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Abstract: An investigation on the tribological properties of GCr15 sliding against NM600 was carried
out using a high-temperature friction and wear tester. As the temperature rose from room temperature
to 300 ◦C, the average friction coefficient of NM600 increased rapidly, then decreased rapidly, and then
became stable. The wear volume and specific wear rate of NM600 increased rapidly, then decreased
rapidly, and then increased slowly. The wear mechanism and matrix properties of the tested steel
at different temperatures are the main reasons for the above results. At 20–50 ◦C, the main wear
mechanism was adhesive wear, fatigue wear, and abrasive wear. At 100–150 °C, the wear mechanism
was mainly adhesive wear, fatigue wear, abrasive wear, and oxidation wear. At 200–300 ◦C, the wear
mechanism was mainly oxidation wear and abrasive wear.
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1. Introduction

Low-alloy high-strength wear-resistant steel is widely used in coal mining, construction, metallurgy,
and other engineering fields with complex service conditions because of its high hardness and
toughness [1–3]. At present, the research on the wear process of low-alloy and high-strength
wear-resistant steel is mainly focused on the wear at room temperature, though usually the wear
of equipment occurs at a certain temperature [4–6]; for example, when the middle groove of the
fully-mechanized mining scraper conveyor carries out coal mine material transportation. On the one
hand, the ambient temperature of the coal roadway is higher than normal temperature. On the other
hand, coal, gangue, and other friction with the middle trough also release heat [7–9]. Therefore, it is
necessary to study the friction and wear properties of low-alloy and high-strength wear-resistant steel
at different temperatures. Taking NM600 low-alloy high-strength wear-resistant steel as the research
object, through the sliding friction and wear experiments under different temperature conditions,
analysis of the influence of temperature on NM600 wear-resistant steel wear behavior rule was
completed. The influence of microstructure, matrix properties, and oxidation behavior on the wear
behavior of NM600 wear-resistant steel was studied. The wear mechanisms are discussed in this
paper in order to improve the service life of the middle trough of the fully-mechanized mining scraper
conveyor and provide certain data to support.
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2. Materials and Methods

2.1. Materials

The experimental material was NM600 low-alloy high-strength wear-resistant steel industrially
produced. The chemical composition is shown in Table 1.

Table 1. The chemical composition of NM600 (mass fraction, %).

w(C)% w(Si)% w(Mn)% w(P)% w(S)% w(Cr)% w(Ni)% w(B)% w(Mo)%

0.44–0.46 0.34–0.36 0.38–0.42 ≤0.02 ≤0.005 1.1–1.3 0.9–1.1 0.002 0.28–0.32

The microstructure of the tested steel was mainly lath martensite structure, as shown in Figure 1.
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Figure 1. SEM microstructure of NM600.

2.2. Experimental Methods

The tested steel was processed into wear samples of 10 mm × 10 mm × 5 mm by means of
EDM wire cutting. The surface of the samples was gradually polished with sandpaper to #1500,
and then the samples were mechanically polished. The final roughness of the sample was about
200 nm. Rtec multifunctional friction and wear tester (San Jose, CA, USA) was used to study the
sliding friction and wear behavior between NM600 wear-resistant steel and GCr15 bearing steel
at different temperatures. The counter-body was a ball and its diameter was 6.35 mm. Figure 2
shows a schematic diagram of the experimental principle. The temperature was controlled through
the high-temperature heating chamber, and the temperature control precision was less than ±10 ◦C.
The experimental parameters were as follows: load, 50 N; amplitude, 4.5 mm; frequency, 4 Hz;
and time, 45 min. The experimental temperature ranged from 20 ◦C to 300 ◦C. The friction coefficient
and the experimental temperature were monitored by the matching program of the testing machine.
The profile and volume of wear marks were measured by USP-Sigma white-light interferometer
(San Jose, CA, USA). The microscopic wear morphology was observed by TESCAN-MIRA3 scanning
electron microscope (HITACHI, Tokyo, Japan). Before and after each experiment, the samples were
ultrasonic cleaned and then blown dried.
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3. Results

3.1. Effects of Temperature on Friction Coefficient

As can be seen from Figure 3, at the initial stage of wear, the friction coefficient of the tested steel
fluctuated greatly at various temperatures. With the continuous wear time, the friction coefficient of
the tested steel gradually tended to be stable. The difference is that when the experimental temperature
was 50 ◦C, the friction coefficient of the tested steel needed a long time to reach a stable state; while,
at the other experimental temperatures, the friction coefficient of the tested steel all reached a stable
state in a short time.
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Figure 3. Friction coefficient versus time at different temperatures.

As can be seen from Figure 4, when the experimental temperature increased from 20 ◦C to
50 ◦C, the average friction coefficient of the tested steel increased rapidly. When the experimental
temperature continued to rise from 50 ◦C to 200 ◦C, the average friction coefficient of the tested steel
decreased rapidly. When the experimental temperature continued to rise from 200 ◦C to 300 ◦C,
the average friction coefficient of the tested steel basically remained stable. It can be seen that when the
experimental temperature exceeded 200 ◦C, the average friction coefficient of the tested steel was less
sensitive to temperature, indicating that the wear mechanism of the tested steel may have changed.
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3.2. Effects of Temperature on Macroscopic Wear Morphology and Wear Volume

As shown in Figures 5 and 6, when the experimental temperature rose from 20 ◦C to 50 ◦C,
the wear degree of the tested steel increased rapidly. When the experimental temperature continued to
rise from 50 ◦C to 150 ◦C, the wear degree of the tested steel decreased rapidly. When the experimental
temperature increased from 150 ◦C to 300 ◦C, the wear degree of the tested steel increased slowly.
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The calculation formula of specific wear rate is as follows [10]:

WR= WV/(FH S) (1)

where WR is the specific wear rate, WV is the wear volume, FH is the force, and S is the wear length.
As shown in Figures 7 and 8, when the experimental temperature increased from 20 ◦C to 50 ◦C,

the wear volume and specific wear rate of the tested steel increased rapidly. When the experimental
temperature increased from 50 ◦C to 150 ◦C, the wear volume and specific wear rate of the tested steel
decreased rapidly. When the experimental temperature increased from 150 ◦C to 300 ◦C, the wear
volume and specific wear rate of the tested steel increased slowly.

In conclusion, with the increase of the experimental temperature, the macroscopic wear
morphology, wear volume, and specific wear rate of the tested steel all increased rapidly first,
then decreased rapidly, and then increased slowly. There are two experimental temperatures worth
noting. First, when the experimental temperature was 50 ◦C, the wear of the tested steel was the most
serious, and the wear degree of the tested steel also changed from a rapid increase to a rapid decrease
at this temperature point. Second, when the experimental temperature was 150 ◦C, the wear degree
of the tested steel was the least, and the wear degree of the tested steel also changed from a rapid
decrease to a slow increase at this temperature point. It can be concluded that when the experimental
temperature was 50 ◦C and 150 ◦C, the wear mechanism of the tested steel may have changed.Materials 2019, 12, x FOR PEER REVIEW 5 of 11 
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3.3. Effects of Temperature on Microscopic Wear Morphology

As shown in Figure 9, when the experimental temperature was 20 ◦C, 50 ◦C, 100 ◦C, and 150 ◦C,
the wear surface of the tested steel showed different degrees of fatigue spalling, microcutting, and
plastic deformation. When the experimental temperature was 200 ◦C, 250 ◦C, and 300 ◦C, the worn
surface of the tested steel mainly showed grooves, plastic deformation, and a little fatigue peeling.
It is not difficult to find that when the experimental temperature was 50 ◦C, the fatigue spalling
phenomenon of the worn surface of the tested steel was the most serious. However, when the
experimental temperature exceeded 50 ◦C, the fatigue spalling of the worn surface of the tested steel
decreased with the increase of the experimental temperature. By observing the wear morphology of
high-power SEM, it was found that when the experimental temperature was 20 ◦C and 50 ◦C, a large
amount of loose abrasive particles had accumulated in the fatigue spalling pit of the worn surface of the
tested steel. When the experimental temperature was 150 ◦C, only a small amount of scattered abrasive
particles were found in the fatigue spalling pit of the worn surface of the tested steel, and most of the
scattered abrasive particles were sintered together to form a dense glaze layer. When the experimental
temperature was 200 ◦C, 250 ◦C, and 300 ◦C, with the increase of the experimental temperature,
the glaze layer on the worn surface of the tested steel gradually cracked and the amount of scattered
abrasive particles gradually increased.
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The EDS analysis results (Figure 10 and Table 2) showed that the oxygen content of both the worn
surface and the unworn surface increased gradually with the increase of the experimental temperature.
When the experimental temperature was 20 ◦C and 50 ◦C, the oxygen content of the worn surface
was similar to that of the unworn surface, indicating that there was almost no oxidation wear at this
temperature. When the experimental temperature was 100–300 ◦C, the difference of oxygen content
between the worn surface and the unworn surface gradually increased, indicating that oxidation wear
occurred in the process of wear, and the degree of oxidation wear gradually intensified.
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phenomenon of the worn surface of the tested steel was the most serious. However, when the 
experimental temperature exceeded 50 °C, the fatigue spalling of the worn surface of the tested steel 
decreased with the increase of the experimental temperature. By observing the wear morphology of 
high-power SEM, it was found that when the experimental temperature was 20 °C and 50 °C, a large 
amount of loose abrasive particles had accumulated in the fatigue spalling pit of the worn surface of 
the tested steel. When the experimental temperature was 150 °C, only a small amount of scattered 
abrasive particles were found in the fatigue spalling pit of the worn surface of the tested steel, and 
most of the scattered abrasive particles were sintered together to form a dense glaze layer. When the 
experimental temperature was 200 °C, 250 °C, and 300 °C, with the increase of the experimental 
temperature, the glaze layer on the worn surface of the tested steel gradually cracked and the 
amount of scattered abrasive particles gradually increased. 

Figure 10. EDS spectra of worn surfaces at different temperatures.

Table 2. EDS result (oxygen content) of worn and unworn surfaces at different temperatures (at%).

20 ◦C 50 ◦C 100 ◦C 150 ◦C 200 ◦C 250 ◦C 300 ◦C

Worn Surfaces 3.3 6.6 12.3 18.7 23.6 27.3 33.4

Unworn Surfaces 3.1 6.2 10.1 13.2 17.7 21.5 25.3

4. Discussion

Studies have shown that the friction coefficient mainly depends on the contact state between the
contact surfaces of the friction pairs [11,12]. In this experiment, with the increase of the experimental
temperature, the average friction coefficient of the tested steel increased first, then decreased, and then
tended to be stable. Combined with the analysis of the micro-wear morphology (Figure 9) and the
EDS analysis results (Figure 10 and Table 2) of the tested steel at different temperatures, when the
experimental temperature increased from 20 ◦C to 50 ◦C, the fatigue spalling area of the worn surface
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of the tested steel increased significantly, and a large amount of abrasive residue on the worn surface
of the tested steel resulted in the increase of friction coefficient. However, when the experimental
temperature exceeded 50 ◦C, the fatigue spalling area of the worn surface of the tested steel was
gradually reduced. Especially, when the experimental temperature rose to 200 ◦C, 250 ◦C, and 300 ◦C,
the majority of the worn surface of the tested steel was covered by the enamel layer formed by the
sintering of the loose abrasive particles, which made the friction coefficient of the tested steel decrease
rapidly. It then tended to be stable.

The changing trend of wear volume and specific wear rate obtained from the experiment can
directly show the wear degree of the tested steel at different temperatures. It was found that there are
two key transition temperatures for the trend change of wear degree of the tested steel: 50 ◦C and
150 ◦C, which should be related to the change of wear mechanism of the tested steel. By observing and
analyzing the micro-wear morphology of the tested steel at different temperatures, it can be concluded
that when the experimental temperature was 20 ◦C and 50 ◦C, the wear mechanism of the tested steel
was mainly manifested as adhesive wear, fatigue wear, and abrasive wear of different degrees. Among
them, when the experimental temperature was 20 ◦C, under the action of external load, the abrasion
contact surface between NM600 tested steel and GCr15 bearing steel was stuck, and material transfer
and spalling occurred between the two contact surfaces in the subsequent sliding friction process.
In addition, the continuous reciprocating sliding friction movement caused fatigue spalling of the
wear contact surface under the action of reciprocating alternating contact stress. Adhesive wear and
fatigue wear produced a certain amount of abrasive particles, which lead to abrasive wear. When the
experiment temperature was 50 ◦C, the worn surface of the tested steel adhesive wear and fatigue
wear also existed. However, with the increase of the experimental temperature, the amount of abrasive
particles caused by adhesive wear and fatigue wear increased, which aggravates the abrasive wear
of the experimental steel and eventually leads to serious wear of the tested steel [13–16]. When the
experimental temperature rose to 100 ◦C and 150 ◦C, the wear mechanism of the tested steel was mainly
manifested as adhesive wear, fatigue wear, abrasive wear, and oxidation wear of different degrees.
With the increase of the experimental temperature, the abrasive particles generated by adhesive wear
and fatigue wear were gradually oxidized and sintered under the action of high temperature to form
a stable and dense enamel layer structure, which can effectively reduce the direct contact between
the wear surfaces, thus playing a role in protecting the matrix and reducing wear [17–19]. When the
experimental temperature rose to 200 ◦C, 250 ◦C, and 300 ◦C, the wear mechanism of the tested
steel was mainly oxidation wear and abrasive wear. However, the oxidation wear mentioned here is
substantially different from the oxidation wear mentioned above at 100 °C and 150 ◦C. The oxidation
wear mentioned here is called severe oxidation wear, while the former is called slight oxidation
wear [20,21]. When the experiment temperature rose to 200 ◦C, 250 ◦C, and 300 ◦C, while the tested
steel wear surface residual wear debris can also be formed under the action of high-temperature
sintering of the enamel layer, continuous high temperature in the process of wear and tear effect made
grain coarsening, transformation, recrystallization, and grain size response organization transformation
inevitable in the tested steel. This led to the decrease of the tested steel substrate softening and strength.
Losing the effective support matrix form of the enamel layer cannot make stability exist in the worn
surface of the tested steel at the same time because of the effect of external load making the enamel
layer of the worn surface of the tested steel quickly break and flake, thus unable to effectively slow
down the effect of matrix wear, unlike in repeated sintering where it peels off. The sintering process
leads to loss of substrate material due to the increasing degree of tested steel wear again [22–25].

The wear test results at different temperatures are summarized as shown in Table 3.



Materials 2019, 12, 4009 10 of 11

Table 3. Summary of wear test results at different temperatures.

20 ◦C 50 ◦C 100 ◦C 150 ◦C 200 ◦C 250 ◦C 300 ◦C

Average Friction Coefficient (±0.001) 0.3896 0.5277 0.4327 0.3650 0.3241 0.3456 0.3281
Wear Volume/mm3 (±0.001) 0.1587 0.2668 0.1384 0.0871 0.1077 0.1672 0.1767
Specific Wear Rate 10−4 mm3/mm 7.0533 11.8578 6.1511 3.8720 4.7867 7.4311 7.8533
Adhesive Wear

√ √

Fatigue Wear
√ √ √ √

Abrasive Wear
√ √ √ √ √ √ √

Slight Oxidation Wear
√ √

Severe Oxidation Wear
√ √ √

5. Conclusions

• When the experimental temperature was 50 ◦C, the increase of stray abrasive particles on the
worn surface of the tested steel was the main reason leading to the increase of the average friction
coefficient. When the experimental temperature exceeded 50 ◦C, the average friction coefficient of
the tested steel decreased mainly because smooth enamel layer gradually formed on the worn
surface of the tested steel.

• From 20 ◦C to 300 ◦C, the wear mechanism of the tested steel changed twice at 50 ◦C and 150 ◦C,
respectively. From 20 ◦C to 50 ◦C, the wear mechanism of the tested steel was mainly adhesive
wear, fatigue wear, and abrasive wear. From 100 ◦C to 150 ◦C, the wear mechanism of the tested
steel mainly included fatigue wear, abrasive wear, and oxidation wear. From 200 ◦C to 300 ◦C,
the wear mechanism of the tested steel was mainly oxidation wear and abrasive wear.

• When the experimental temperature was 100 ◦C and 150 ◦C, the oxidation wear of the worn
surface of the tested steel was mild oxidation wear, which can effectively protect the substrate
and slow down the wear. When the experimental temperature was 200 ◦C, 250 ◦C, and 300 ◦C,
the oxidation wear of the worn surface of the tested steel was serious oxidation wear, which cannot
protect the substrate and slow down the wear.
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