property Density (kg/m3) Hydrophilic Coefficient Water Absorption (%)

LF 2725 0.64 0.53
BSF-A 3217 0.69 0.67
BSF-B 3244 0.73 0.63
PBSF 3478 0.65 0.64

2.2. Experimental Methods

2.2.1. Properties of Fillers

The chemical compositions of the four types of filler were evaluated by X-Ray Fluorescence
(PANalytical. B.V., Zetium, Almelo, Netherlands). The surface characteristics of four types of fillers were
evaluated using scanning electron microscope (JSM-IT300, SEM-JEOL, Tokyo, Japan). The aggregate
image measurement system (AIMS) was used to analyze the morphological features of each type of
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filler. Meanwhile, the laser particle size analyzer (Mastersizer-2000, Malvern, England) was utilized to
analyze the difference of particle size of four types of fillers.

2.2.2. Preparation of Asphalt Mastic

Specific amounts of each type of filler were incorporated into pen 60/80 asphalt binder to prepare
the asphalt mastic. Firstly, asphalt binder was preheated to 150 ◦C for 30 min. Then, filler was gradually
incorporated with a high shear instrument of the shear speed of 4000 rpm for 30 min. Homogeneous
dispersion of the filler in the asphalt binder was required for further research. the filler–asphalt volume
ratio of asphalt mastic used in this research was 0.4. The mass–volume conversions of four fillers were
calculated by the density values in Table 2. After calculation, the filler-asphalt weight ratios of LF was
1.113, BSF-A was 1.314, BSF-B was 1.32, and PBSF was 1.42.

2.2.3. Properties of Asphalt Mastic

The penetration and softening point test were used to assess the basic properties of the asphalt
mastic. In the preparation process of asphalt mixture, the workability is closely linked to the viscosity
of asphalt mastic. A Brickfield viscometer was used to analyze the difference of four types of asphalt
mastic. Test methods of penetration, softening point and dynamic viscosity refer to Chinese official
standard JTG E20-2011 [23].

A dynamic shear rheometer (MCR101, DSR, Anton Paar, Graz, Austria) was utilized to evaluate
the rheological properties of asphalt mastics. The DSR test was performed at a fixed frequency of
10 rad/s under variation of temperature from −10 ◦C to 80 ◦C with increments of 2 ◦C/min. In −10 ◦C to
3 ◦C, specimens were placed on a parallel plate geometry whose diameter was 8 mm, the thickness was
2 mm and strain level was 0.2%. In 30 ◦C to 80 ◦C, specimens were placed on a parallel plate geometry
whose diameter was 25 mm, the thickness was 1 mm and strain level was 2.0%. The BBR (TE-BBR,
Cannon, New York, NY, USA) was used to examine the rheological properties at a low temperature,
which relates to the low-temperature cracking resistance. Preheated asphalt mastic was filled into
an aluminum mold to prepare a mastic beam 102.0 ± 0.5 mm in length, 12.7 ± 0.5 mm in width,
and 6.25 ± 0.5 mm in thickness. Drawing on the research of Xiao et al [18,19], tests were performed at a
definite temperature (15 ◦C). Specimens were tested under a constant stress of 0.985 N for 250 s. Each
test for different mastic included five duplicate specimens and the average value was adopted.

3. Results and Discussion

3.1. Material Characteristics of Fillers

3.1.1. Chemical Compositions of Fillers

The chemical compositions of the four types of filler from X-ray fluorescence analysis are shown
in Table 3. Limestone is an alkali aggregate because the chemical composition of CaO was higher than
fifty percent. The chemical composition of Fe2O3 in three types of BOF slags is more than 20%. Three
types of BOF slag contain less SiO2 and more than 30% CaO making them alkali aggregates.

Table 3. Chemical composition of the fillers in this research.

Composition [%] SiO2 CaO MgO Al2O3 Fe2O3 MnO P2O5 Other LOI

LF 0.86 51.2 2.36 0.85 0.12 0.7 1.02 0.19 42.7
BSF-A 19.2 42.7 5.19 3.25 23.9 1.77 1.41 0.22 2.36
BSF-B 17.7 39.7 5.56 2.91 24.4 4.55 1.68 0.09 3.41
PBSF 15.4 34.4 6.22 1.95 30.8 4.46 2.15 0.16 4.46



Materials 2019, 12, 4034 5 of 14

3.1.2. Microscopic Characteristics of Fillers

Figure 2 shows the diversity between limestone filler and three types of BOF slag fillers in SEM
images. Compared with the micrographs of LF, BOF slag has different surface texture particularly
due to the size and number of numerous tiny particles which are adhered to its surface s and its
rough surface. The surface of LF is relatively smoother than that of BOF slag filler, where the latter is
irregular shaped, rough, and bumpy, which might result in effective cohesion with asphalt binder and
consequently lead to improved strength and water resistance. From practical viewpoint, the rough
surface of BOF slag filler will cause an increase in the amount of asphalt required when BOF slag filler
is used as filler in asphalt mixtures.Materials 2019, 12, x FOR PEER REVIEW 6 of 16 
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3.1.3. Morphological Characteristics of Fillers

Morphological characteristics of fillers in this research were analyzed by AIMS, which is an
integrated system comprising image acquisition hardware and a computer. Analysis of filler includes
gradient angularity (the AIMS Angularity Index ranges from 1 to 10,000) and Form2D (AIMS Form2D
Index ranges from 0 to 20).

Angularity is a description of edge sharpness of the boundary particles of aggregate. The angularity
changes with filler granule boundary shape changes. The value of angularity is calculated based on
the gradient on the particle boundary. Angularity is calculated with Equation (1) [24]. Its range is 0 to
10,000. The larger the value of angularity is, the boundary shape of filler is sharper.

Gradient Angularity =
1

n
3 − 1

n−3∑
i=1

∣∣∣θi − θi+3
∣∣∣ (1)
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where θ is angle of orientation of the edge points, n is the total number of points, i is the ith point on
the edge of the particle.

Figure 3 shows the comparison of distributions of gradient angularity indexes of four types of
fillers. It can be clearly seen that LF has the lowest gradient angularity indexes while BSF-B has the
highest gradient angularity indexes. The distribution range of the angularity index of LF is narrower
than that of BSF-A, BSF-B and PBSF. Such differences illustrate that the distribution of gradient
angularity index of LF is more uniform. By comparing three types of BOF slag filler, it can be found
that the gradient angularity index of PBSF is smaller than that of ordinary BOF slag. The gradient
angularity index of ordinary BOF slag is about 15% higher than that of LF. In summary, the particle
shape of the BOF slag filler has more angular structure than that of limestone filler under the same
grinding process conditions.
Materials 2019, 12, x FOR PEER REVIEW 7 of 16 
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Figure 3. Comparison of distributions of angularity indexes of four types of fillers.

AIMS Form2D is applicable only to fine-sized aggregate and it quantifies the relative form from
2D images of aggregate particles. Form2D is calculated with Equation (2) [25] and its range is 0 to 20.
A perfect circle has a Form2D value of 0. According to the definition of Form2D, a higher Form2D value
would imply a relatively rougher surface, which would consequently indicate a positive contribution
towards adhesive mechanical bonding of asphalt binder to filler.

Form 2D =
θ=360−∆θ∑
θ=0

[
Rθ+∆θ −Rθ

Rθ

]
(2)

where Rθ is the radius of the particle at an angle of θ, ∆θ is the incremental difference in the angle.
As shown in Figure 4, the Form2D values of four types of fillers have a wide distribution range

of 5–12. For each type of BSF, nearly 80% of the particles have moderate and higher Form 2D values
while about 40% of LF has lower Form 2D values. The Form2D values of LF is the lowest and the Form
2D of BOF slag is about 10% higher than that of LF. In summary, the surface of BOF slag filler was
rougher and sharper than that of limestone filler. These results agree with the SEM results.
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3.1.4. Particle Size Analysis of Fillers

Figure 5 shows the particle size distribution of four types of filler. It reveals that the particle size of
the four types of fillers is different under the same grinding process conditions. The particle size of LF
is minimal, while the particle size of PBSF is maximal. Slight differences exist between LF and BSF-A in
particle size. The order of particle size from small to large is LF, BSF-A, BSF-B and PBSF. The grinding
efficiency of BOF filler is relatively lower than that of LF. The grinding efficiency of different kinds of
BOF filler is also different. Pyrolytic BOF slag has the maximum particle size among the four types of
fillers, indicating that pyrolytic BOF slag is more difficult to grind than ordinary BOF slag. In order
to achieve the same particle size, the grinding process of pyrolytic BOF slag needs to consume more
grinding time and more energy consumption.
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3.2. Properties of Asphalt Mastic

Four types of asphalt mastics and basic bitumen binder were investigated in this research.
Both basic properties and dynamic rheological properties were analyzed.

3.2.1. Basic Properties of Asphalt Mastic

The basic properties of asphalt mastic investigated in this research include soften points, penetration
and dynamic viscosity.

The bitumen binder has a typical viscosity property. The smaller the penetration value is, the greater
the viscosity of the asphalt material under low temperature conditions is, and the corresponding elastic
deformation performance and recovery performance are also better. The softening point of the asphalt
mastic is larger, indicating that the high temperature performance is better.

In Table 4 the values of soften points and penetration of asphalt mastic are presented. Compared
with LF asphalt mastic, the softening point of asphalt mastic with BOF slag filler is lower, while its
penetration is higher. BOF slag filler has a better viscosity-increasing effect on asphalt mastic than LF.
The softening point and penetration of asphalt mastic with three types of BOF slag filler are similar.
Although the PBSF has the largest particle size, its effect on softening point increase and penetration
reduction is still effective. The particle size factor and morphological characteristics of BOF slag filler
has little effect on the soften points and penetration of asphalt mastic.

Table 4. The soften points and penetration of asphalt mastic.

Property Soften Points (◦C) 15 ◦C Penetration (0.1 mm) 25 ◦C Penetration (0.1 mm)

LF 55.3 13.5 31.5
BSF-A 58.3 12.1 28.4
BSF-B 57.1 11.9 29.3
PBSF 58.5 12.5 29.8

The dynamic viscosity of asphalt is very important for asphalt mixture. The reasonable construction
temperature is determined by the dynamic viscosity temperature range of 0.17 Pa s ± 0.02 Pa s,
and construction rolling temperature is determined by the dynamic viscosity temperature range of
0.28 Pa s ± 0.03 Pa s [26]. The consistency of asphalt mastic in asphalt mixture construction is deeply
influenced by the dynamic viscosity [27].

Viscosity–temperature value for bitumen binder and four types of asphalt mastic are shown in
Table 5. In the case of limestone filler, the viscosity of asphalt mastic at different temperatures is
approximately five times higher than that of bitumen binder. The addition of filler can effectively
improve the viscosity of asphalt mastic. Compared with LF asphalt mastic, the viscosity of BSF
asphalt mastic is higher, mainly because BOF slag filler has higher alkalinity and rougher micro-texture.
The dynamic viscosity of the three types of asphalt mastic from large to small is BSF-A, BSF-B and
PBSF. It is believed that the bigger particle size, more regular shape and smoother microscopic surface
of PBSF result in a relatively lower dynamic viscosity of asphalt mastic.

Table 5. The dynamic viscosity test results of asphalt mastic.

Property
Dynamic Viscosity (Pa s)

90 ◦C 105 ◦C 120 ◦C 135 ◦C 150 ◦C

Bitumen binder 11.80 3.40 1.26 0.51 0.23
LF 52.00 14.25 4.95 1.97 0.94

BSF-A 78.00 22.25 7.25 3.00 1.40
BSF-B 77.00 21.05 7.15 2.80 1.38
PBSF 71.00 19.30 6.82 2.63 1.25
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3.2.2. Dynamic Rheological Properties of Asphalt Mastic

As a typical viscoelastic material, the dynamic rheological properties of asphalt are closely related
to its load and temperature conditions [28]. The viscoelastic characteristics of different types of asphalt
and asphalt mastic are complex in different temperature conditions. Dynamic shear rheometer (DSR)
tests were used to study dynamic rheological properties of asphalt mastic in this research. Complex
shear modulus (G*) and phase angle (δ) are recorded and calculated by performing the DSR test at
varying temperatures. G* can be decomposed into storage shear modulus (G’ = G*cosδ) and loss shear
modulus (G′′ = G*sinδ), which is used to characterize the ability of asphalt mastic to resist deformation
under repeated shear loads. The larger of the G* is, the higher of the resistance of asphalt mastic is
in deformation. δ is the time lag of the applied stress and the resulting strain. The tangent value of
δ is the ratio of the loss modulus to the storage modulus. A smaller δ indicates that there are more
elastic components in the asphalt G*, and a larger δ indicates that there are more viscous components
in the asphalt G*. For a fully elastic material, the phase angle δ is zero, at which point all deformations
are recoverable. However, for viscous materials, the phase angle is close to 90◦, at which point all
deformation is permanent. G*/sinδ (the ratio of the complex modulus to phase angle sine) characterizes
the ability of asphalt to resist high temperature rutting. G*/sinδ is called the rutting factor. Under the
same temperature conditions, asphalt mastic with larger G*/sinδ has better rutting resistance [29].

Effect of different fillers on G* of asphalt mastic are shown in Figures 6 and 7. The G* of the
asphalt mastic and asphalt decreases with the increase of temperature, which indicates that the
rheological properties of the asphalt are greatly affected by the temperature. When the temperature
rises, the volume of free asphalt increases, and the pitch changes from a high elastic state at a low
temperature to a viscous state at a high temperature. As a result, the maximum shear stress and the
maximum shear strain of the asphalt are increased when the shear force is applied, and therefore the
G* is lowered.
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In the temperature range of −10~30 ◦C, the higher the G* of the asphalt mastic is, the better the
crack resistance of the asphalt under low temperature conditions. As shown in Figure 6, the values
of complex modulus of BSFA are highest and PBSF has the worst effect on the increase of complex
modulus. The values of PBSF are lower than that of LF, mainly due to a small alkalinity, a large particle
size, a large specific surface area, less adsorbed asphalt, and relatively more free asphalt. Ordinary
BOF slag filler has a good effect, improving the low temperature crack resistance of asphalt mastic.
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In Figure 7, the effect of different fillers on G* of asphalt mastic (30~80 ◦C) is presented. After adding
BSF-A and BSF-B, the G* of asphalt mastic is higher than that of LF, which indicates that the high
temperature stability of ordinary BOF slag filler asphalt mastic is better than that of LF.

In Figures 8 and 9 the values of different fillers on δ of asphalt mastic (−10~80 ◦C) are presented.
The δ of asphalt mastic with different types of fillers increases with the increase of temperature, and the
difference of δ values of asphalt mastic decreases with the increase of temperature. The sensitivity
of the δ of the filler is continuously reduced with the temperature increasing. The phase angles of
asphalt mastics with different types of fillers are arranged from large to small in order, pure asphalt,
PBSF, LF, BSF-B and BSF-A. It is shown that ordinary BOF slag can effectively improve the elastic
properties of asphalt mastic, and is beneficial, improving the anti-permanent deformation performance
of asphalt mastic.Materials 2019, 12, x FOR PEER REVIEW 12 of 16 
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As shown in Figure 10, the rutting factor of the asphalt mastics with BSF-A and BSF-B are similar
and larger than that of corresponding PBSF asphalt mastic. It demonstrates that all asphalt mastics
containing ordinary BOF slag fillers have better high-temperature deformation resistance than ones
with LF. BSF mastic presents the best deformation resistance. This was due to the chemical effect
between alkaline components in ordinary BOF slag fillers and asphaltic acid in bitumen. The stiffness
of BOF slag makes mastic structure more stable to resist permanent deformation.Materials 2019, 12, x FOR PEER REVIEW 13 of 16 
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3.2.3. Anti-Cracking Properties of Asphalt Mastic at Low Temperature

Bending beam rheometer (BBR) testing was used to investigate the low-temperature rheological
properties of asphalt mastic in this research. Tests were performed at a fixed temperature (−15 ◦C) to
discuss the different of low temperature performance of asphalt mastic with different filler, meanwhile
the m-value and creep stiffness (S(t), MPa) were evaluated. The S(t) was calculated on the basis of
Equation (3). The m-value signifies the rate that S(t) changes during loading time. Creep stiffness
indicates the thermal stress of asphalt mastic under low temperature. Lower creep stiffness implies
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that the specimen has better rheological properties at lower temperatures. Scientifically, lower creep
stiffness is positive because it corresponds to lower deformation stress. M-value reflects the stress
relaxation property of asphalt mastic at low temperatures. A higher m-value is required since asphalt
with a higher m-value has better ability to disperse deformation stress [30].

S(t) =
PL3

4bh3∆(t)
(3)

where b, h and L are the width (mm), height (mm), length (mm) of specimen. P is the constant applied
load. ∆(t) is the deflection of beam (mm) at different times (t).

The creep stiffness and m-value of asphalt mastic with different types of filler are shown in
Figure 11. The change of m-value is similar to the stiffness. It can be clearly seen that the introduction
of fillers increases the S(t) and m-value. The S(t) values of LF are about four times that of pure asphalt,
so asphalt will become stiffer at a low temperature after mixing with fillers. Considering the value
of stiffness, the stiffness of PBSF is smaller than that of LF, which indicates that pyrolytic BOF slag
filler has a positive effect on the low-temperature crack resistance performance of asphalt mastic.
Asphalt mastics with BSF-A and BSF-B are higher than ones with LF. It indicates that ordinary BOF
slag filler has a certain increase in the stiffness of asphalt mastic, but has a negative influence on its
low-temperature rheological properties. The incorporation of ordinary BOF slag filler reduces the
low-temperature crack resistance performance of asphalt mastic compared with LF.Materials 2019, 12, x FOR PEER REVIEW 14 of 16 
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Figure 11. Bending beam rheometer (BBR) test results of four asphalt mastic and pure bitumen.

4. Conclusions

The microscopic characteristics, morphological characteristics (angularity and Form2D) and
chemical properties of three types of BOF slag filler were investigated in the first part of this research.
Then the basic physical properties and rheological properties of their asphalt mastic were studied.
The overall conclusions are elaborated upon hereunder:

(1) The chemical composition of BOF slag is more complicated than that of limestone, which includes
SiO2, CaO, MgO, Al2O3, Fe2O3 and other components. The chemical composition of different
types of BOF slag is similar. The micro-texture structure of BOF slag filler is more complex
than that of LF. The angularity index of ordinary BOF slag is about 15% higher than that of
LF. The angularity index, Form2D and micro texture of different types of BOF slag filler are
also different.

(2) The asphalt mastic with BOF slag has higher soften points, lower penetration and higher dynamic
viscosity than one with LF. The incorporation of BOF slag filler can significantly improve the
high-temperature stability of asphalt mastic.



Materials 2019, 12, 4034 13 of 14

(3) Compared with rheological properties, asphalt mastic with BOF slag filler has higher stiffness
modulus and rutting factor than that of LF asphalt mastic. The effect of pyrolytic BOF slag filler
on the performance of asphalt mastic is less than that of ordinary BOF slag because of the bigger
particle size, more regular shape and relatively clean surface. The incorporation of BOF slag filler
will reduce the low temperature flow performance of asphalt.

(4) The grinding energy consumption of pyrolytic BOF slag is higher than that of limestone
and ordinary BOF slag, meanwhile its chemical performance is relatively inactive. It is not
recommended that pyrolytic BOF slag filler is produced by grinding technology. Ordinary BOF
slag filler can effectively improve high temperature anti-rutting stability when used as filler in
asphalt mixture. BOF slag filler has a good prospects for application as part of asphalt mixtures.
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