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Abstract: Platinum (Pt) and ruthenium (Ru) were sputtered on an electrolyte membrane and it was
used as a membrane-electrode assembly for passive direct methanol fuel cells (DMFCs) operating
with high concentration methanol solution (4 M). Thick (Pt of 300 nm and Ru of 150 nm) and thin
(Pt of 150 nm and Ru of 75 nm) sputtered catalysts were prepared and their performance was first
evaluated to find out the best sputtering conditions showing higher performance. Subsequently, four
electrolyte membranes with different surface roughness were prepared to investigate its influence on
the performance. As a result, the performance of the passive DMFC showed increasing tendency as
the roughness is low, while the performance was decreased as the roughness was high, indicating
there exists an optimal roughness of the electrolyte membrane. It was further investigated through
morphological study through electron microscopy that such performance variation is attributed to
the surface of sputtered Pt–Ru catalyst on the rough electrolyte membrane that adequate roughness
induces the increase of reactive area while a too rough surface bears the poor contact of it with
gas-diffusion layer.

Keywords: direct methanol fuel cells; sputter; sandpaper; roughness; electrochemical impedance
spectroscopy; polarization

1. Introduction

Many researchers have been working on the investigation of the alternatives of current
market-leading lithium-ion batteries to store more energy in a limited volume. One of the technologies
is considered as a fuel cell because fuel cells have potentially higher energy density than lithium-ion
batteries [1–3]. In addition, fuel cells have other advantageous characteristics such as scalability,
eco-friendliness, high efficiency, and no need to secure recharging time [4–7]. That is why many portable
fuel cell prototypes are actively coming out to markets for the purpose of replacing batteries [8–10].

Among various fuel cell types, polymer electrolyte membrane fuel cells (PEMFCs) are the most
famous type because they operate at low temperature (<100 ◦C) and their technological level is close to
commercialization level. Fuel cell electric vehicles, drones including unmanned aerial vehicles and
quadrotors, and power plants already manufactured or installed prove it [11–14]. Here, it is noticeable
that the recent world-champion record of the flight time of quad-/hexa-rotors exceeds 12 h and it has
been enabled by employing PEMFCs with liquid hydrogen storage [15]. Comparing it with the fact
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that the top-flight time by any batteries is shorter than 30 min, the fuel cells and their features they
could enable are amazing.

The use of hydrogen as a fuel, however, bears a problem: The hydrogen storage technology is
not sufficiently matured than fuel cells [16–18]. In addition, hydrogen storage is directly related to
safety, so it makes the PEMFCs still distant from complete commercialization. In order to overcome
this, direct methanol fuel cells (DMFCs) have been investigated for decades. The basic theory and the
structure of operation are the same as PEMFCs, but they are distinguished in that a methanol solution
instead of hydrogen is supplied and ruthenium (Ru) as well as platinum (Pt) is normally added in an
electro-catalyst. Here, if the chemical energy resource is stored as a methanol, it is enabled theoretically
that the DMFC systems can store more energy than normal PEMFC systems in a same volume.

The problems of the DMFCs are that they require more novel metals (Pt and Ru) than PEMFCs,
the resulting electrochemical performance is still lower than PEMFCs, and their system is highly
complicated. The third problem comes from the feature that the water management and resulting
methanol concentration within the system is highly important to maximize the performance and secure
the long-term durability. One way to resolve this problem is to simplify the fuel supply system in
an anode and cathode by designing them “fully passive”. That is, the supply of whole reactants in
DMFC fully depends on free convection. Many reports about this fully passive DMFCs are already in
literature [2,19–27].

In this study, we especially employed the sputtering method to fabricate the membrane-electrode
assembly (MEA) for passive DMFCs. It is because two advantages could be achieved from this approach:
Lowering the use of novel metals and drive down the manufacturing cost of DMFCs. It is because
the sputtering method has been experimentally proved to reduce the use of novel metals. Although
most of sputtering-based fuel cells are about PEMFCs [28–32], we expected that the application of this
technique to DMFCs would result in the same effect as PEMFCs. In addition, industrial infrastructure
of sputtering is already tremendous due to the development of semiconductors industry. It means that
we could maximize the advantages of the development of this sputter-based MEA fabrication approach
for passive DMFCs. Unfortunately, to our knowledge, no report about this sputtered catalyst-based
passive DMFCs can be found in literature. With this sputtering approach, this study also investigates
the effect of roughness of the electrolyte membrane on the performance of the passive DMFCs. The
MEAs with four roughnesses were prepared and their micro-morphologies are investigated through
scanning-electron microscopy (SEM). Moreover, the thickness of the sputtered Pt and Ru is tested to
find out the structural effect of sputtered layers (Note too thin catalyst would not activate the oxidation
of the methanol while too thick could disturb the diffusion of reactants.). Finally, the performances of
the passive DMFCs with four MEAs are measured and compared to find out the optimal roughness
showing the best electrochemical performance and the relation between the roughness of an electrolyte
membrane and the resulting performance.

2. Materials and Methods

Four types of MEAs were fabricated to compare the effects of surface roughness of an electrolyte
membrane on electrochemical characteristics of passive DMFCs, as shown in Figure 1a. First, the
standard MEA with a pristine electrolyte membrane (Nafion® 117, DuPont Co., Midland, MI, USA)
was fabricated using sputter. Pt and Ru were deposited sequentially on the anode side of Nafion®

117 to deposit bi-layered catalyst. 100 and 200 W of DC sputtering power were applied to Pt and Ru
target, respectively. The sputtering conditions were 12.0 Pa of Ar gas pressure and room temperature
of substrate in all cases. Two bi-layered catalysts were fabricated first: Thicknesses of Pt–Ru catalysts
of 300 and 150 nm, and 150 and 75 nm, respectively. These two samples were characterized and the
thickness showing the best performance was selected. After depositing bi-layered Pt–Ru catalysts,
cathodic catalyst layers were deposited on the other side of the MEA by sputtering again. Pt was
deposited with 100 W of DC power and 12.0 Pa of Ar pressure. The electrochemically reactive area
was precisely controlled and defined by using the physical masking tape with a hole of 1 × 1 cm2. In
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the fabrication of the MEAs with rough electrolyte surfaces, Nafion® 117 membrane was rubbed with
sandpapers to change the surface roughness. Three kinds of sandpapers (600, 2000, and 4000 grit,
Daesung Abrasive Co., Yonki, Chungnam, Korea) with different roughness were used to vary the
surface roughness. When the membrane is roughened, its surface becomes opaque. We scrubbed
the center of the membrane until it became uniformly opaque over a wider range than the catalysts
deposition area. After preparing the membrane with three different roughnesses, Pt–Ru catalysts were
deposited using the same sputtering conditions as described above. Digital camera images of the
as-prepared four MEAs are indicated in Figure 1b.

Figure 1. (a) Schematic of the fabrications of the membrane-electrode assembly (MEAs) with different
roughnesses. (b) Real images of as-prepared MEAs. (c) Exploded image of the fully passive direct
methanol fuel cells (DMFC) used in this study. This is a figure, Schemes follow the same formatting.

After preparing MEAs, the four-step pretreatment process was performed to secure the high
protonic conductivity of the electrolyte membrane. This process is intended to remove impurities
and recover the sulfonic acid group in the Nafion® 117 membrane. The procedure was as follows:
(1) Boiling for 1 h in 5 vol% H2O2 solution, (2) boiling for 1 h in deionized water, (3) boiling for 1 h in
0.5 M H2SO4 solution, and (4) boiling for 1 h in deionized water [33].

Electrochemical characterizations of the as-fabricated MEAs and the passive DMFCs comprising
thereof were conducted using the custom-made passive DMFC setup, as shown in Figure 1c. It consists
of a methanol chamber, two polytetrafluoroethylene gaskets, two Au-coated stainless-steel current
collectors, two gas-diffusion layers (GDLs, Sigracet 39BC, SGL Carbon Co., Wiesbaden, Germany)
with micro-porous layers at one side, and one endplate. All components were assembled tightly by
four bolts and nuts. The 0.1 mm thick current collectors were fabricated by laser-cutting and Au was
subsequently sputtered on one side of it. For Au deposition, 200 W of DC power and 0.67 Pa of Ar
pressure at room temperature were used. The thickness of the as-deposited Au layer was 20 nm. The
volume of methanol chamber was 5 × 5 × 5 cm3 and a 4 M methanol solution was supplied as a fuel
into the chamber.

The surface and cross-sectional images of the as-prepared MEAs were obtained and investigated
using a field-emission scanning-electron microscope (FE-SEM, Zeiss Supra 55VP, Carl Zeiss, Oberkochen,
Germany) and a focused-ion beam SEM (FIB-SEM, Nova 600, FEI Company, Hilsboro, OR, USA). In the
FIB process, a platinum buffer layer was deposited to protect the electrode layer before milling. The
main trench was milled with an ion current of 1 nA and a lower current of 0.5 nA was used to polish
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the cross-section for imaging. The performance measurement was carried out at room temperature
using a potentiostat (Reference 600, Gamry Instruments Inc., Warminster, PA, USA). Electrodes of
MEAs were simply exposed to the 4 M methanol and ambient air, respectively. Thus, fuel and air were
supplied to each electrode by free convection, not forced nor controlled. Polarization characteristics
were investigated by measuring current–voltage (I–V) curves. The measurement started from the
open-circuit voltage (OCV) of the fuel cell, and swept towards 0.1 V. The voltage sweep speed was
0.01 V/s, and resulting current was monitored. It was halted at 0.1 V compared to RHE (reversible
hydrogen electrode). Electrochemical impedance spectra (EIS) were measured and visualized on
Nyquist plot. A sinusoidal voltage input with an amplitude of 0.01 V and a frequency range from 106

to 0.1 Hz at 0.1 V compared to RHE was applied to the fuel cell and the resulting current response
was measured.

3. Results and Discussion

The effect of the thickness of an anodic catalyst layer on the electrochemical performance of the
passive was first investigated, as shown in Figure 2a, b. It is because too thin catalyst cannot activate the
polarization while too thick could disturb the diffusion of the methanol and air. Same phenomena can
be found elsewhere that the PEMFCs should be clamped with appropriate pressure because too strong
clamping pressure could stuff the pores inside GDLs, thereby resulting in more frequent flooding and
high activation overvoltage by the lowered concentration of the reactants near reactive sites. On the
other hand, weak clamping force could bear the high contact resistance between GDLs and bipolar
plates [34]. It is speculated that this can be compared by the experimental results in Figure 2 because
the phenomena and resulting performance variation resemble: Too thick catalyst could disturb the
diffusion of reactants. In real, as shown in Figure 2a, the DMFC with a thin catalyst (75 nm thick Ru on
150 nm thick Pt) shows higher peak power density (0.53 mW/cm2) than that with thick (0.33 mW/cm2)
one. Although both power curves are apparently in increasing tendency so we could not mention a
“peak” power density, it seems the DMFC with thicker catalyst could not outperform the thin one at
high current density region. It is thought that such difference is attributed to the disturbance of mass
transport by the thick catalyst. According to the EIS results indicated in Figure 2b, it is no doubt that
charge transport resistance is a dominant factor of the final electrochemical performance because in both
cases, the charge transport resistance (122–275 Ω·cm2) is extremely higher than the ohmic resistance
(<5 Ω·cm2). In addition, the charge transfer resistance of the DMFC with thick catalyst is higher than
that with thin catalyst. If considering the activation overvoltage is described by the Butler–Volmer
behavior, increasing charge transfer resistance with the increasing Pt cannot be explained. In this
case, it is speculated that the stuffed pores by thicker layer inactivated the catalyst. It corresponds
with the observation in Figure 2a that the OCV of the DMFC with thin catalyst is lower (0.177 V) than
that with thick catalyst (0.216 V). The OCV can be affected by two factors: Concentration of reactants
and electrical insulation [1]. It is then thought that, as expected from the difference of charge transfer
resistances, such pore-stuffing effect also blocked the methanol crossover, thereby finally increasing the
OCV. Interestingly, in spite of the high starting voltage for thicker electrode case, the final performance
is turned around as the current density increases, meaning the charge transfer resistance is a dominant
factor as mentioned.

The performance difference between thick and thin catalyst layers could also be confirmed by
surface morphology in Figure 3. In the case of the thick catalyst layer, as shown in Figure 3a, cracks
and delamination of catalysts were seen. Such cracks and delamination came from the expansion
coefficient difference between the membrane and catalysts layer. Nafion® 117 membranes must be
activated prior to characterizations. However, during activation process, Nafion® membrane absorbed
large amounts of water and expanded in volume. At that time, defects occurred in the catalyst layer
and the thicker the catalyst layer is, the more severely affected by the volume change [35]. When
the catalysts were deposited on the membrane by sputtering, the triple phase boundaries (TPBs) are
formed only at the interface between the electrolyte and the electrode. Therefore, due to such cracks
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and delamination, the thick catalysts layer MEA had less TPBs than the thin one, and as a result, the
charge transfer resistance was increased, as shown in Figure 2b.

Figure 2. (a) Current–voltage and current–power curves, and (b) electrochemical impedance spectra
(EIS) measured at 0.1 V compared to reversible hydrogen electrode (RHE) corresponding to (a) of the
passive DMFCs with anodic catalysts of 150 nm thick Ru on 300 nm thick Pt and 75 nm thick Ru on
150 nm thick Pt.

Figure 3. FE-SEM images of the surfaces with different catalysts thickness. (a) 150 nm thick Ru on
300 thick Pt, and (b) 75 nm thick Ru on 150 nm thick Pt.

Although not thoroughly investigated, since 150 nm thick Pt and 75 nm thick Ru was found to
give a higher electrochemical performance in Figure 2, such sputtered catalyst was applied similarly to
roughened Nafion® 117. Figure 4 presents images of FIB images of the bi-layered Pt–Ru catalysts on
anode side of Nafion® 117. As shown in Figure 4, all MEAs have very similar thickness of bi-layered
Pt–Ru catalysts (150 nm thick Pt and 75 nm thick Ru). It means that catalyst-coated layers (CCLs) were
successfully prepared on Nafion® 117 MEAs by sequential sputtering process without any complicated
solution-based spray processes. In addition, it is clearly observable that the roughness of CCLs are
successfully varied in Figure 4. The maximum height roughness (Rmax) for pristine, 4000, 2000, and
600 grit roughened CCLs are 82, 100, 120, and 250 nm, respectively. Here, the surface of the MEA which
is marked with the white dashed line in each image in Figure 4 becomes rougher as the roughness
of sandpapers (4000, 2000, and 600 grit) which were used in pre-treatment becomes rougher from
Figure 4a–d. Therefore, it is confirmed that the interface length between Pt catalysts and Nafion® 117
was increased as the roughness of MEA was increased.
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Figure 4. FIB-SEM images of the sputtered Pt and Ru on (a) pristine membrane, and roughened
membranes by (b) 4000, (c) 2000, and (d) 600 grit sand papers. The measured Rmax for four surfaces are
82, 100, 120, and 250 nm for (a), (b), (c), and (d), respectively.

The surface morphologies of the bi-layered Pt–Ru catalysts on Nafion® 117 were investigated
further in order to enunciate the relation between the roughness and the electrochemical performance,
as shown in Figure 5. All MEAs show rough and porous surfaces in spite of the deposited 250 nm
thick sputtered Pt–Ru catalysts. Especially, it seems that the porosity of the surface of a MEA is
slightly enlarged as the surface roughness increases. Here, it is noted that the surface morphology of
the thin film fabricated by sputtering process is strongly dependent on both the surface roughness
of substrate and deposition conditions of sputtering [36–39]. When considering that the deposition
process of bi-layered Pt–Ru catalysts is identical for all MEAs, such differences of the porosities is
mainly attributed to the roughness of the MEAs. It is also noticed that the size of pores is <1 µm,
meaning that such morphologies would not disturb the diffusion of any reactants (Air and methanol)
of the DMFC.

Finally, the electrochemical characteristics of the passive DMFCs with various roughness MEAs
were investigated, as shown in Figure 6. In these evaluations, we used 4 M methanol solution to pursue
the simplification of the DMFC systems for portable applications as mentioned above [9]. Here, the
grit numbers (4000, 2000, and 600) are the levels of surface roughness of sandpapers which are used in
pretreatment of MEAs before the sputter process. According to the Nernst equation, the theoretical OCV
of a DMFC is 1.199 V compared to RHE [1]. However, the OCVs indicated in Figure 6 are significantly
low regardless of surface roughness of MEAs, which is same as the result of Figure 2a. The OCVs are
0.18, 0.23, 0.23, and 0.18 V for a pristine, 4000, 2000, and 600 grit roughened MEA, respectively. Here
again, the low OCVs of DMFCs can be explained by the methanol crossover in electrolyte membranes,
as seen in Figure 2a [21]. Methanol crossover from anode to cathode causes the methanol oxidation
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reactions at the cathode side of the fuel cell. It would end up lowering the OCVs of DMFCs significantly.
In this study, in order to prevent the drop of OCV, Nafion® 117 was used as an electrolyte membrane
to reduce the methanol crossover through electrolyte because of its sufficient thickness than other
electrolyte membrane generally used for PEMFCs (178 µm thick for Nafion® 117 compared to <50
µm thick for normal PEMFCs) [40]. Here, the custom made DMFC of this study shows no discernible
defects (no leakage of methanol solution from a chamber). Therefore, we could first conclude that
these considerably low OCVs were caused mainly by two reasons: Lack of electrochemical catalyst and
insufficient TPBs at the interface between Nafion® 117 and bi-layered Pt–Ru catalysts, which are also
the case in Figure 2a. Compared to the general Pt/C- or Pt–Ru/C-sprayed MEAs, 150 nm thick sputtered
Pt and 75 nm thick sputtered Ru are extremely lower than the MEAs fabricated by spraying [41].
Theoretical OCV means that the difference of electrical potential at open circuit is measured without any
ohmic losses generated from electrical resistances. In real cases, however, enough current is required to
measure OCVs of fuel cells to overcome contact resistances between components of evaluation system
and the resistances of external wires. In order to generate enough current from the fuel cell, both
sufficient anodic and cathode electrochemical reactions should be accompanied with. In other studies,
all MEAs have the loading of Pt in normal range (≥1.0 mgPt/cm2) [42–45]. However, in this study, if
the Pt layer was 1 cm2, 150 nm thick, and super-dense (no pores), Pt loading would be 0.32 mg/cm2. In
addition, Pt/C catalyst, which was often used as catalyst for DMFCs, was generally applied together
with Nafion® solution to make mixed ionic-electronic conductor (MIEC) to increase TPBs. However,
catalysts sputtered MEAs only had TPBs at the interface between the electrolyte and the electrode.
Thus, it is thought that the significantly low OCVs in Figure 6 is due to insufficient loading of Pt and
deficient TPBs.

Figure 5. FE-SEM images of the surfaces of sputtered Pt–Ru on (a) pristine, (b) 4000, (c) 2000, and
(d) 600 grit roughened Nafion® 117 membranes. The insets in each image indicate the magnified
surface morphology.
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Figure 6. (a) Current–voltage and current–power curves and (b) EIS spectra of passive DMFCs with
four different MEAs: Pristine, roughened by 4000, 2000, and 600 grit.

Interestingly, there are differences between performances of DMFCs with four different MEAs.
According to Figure 6a, the DMFC with 2000 grit rubbed MEA has the highest performance among
all samples, which is an OCV of 0.23 V and power density of 0.086 mW/cm2. Other fuel cells have
relatively lower performances, which are 0.053 mW/cm2 for a pristine MEA, 0.065 mW/cm2 for a
600 grit rubbed MEA, and 0.046 mW/cm2 for a 4000 grit rubbed MEA. These results show the strong
dependence between surface roughness of MEAs and performance of fuel cells. Accordingly, it can
be confirmed that Figure 6a depicts the relations between surface roughness and performances of
fuel cells. As shown in Figure 6a, the peak power density and OCV increase as the roughness of an
electrolyte membrane increases at low roughness range. However, excessive roughness of MEA causes
the reduction of performance and OCVs. It is speculated that the inordinate surface roughness of
the electrolyte membrane could bring about the electrical disconnection between sputtered catalyst
themselves (Figures 4 and 5). Or the contact area between the sputtered catalyst layer and GDL could
be deteriorated due to the highly roughened architecture of the electrolyte membrane. According
to the EIS results indicated in Figure 6b, the charge transport resistance is a dominant factor in each
case. Although the charge transport resistance does not appear as a semicircle on the Nyquist plot, it
can be seen that it is extremely larger than ohmic resistance (<2.2 Ω·cm2). Additionally, the size of
charge transport resistance can be compared for each MEA, and it can be seen that it has the lowest
charge transport resistance at 2000 grit MEA, which has the best performance. It was thought that the
roughened MEA had increased the TPBs, thereby decreasing the charge transport resistance.

Further investigations about the relation between the roughness of the electrolyte membrane
and the electrochemical performance are required to find out the deep science inside the passive
DMFCs and their sputtered catalysts. It could be the optimization of the structures of sputtered
layers, thicknesses, and applications of proper GDLs. However, the findings in this study suggest two
meaningful results: Sputtered Pt and Ru can be used as an electro-catalyst for passive DMFCs and their
structure (thickness of Pt/Ru and roughness of an electrolyte membrane) is a significant parameter
affecting the performance of the DMFCs.

4. Conclusions

In this study, Pt and Ru were sputtered directly on an electrolyte membrane (Nafion® 117) and
it was applied as an MEA for passive DMFCs for the first time. Especially, the influence of the
surface roughness of an electrolyte membrane on electrochemical characteristics of passive DMFCs
was investigated. In addition, it was operated by using a methanol solution of very high concentration
(4 M). As a result, bi-layered Pt–Ru catalysts layer was successfully fabricated by sputtering and
surface roughness of an electrolyte membrane was precisely controlled using sandpapers with different
roughness level, which were confirmed by SEM images. The performance of the passive DMFCs
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with the as-prepared MEAs were improved as the roughness of MEA was increased. However,
excessive roughness induced the deterioration of the performance. The passive DMFC with the
optimal roughness of the electrolyte membrane improved the OCV by 22% and enhanced performance
compared to a fuel cell with a pristine MEA by 38%. Although further investigation such as the
optimization of the structure and thickness of Pt and Ru, finding proper GDLs, and so forth is required
to further improve this type of MEAs and DMFCs, we believe that results of this study can contribute
to the reduction of novel metals (Pt and Ru) by using sputtering process and resulting increased
possibility of the commercialization of the passive DMFCs.
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