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Abstract: This work reports the modification of Polyacrylonitrile (PAN) fibers by coupling to
thiosemicarbazones to achieve the biological activity for the applications in the food product packaging.
After modification, seven thiosemicarbazone compounds were synthesized. The as-synthesized
thiosemicarbazone compounds were bonded to PAN fibers via covalent coupling, which was
confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy
(XPS) and scanning electron microscopy. The mean graft efficiency of the compounds was about 1.92%,
and the antibacterial efficiency was 88.6% and 45.1% against Staphylococcus aureus (S-aureus) bacteria.
All the seven thiosemicarbazone compounds exerted excellent tyrosinase activity, low cytotoxicity,
excellent metal ion chelation ability, and anti-bacterial behavior against both gram-positive and
negative bacteria. The mechanical properties of the fibers have been maintained without significant
damage after the chemical modification. The break strength test and elongation at the break test
were done to measure the fracture strength of the modified fibers. Overall, the promising properties
of the modified PAN fibers show potential applications in food packaging materials for fruits and
vegetables, which require long-term anti-browning effects during their transportation and storage.

Keywords: PAN fiber; surface modification; tyrosinase inhibitor; thiosemicarbazone; covalent
coupling

1. Introduction

Thiosemicarbazone compounds have attracted great interests in the field of biology because
they demonstrate a potential contribution in a wide array of pharmacological applications, such as
anti-bacterial, fungal-proofing, and tyrosinase inhibitory effects. Also, they can be used for developing
anti-melanogenic compounds in skin-whitening cosmetics products and browning resistant agents for
foods [1]. Thiosemicarbazones compounds have pharmacological and biological properties to a large
extent, because of the metal complexes, free ligands, and the position of substitutions which controls
the reactivity. Thiosemicarbazone derivatives or macrocyclic compounds with different structures
were formed by different substituents on the thiosemicarbazone and other characteristic organic
substances [2].

In this study, seven different thiosemicarbazone compounds were synthesized using
thiosemicarbazone and different substituents of benzaldehyde. The compounds not only showed
low cytotoxicity and good metal ion chelation but also showed excellent biological activity and high
efficiency. They inhibited tyrosinase activity of the modified PAN fibers finds potential applications [3].
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Polyacrylonitrile (PAN) fibers are one of the most common synthetic fibers and have attracted
considerable interests because of their unique properties, including low density, good thermal insulation,
soft-feel, excellent mechanical properties, and high durability. PAN fibers have been widely used as
a precursor for carbon fibers [4–6], or absorption substrates [7]. Many methods have been reported
to modify the surface of PAN fibers, such as plasma treatment [8], ultrasonic impregnation [9],
and biological enzymes treatment [10]. However, these techniques require pre-treatments, and the
modification only last for short duration. Also, the enzyme treatment requires high purity of the
enzymes which is challenging.

Tyrosinase is a copper-containing oxidoreductase which is widely distributed in microorganisms,
animals, plants, and the human body. It plays a key role in melanin synthesis, which is the endogenous
polyphenolic substance in oxidized fruits and vegetables [11,12]. It can easily cause a browning reaction
in many fruits and vegetables during storage and processing, which results in severely damages to
the nutrition, flavor, and appearance, leading to reduced quality and commodity value of fruit and
vegetable products.

Based on the above research and innovative design, amino groups in the thiourea molecules were
directly dehydrated on hydrolyzed PAN fibers via covalent grafting. The obtained composite fibers
can inhibit tyrosinase activity and have good mechanical properties. The modified PAN fibers can
be used as a storage and packaging material for fruits and vegetables to prevent its browning and to
preserve fresh tastes [13,14].

2. Materials and Methods

2.1. Materials

PAN fiber, a synthetic fiber made from acrylonitrile copolymers of PAN or acrylonitrile content
greater than 85% (mass percent), was kindly provided by Hangzhou wan PAN fiber Company Ltd.,
Hangzhou, China. All auxiliaries purchased were AR (analytical grade 99.9+ %) grade and supplied
from commercial sources (e.g., Sigma, Shanghai, China). The auxiliaries were used directly without any
further purification. To prepare the solutions and buffers, deionized water purified by a Millipore-Q
ultra-purification system was used.

2.2. Synthesis Methods of Thiosemicarbazone Compounds

The thiosemicarbazone compounds were synthesized following a previously reported method [15],
and the schematic equation is presented in Scheme 1. Atomistic investigations were conducted on a
Perkin-Elmer 2400 analyzer (PerkinElmer, Waltham, MA, USA). The mass spectroscopy (MS) data were
recorded with the help of a Quattro II ESI mass spectrometer (Waters, Massachusetts, USA), and the
ESI-MS spectral data were presented in Table 1. In a typical synthesis method, firstly, 0.92 g of amino
thiourea (approximately 10 mmol) was dissolved in 10 mL water. Then, an equimolar concentration of
salicylaldehyde or its derivative was added in 20–30 mL of ethanol. After compounding, distilled water
and a catalytic amount of glacial acetic acid were added to the solution and mixed well. The mixture
was heated and refluxed for 2–5 h. Then, the mixture was cooled to room temperature. After standing
overnight at 4 ◦C, the crude product was obtained by suction filtration, and the product was further
recrystallized from 50% ethanol to give the products DY1–DY7.
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Table 1. ESI-MS spectral data of thiosemicarbazone compounds.

Complex Atomic
Mass Atomic Mass Calculated Atomic Mass Found Color Yield (g)

C H N S C H N S

DY1 (C9H11N3OS) 210.05 51.66 5.30 20.08 15.32 51.60 5.26 20.11 15.24 White crystal 1.39 (66%)
DY2 (C8H9N3O2S) 212.05 45.49 4.29 19.89 15.18 45.55 4.24 19.93 15.23 Light yellow 1.14 (59%)
DY3 (C8H8N4O3S) 241.05 40.00 3.36 23.32 13.35 39.89 3.38 23.40 13.29 Yellow solid 1.41 (63%)
DY4 (C9H11N3O2S) 226.08 47.99 4.92 16.65 14.23 47.84 4.98 18.54 14.20 White solid 1.35 (61%)
DY5 (C8H8ClN3OS) 230.00 41.84 3.51 18.30 13.96 41.75 3.59 18.25 14.03 White crystals 1.60 (71%)
DY6 (C12H18N4OS) 267.15 54.11 6.81 21.03 12.04 54.14 6.79 21.10 12.09 Light brown 1.78 (69%)
DY7 (C9H11N3OS) 238.06 51.66 5.30 20.08 15.32 51.62 5.25 20.12 15.29 White solid 1.32 (69%)

2.3. 1HNMR (600 MHz) Spectra of the as Synthesized Thiosemicarbazone Compounds in Dimethyl Sulfoxide
(DMSO) Presenting the Signals as Follows: (Chemical Shift in ppm, Varian Mercury 600 spectrometer)

DY1: δ 11.28 ppm (s, 1H), 9.55 (s, 1H), 8.33 (s, 1H), 8.03 (s, 1H), 7.85 (s, 1H), 7.70 (s, 1H), 7.01 (d, J
= 6.8 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 2.21 (s, 4H).

DY2: δ 11.28 ppm (s, 1H), 9.12 (s, 1H), 8.73 (s, 1H), 8.30 (s, 1H), 8.00 (s, 1H), 7.71 (s, 1H), 7.19 (s,
1H), 6.68 (s, 2H).

DY3: δ 11.47 (s, 2H), 8.82 (s, 1H), 8.37 (s, 1H), 8.21 (s, 1H), 8.16 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.05
(d, J = 9.1 Hz, 1H).

DY4: δ 11.18 (s, 1H), 9.90 (s, 1H), 8.27 (s, 1H), 7.92 (s, 1H), 7.76 (s, 2H), 6.46–6.39 (m, 2H), 3.73 (s,
3H).

DY5: δ 11.35 (s, 1H), 10.37 (s, 1H), 8.31 (s, 1H), 8.05 (s, 1H), 7.97 (d, J = 7.3 Hz, 1H), 7.91 (s, 1H),
6.92–6.83 (m, 2H).

DY6: δ 11.02 (s, 1H), 9.47 (s, 1H), 8.18 (s, 1H), 7.79 (s, 1H), 7.61 (s, 1H), 7.49 (s, 1H), 6.21 (d, J = 8.9
Hz, 1H), 6.09 (s, 1H), 1.10 (t, J = 6.8 Hz, 6H).

DY7: δ 11.23 (s, 1H), 8.01 (s, 1H), 7.91 (d, J = 16.3 Hz, 2H), 7.39 (s, 1H), 7.19 (d, J = 8.3 Hz, 1H), 6.86
(d, J = 8.3 Hz, 1H), 4.26 (d, J = 4.1 Hz, 4H).

2.4. Graft Modification

A graphical representation of the grafting method and change in the chemical structure of the
fibers after each stage is shown in Figure 1. The grafting was carried out in two steps: (1) hydrolysis of
PAN fibers; and (2) grafting of thiosemicarbazone onto the hydrolyzed fibers produced as described
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above. First, 5.0 g of PAN fibers was added to 30 mL of 10% (w/w) NaOH aqueous solution, and
the solution was stirred at 80 ◦C for 30–60 min to obtain the hydrolyzed polyacrylonitrile (HPAN)
fibers. Then, the HPAN fibers were rinsed with deionized water until the water became neutral and
then dried in an oven at 60 ◦C until a constant weight was obtained. The HPAN fibers were added
to the as-prepared 2% thiosemicarbazone solution (using ethylene glycol as the solvent), and a half
equimolar amounts of N, N’-dicyclohexylcarbodiimide (DCC) condensing agent was directly added.
The grafting reaction was carried out at 80 ◦C for 2 h. Then, the grafted PAN fibers were separated,
washed thoroughly with deionized water, and dried under vacuum at 50 ◦C.
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2.5. Grafting Efficiency Calculation

Grafting efficiency (Ge) can be calculated by Equation (1).

Ge% =
m2 −m1

m1
× 100% (1)

where m1 and m2 are the mass of PAN fibers before and after thiosemicarbazone grafting, respectively.
Measurements of each sample were conducted three times and the average value was used for
result analysis.

2.6. Scanning Electron Microscope (SEM) Analysis

A scanning electron microscope (SEM, JSM-IT300, JEOL Ltd., Akishima, Japan) at 0.3–30 kV was
used to examine the surface morphologies of PAN fibers before and after grafting modification.

2.7. FTIR Analysisg5g5

Infrared spectra of fibers samples with KBr pellets were obtained using FT-IR spectrometer
(VERTEX 70 spectrometer, Bruker, Billerica, MA, USA).

2.8. Tyrosinase Activity Analysis

Tyrosinase activity was determined by spectrophotometry, as 3,4-dihydroxyphenylalanine
(L-DOPA, Sigma) oxidation activity, with a modification of a reported method [16,17]. In brief,
the tyrosinase solution (50 µL) was gently added to 450 µL of phosphate buffer at a concentration of
0.05 M containing 50 µM samples. The pH of the solution was maintained at 6.8. Then, the mixture
was incubated at 30 ◦C for 10 min and 500 µL of 5 mM L-DOPA solution was added. It was noticed that
the absorbance of the solution increased at 475 nm (ε = 3600 M cm−1) possibly due to the formation
of L-DOPA chrome. This intensity of the peaks was recorded based on time. The tyrosinase activity
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was analyzed from the initial rate. The buffer containing 1% DMSO was used as a control sample.
The inhibition rate of the test solution against tyrosinase was calculated using the corresponding
negative control as a reference, and an approximation of the half-inhibitory concentration (IC50) was
estimated based on the concentration-enzyme inhibition rate curve.

2.9. Electron Paramagnetic Resonance (EPR) Measurements

The EPR of Cu(II) and thiosemicarbazone compounds were recorded in liquid helium at 200 K
temperatures on a Bruker A200 X-Band spectrometer (Bruker, Billerica, Mass., USA) with a 9.42-GHz
field modulation equipped with a Bruker Instruments 4111VT helium flow cryostat (Bruker, Billerica,
Mass., USA). DY–Cu (II) complexes were prepared by refluxing of Cu(NO3)2 and thiosemicarbazone
compounds in ethanol taking 1:1 molar ratio for 4 h.

2.10. Tensile Fracture Strength Analysis

The mechanical properties of the fiber samples were tested on an electronic strength tester for a
single fiber (LLY-06E/PC, Laizhou Electron Instrument Co., Ltd., Laizhou, China) and YG-003 fiber
tensile machine (Changzhou Zhongxian Instrument Co., Ltd., Changzhou, China). The single fiber was
clamped on a single fiber electron strength meter with a clamping length of 10–20 mm to stretch the
sample. The stretching speed maintained to be 20 mm min−1 until the fibers were broken. The average
data of 100 fibers samples were taken as the test result.

2.11. Determination of the Stability Constant of the Obtained Complexes

The stability constant of the complex was tested using a Metrohm 877 Titrino plus automatic
potentiometric titrator (Metrohm, Herisau, Switzerland). The titration temperature was maintained at
25 ± 0.5 ◦C with pH range of 2–11. The titration solution was water solution with 20% DMSO, and the
ionic strength I = 0.01 mol·L−1 KNO3 (aq). The initial concentration was [L] = 0.005–0.0001 mol·L−1,
[HNO3] = 0.002 mol·L−1, [KNO3] = 0.10 mol·L−1, and [M] = 0.0001 mol·L−1. The total volume was
25 mL, the titration volume was 0.004 mL·D−1, and the response time was at least 1 min. The titration
was triplicate and the titration data were fitted using Hyperquad 2013 software, where the ion product
of H2O was pKw = 13.85 [18]. The distribution curve of species with pH was plotted using HySS
2009 software (Version 2009, Hyperquad Co. Ltd., London, UK) [19–21]. Three metal ions, Cu2+, Zn2+,
and Mn2+, were chosen as model ions in this work. The stability constants of the thiosemicarbazone
compounds forming complexes with the above three metal ions and the species distribution under
different pH conditions were investigated in detail.

2.12. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectra were collected using a K-Alpha XPS system (ESCALAB 250Xi, Thermo
Fisher Scientific, Waltham, USA) with a monochromatic Al Kα X-ray source. The XPS measurement
was carried out to determine surface elemental stoichiometry by the sensitivity-factor-corrected
peak-area ratios. The residual pressure inside the analysis chamber was in the 10−9 Pa range, the
charge neutralizer filament was used during all experiments, and samples were sputter cleaned under
vacuum (15 kV, 12 mA) to remove surface contamination. The peaks were collected with an analyzer
pass energy of 30 eV at an interval of 1.00 eV.

2.13. The Cytotoxic Effect by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assays

The cytotoxic effect of compounds was determined by using in vitro colorimetric MTT assay [22].
The A549 cells were seeded into 96-well microtiter tissue culture plates with a final volume of 100 µL.
After attachment for 24 h, the cells were treated with different concentrations (0.1, 1, 10, 50, and 100 µM)
of thiosemicarbazone compounds in the culture medium. Eight replicate wells per concentration were
used and all experiments were repeated in triplicate. The solvent control (DMSO) was also assayed in
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parallel. The cells were incubated for 24 h and 48 h with compounds. Then, MTT dye was added 4 h
before the completion of the incubation periods. The resulting formazan crystals were separated from
the medium and then dissolved in 100 µL DMSO. The absorbance at 490 nm was used to quantify the
plates using ELx808 Absorbance Microplate Reader (Bio-Tek, Winooski, USA).

2.14. Antibacterial Test

Antibacterial performance against bacteria (E. coli, S. aureus, and B. subtilis) was determined
according to GB/T20944.3-2008. The inoculation suspension of bacteria was prepared and the inoculation
loop was used to conduct the bacterial inoculation on the agar board for 18–24 h at 37± 1 ◦C. The sample
was dipped into the conical flask filled with experimental bacteria solution with a certain concentration.
After that, the oscillation culture is conducted to the samples for specified time, and 1 mL of solution
was taken, diluted and distributed onto an agar plate. All plates were incubated at 37 ◦C for 24 h and
the colonies formed were counted. The antibacterial performance of the fiber was expressed in the
inhibition rate (Ri, Equation (2))

Ri% =
Wt −Qt

Wt
× 100% (2)

where Wt is the bacteria-colony number of viable bacteria in the plate before antibacterial treatment or
original PAN fibers. Qt is the bacteria-colony number of viable bacteria in the plate after antibacterial
treatment or grafted PAN fibers.

3. Results

3.1. Determination of Tyrosinase Activity

The UV absorption spectra of tyrosinase and thiosemicarbazone compound DY1–DY7 were tested
using the L-DOPA method. All compounds exhibited satisfactory activity, and the experimental results
are shown in Figure 2. For comparison purposes, the absorbance at 475 nm as a function of scan time
was plotted, as shown in Figure 3.
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Figure 3. UV absorbance value versus time at 475 nm and semi-inhibitory IC50 curve of DY6 (blank
control reagent is 1% DMSO).

The results show that DY6 significantly inhibited tyrosinase activity. The inhibition rate was
positively correlated with the concentration, and the 50% inhibitory concentration (IC50) value of the
semi-inhibitory concentration was 0.60 µM (DY6). The analysis shows that the compound has the effect
of inhibiting the formation of melanin on the skin. To compare the cytotoxicity data, the concentrations
of different chelates were compared. During the analysis, the A549 cell survival rate was kept constant
above 80%. The statistics are shown in Table 2.

Table 2. Statistical analysis of IC50 values for semi-inhibitory concentrations of tyrosinase and
comparison of toxicity data for thiosemicarbazone on A549 cells.

Compounds IC50 (µM) Concentration of Compounds When 80% of Cells Survive (µM)

DY1 1.88 <100 µM
DY2 4.75 <100 µM
DY3 9.88 <50 µM
DY4 1.12 <100 µM
DY5 1.68 <50 µM
DY6 0.60 <100 µM
DY7 41.2 <50 µM

3.2. Cytotoxicity Analysis

The compounds DY1–DY7 were co-cultured with A549 lung cancer cells, and the inhibitors
showed low cytotoxicity (Figure 4). The cytotoxicity data of the thiosemicarbazone compounds
co-cultured with A549 cells for 48 h and detected by MTT showed that the selected thiosemicarbazone
compounds exhibited low toxicity. As the cells were co-cultured for 48 h at a concentration of 100 µM,
the cell viability was maintained at 80% or higher, indicating that such inhibitors were less damaging
to cells and exhibited low toxicity. To facilitate the comparison of cytotoxicity data, a comparative
analysis of the concentrations of different chelators was performed when the A549 cell survival rate
was maintained above 80%. The statistics are shown in Table 2.
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Figure 4. Toxicity test of compound DY6 and A549 cells after 48 h of co-culture.

The effective concentration of DY1, DY2, DY4, and DY6 was measured up to 100 µM, while DY3,
DY5, and DY7 showed the same effect on the survival of A549 cells at the same concentration, with an
effective concentration of 50 µM. This indicates that, after fiber modification, if the concentration of the
thiosemicarbazone compounds was lower than 50 µM, they exhibited low toxicity and it did not affect
the normal use of the fibrous material.

3.3. EPR Measurements

EPR studies of metal complexes present much useful information about coordination bonding.
It is very important to see how the EPR data correlate practically with various structure factors for the
geometrical configurations of the coordinating atoms with the copper complexes [23].

The EPR spectrums (Figure 5) suggests that that the curve of Cu(NO3)2 solution is significantly
different from the other four EPR curves, indicating that the addition of the chelating agent changes
the chemical environment around Cu(II). The EPR spectra of similar chelating groups and complexes
of the same coordination atom with copper ions have a high degree of similarities such as DY5–Cu(II),
DY1–Cu(II), DY2–Cu(II), and DY6–Cu(II) complex [15]. The EPR curves completely coincided,
indicating that the chelating groups of the four ligands are basically the same in the molecular formula
compared with the single-crystal structure of the known DY5–Cu(II) complex. Based on these DY-series
compounds and Cu (II), it is inferred that the atoms participating in the coordination during forming a
complex are also four atoms of 1N-2O-1S, and their coordination modes are basically the same.
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Figure 5. The single-crystal structure of DY5–Cu (II) compound (CCDC: 1030350) [15] and the EPR
spectrum of the DY1–Cu (II), DY2–Cu (II), DY5–Cu (II), and 6–Cu (II) complexes (ethanol, 2.5 mM).

3.4. Potentiometric Titration

Tyrosinase is a typical copper-containing oxidoreductase, and the catalytically active center is
composed of two copper-containing ion sites. The interruption of the binding of copper ions can lead
to the loss of their catalytic activity [24–26]. The small molecules of thiourea obtained in this work
have significant inhibitory effects on tyrosinase. The inhibition may work mainly by the substitution
of tyrosinase to catalyze the hydroxide-bridging ligand between the two copper ions in the active
center, thereby forming a strong bond the radical site of the microorganism and inhibiting tyrosinase
activity [27]. The binding mode of the thiosemicarbazone compounds to the metal ion can be simulated
by potentiometric titration experiments.

The dissociation of protons from the as-synthesized thiosemicarbazones followed by
pH-potentiometry. Unlike the simplest α-N-heterocyclic thiosemicarbazones, the presence of amino,
sulfhydryls, and methyl substituents at different locations in the structure exerted a distinct influence
on the proton dissociation constants (pKa). The increasing numbers of electron-donating amino groups
could significantly increase the pKa1, as a result of sulfhydryl’s or amine’s deprotonation, and slightly
decrease the pKa2 due to the deprotonation of phenols.

Figure 6 shows that the complexes mainly exist in the form of CuLH, ZnLH, and MnLH, when
DY6 is mixed with Cu2+, Zn2+, and Mn2+, respectively, at low pH. However, with increasing pH,
deprotonation occurred, and the formation of derivatives such as CuL, ZnL, and MnL appeared at a
pH 3–10, pH 4–10, and pH 4–10, respectively. Thus, the system mainly existed in the form of CuL, ZnL,
and MnL. At higher pH, OH- bound Cu2+, Zn2+, and Mn2+ appeared, which were mainly CuL(OH),
ZnL(OH), and MnL(OH).
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Figure 6. The distribution plots of species measured with the help of potentiometric titrations for
the DY6–Cu(II), DY6–Zn(II) and DY6–Mn(II) systems. The DY6 compound solution was used for
potentiometric titrations along with equimolar amounts of Cu(NO3)2, Zn(NO3)2, and Mn(NO3)2 at
25 ◦C (I = 0.1 M KNO3).

Both the cumulative stability constant and the stepwise stability constants were calculated. The
binding constants between DY6 and Cu2+, Zn2+, and Mn2+ were 20.15, 14.07, and 14.37, respectively.

The binding constants between thiosemicarbazone compounds DY1–DY7 and metal ions were all
greater than 1012 M−1, as shown in Table 3, indicates that the designed compounds have the strong
chelating ability. If the binding constant between the chelating agent and Cu2+ is greater than 1018 M−1,
which is five orders of magnitude larger than the binding constant between the tyrosinase protein body
and the copper ion of 1013 M−1 [28], then the chelating agent may have captured the Cu2+. The ability
to capture Cu2+ and stabilized its presence in lysin suggests a possibility for chelating of tyrosinase
central metallic ions in cells and lead to inhibit tyrosinase activity.

Table 3. The statistical comparison of coordination with respect to the selected divalent metal ions.

Ligand DY1 DY2 DY3 DY4 DY5 DY6

logKCu
2+, n = 1, M−1 19.15 ± 0.11 18.83 ± 0.14 19.10 ± 0.15 18.95 ± 0.10 19.43 ± 0.22 20.15 ± 0.14

logKZn
2+, n = 1, M−1 13.13 ± 0.21 13.53 ± 0.11 13.69 ± 0.12 13.56 ± 0.17 12.51 ± 0.20 14.07 ± 0.37

logKMn
2+, n = 1, M−1 13.67 ± 0.31 14.27 ± 0.17 14.48 ± 0.11 14.01 ± 0.08 13.65 ± 0.16 14.37 ± 0.30

3.5. X-ray Photoelectron Spectroscopy (XPS)

Figure 7 and Table 4 show XPS spectra and atomic concentration of PAN fiber before and after
modification. It can be seen that, after protein grafting, it is converted into a carboxyl group (–COOH)
by partial hydrolysis of the cyano group on the surface of the acrylic fiber. The abundant amino and
amine groups (–NH2 and –NH–) on the thiosemicarbazone compounds of the branches lead to a
significant increase in the relative content of N (nitrogen) element in the sample after grafting, while C
(carbon) and O (oxygen) elements are significantly reduced. This test quantitatively analyzed and
proved that the graft modification method of the thiosemicarbazone coupled PAN fiber of the present
invention is successful.
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Figure 7. XPS spectra of: (a) Original PAN fiber; (b) DY1–PAN fiber; (c) DY2–PAN fiber; (d) DY4–PAN
fiber; (e) DY5–PAN fiber; and (f) DY6–PAN fiber.

Table 4. Surface element content and binding energy of PAN fiber before and after modification.

Fibers
Atomic Concentration (%) Binding Energy/eV

C1S N1S O1S C1S N1S O1S

Original PAN fiber 78.75 7.22 13.50 284.80 399.35 532.37
DY1–PAN fiber 73.45 14.49 11.68 284.81 399.01 530.96
DY2–PAN fiber 73.22 13.78 12.74 284.80 398.20 530.86
DY4–PAN fiber 75.86 14.09 9.54 284.81 398.93 531.04
DY5–PAN fiber 74.14 16.8 8.79 284.80 398.29 530.43
DY6–PAN fiber 77.70 10.96 10.96 284.80 399.44 531.64

3.6. Scanning Electron Microscopy (SEM)

The activity, toxicity, and potentiometric titration tests showed that compound DY6 exhibited the
most optimal performance; therefore, it was chosen for grafting experiments. The SEM micrographs
of the original, hydrolyzed, and grafted PAN fibers were recorded, and the results are presented in
Figure 8. It can be seen that the surface of the PAN fibers has a certain smooth groove, whereas the
surface of the hydrolyzed PAN fibers has obvious gully cracks in the original groove, and the surface
groove is widened. This indicates that, when the PAN fibers hydrolyzed with NaOH, the surface of
the PAN fibers were etched, which is also consistent with the decrease in the strength of the fibers
after hydrolysis.

Compared with the surface morphology of the hydrolyzed PAN fibers, the surface of the fibers
after the treatment with the thiosemicarbazone solution became smooth, the original groove marks
and etched lines disappeared, and the fine surface of the fibers was filled, which indicated that a
thiosemicarbazone film formed on the surface. These changes further support the change in the
breaking strength of the acrylic fibers after hydrolysis grafting.
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3.7. Grafting Efficiency

Enhancing graft yield of polymers and small molecules via graft copolymerization was one of
the effective approaches to improve the modification and functionalization for PAN fiber. Therefore,
grafting efficiency directly influenced the success of the experiment. Grafting efficiency of PAN fibers
before and after DY6 grafting was determined gravimetrically. The experimental results are shown in
Table 5, and analysis demonstrated that the mean graft ratio was 1.92%.

Table 5. Grafting efficiency of PAN fibers before and after DY6 grafting.

Grafted (g) Original (g) Grafting Efficiency (%)

0.4888 0.4796 1.90
0.4884 0.4798 1.89
0.4889 0.4791 2.00
0.4892 0.4794 2.00
0.4881 0.4793 1.80

Mean 1.92 ± 0.08

3.8. Mechanical Property Analysis of Fibers

Both the breaking strength and breaking elongation of the PAN fibers after hydrolysis were
decreased, and breaking strength and breaking elongation of the fibers after branching by small
molecules increased (Figure 9 and Table 6). Combined with the analysis in Figure 8, the outer surface of
the PAN fibers before hydrolysis was smooth, and, after hydrolysis, the fine cracked portion was etched
away, the smooth outer surface became rough, and deep cracks and holes appeared. The mechanical
properties of the fibers after hydrolysis were reduced compared to the original fibers before hydrolysis,
in terms of both breaking strength and elongation at break. This occurred because the PAN fibers
were hydrolyzed. On the one hand, a large number of strongly polar –CN groups on the surface
of the fibers were converted into less polar –COOH and –CONH2 groups, which weakened the
PAN macromolecular chain, and the interaction caused the strength to decrease. On the other hand,
the hydrolysis also caused the surface of the fibers to be continuously etched, so that the cracks
and voids on the surface of the fibers continuously increased, leading to a decrease in fiber strength.
However, the breaking strength of the fibers after grafting was significantly higher than that of the
hydrolyzed fibers, which was almost similar to the original fibers. This occurred because, after the
small molecules were grafted on the surface of the PAN fibers, the surface of the fibers not only became
completely covered by a layer of small molecular film, but it also better filled the surface etching,
cracks, and voids caused by hydrolysis of the fibers.
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Figure 9. Comparison of breaking strength (a) and breaking elongation (b) of original PAN fiber, 

Hyd–PAN fiber, and DY1-, DY2-, DY4-, DY5-, and DY6-modified PAN fiber. 

The breaking elongation strength at break of the fibers was increased (Table 6). It could be seen 

that cracks and voids appearing on the surface of the hydrolyzed fibers were almost completely 

covered in the grafted fibers. This indicates that grafting a small molecule of thiosemicarbazone on 
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Table 6. Comparison of breaking strength and elongation of PAN fiber before and after modification.

Sample. Breaking Strength (cN/Tex) Breaking Elongation (%)

Original PAN fiber 21.85 43.48
Hydrolyzed PAN fiber 19.79 38.47

DY1 20.98 41.38
DY2 20.78 41.29
DY4 20.45 42.68
DY5 20.46 40.21
DY6 20.34 40.60

The breaking elongation strength at break of the fibers was increased (Table 6). It could be seen
that cracks and voids appearing on the surface of the hydrolyzed fibers were almost completely covered
in the grafted fibers. This indicates that grafting a small molecule of thiosemicarbazone on the surface
of PAN fibers can not only provide a relatively complete small molecular coating on the surface of the
fibers, but it also contributes certain reinforcement and modification to the surface defects caused by
hydrolysis of the PAN fibers. This function can better compensate for defects such as surface damage
and deficient mechanical properties of the fibers due to hydrolysis. As a result, the excellent strength of
the original PAN fibers is retained, and the superiority in fiber elasticity and flexibility is demonstrated
with the graft of thiosemicarbazone onto the original ordinary PAN fibers.

3.9. FTIR Spectroscopy

Figure 10 depicts the FTIR absorption spectra of the original PAN fibers (Figure 10a) and the
DY6-modified PAN fibers (Figure 10b). The FTIR spectra of the original PAN fibers show the
characteristic peaks at 2243 (γ C≡N), 1732 (γ C=O), and 1453 (δ CH2) cm−1, where γ represents a
stretching vibration, and δ denotes a bending vibration. The absorption peaks of these characteristics
are still present in the thiosemicarbazone graft sample, indicating that the method of small molecule
branching treatment of thiosemicarbazone does not destroy or weaken the original molecular structure
of the PAN fibers and that some features of the original PAN fibers are preserved. New absorption
peaks were displayed at ~1540 (δ N–H and υ C–N, amide II) and ~3500 (δ –OH) cm−1, which indicate
that the molecular modification of the surface of PAN fibers by thiosemicarbazone is feasible. The IR
spectra further prove that modified acrylic fibers were successfully obtained.
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3.10. Antibacterial Test

The antibacterial tests on the different compounds with different bacteria (Figure 11a) showed that
compounds DY1, DY2, DY4, DY5, and DY6 do not have an antibacterial effect on E. coli. Figure 11b,c
indicates that the zones of inhibition appeared on the samples of Marks 1 and 2 (DY1), Marks 5 and 6
(DY4), Marks 7 and 8 (DY5), and Marks 9 and 10 (DY6); the results state that the compounds of DY1,
DY4, DY5, and DY6 express good antibacterial activities on both of S. aureus and B. subtilis.
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Figure 11. Antibacterial effect of different compounds on different bacteria: (a–c) the bacteriostatic
effects of different compounds on E. coli, S. aureus, and B. subtilis. (Note: Marks 1, 3, 5, 7, and 9 on the
plates are DY1, DY2, DY4, DY5, and DY6 with concentrations of 20 g/L; Mark 2, 4, 6, 8, and 10 on the
plates are DY1, DY2, DY4, DY5 and DY6 with concentrations of 10 g/L; and Marks 0 and 11 on the
plates are equal volume of DMSO solution).

As shown in Figure 12 and Table 7, the DY1 and DY6 showed a strong antibacterial activity against
S. aureus and B. subtilis at a concentration of 0.02 µM. DY1 exerted bacterial inhibition effect against
both microorganisms at a concentration of 0.008 µM. The antibacterial effect is mainly attributed to the
presence of phenol groups in the DY6 structures. The substituents such as methyl and diethylamino
groups in DY1 and DY6 enhanced the affinity of cell due to the electron effect, which provided better
antibacterial effect against both tested microorganisms.
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Figure 12. Antibacterial effects of different thiourea molecules: (a,c) the inhibitory effect of DY1 at
different concentrations on S. aureus and B. subtilis, respectively; and (b,d) the inhibitory effects of DY6
at different concentrations on S. aureus and B. subtilis, respectively. (Mark 1, 10 g/L; Mark 2, 5 g/L; Mark
3, 2 g/L; Mark 4, 1 g/L; Mark 5, 0.5 g/L; Mark 6, 0.2 g/L; and Mark 0, DMSO).

Table 7. Comparison of bacteriostatic effects of different thiourea molecules.

Bacteria Thiourea Molecules Concentration (µM)

S. aureus
DY1 0.02
DY6 0.02

B. subtilis
DY1 0.008
DY6 0.008

As shown in Figure 13, the DY6 sample and the PAN fibers treated with DY6 presented a
considerably lower number of colony-forming bacterial units at an inhibition effect of 88.6% and 45.1%,
respectively. These observations clearly confirmed a very strong inhibitory effect of DY6. The bacterial
inhibition effect of the synthesized compound mainly originated from the lipophilic characteristics of
the thioamide synthon substituted aryl ring, which crossed the cell membrane of the microorganism,
and, thus, excellent antibacterial activity was exerted against the tested bacterial strain.
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4. Conclusions

Seven structurally representative thiourea molecules were synthesized using condensation
reaction with thiosemicarbazone and different substituents of benzaldehyde. The bioactive screened
thiourea molecule was covalently coupled with hydrolyzed PAN fibers. Characterizations by infrared
spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy found that the
thiourea molecules (DY6) were successfully coated on the PAN fibers. The modified PAN fibers
not only maintained mechanical strength but also inhibited tyrosinase activity, which could provide
anti-browning function for fruits and vegetables packaging economically at the industrial scale.
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