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Abstract: Endodontic treatment for a tooth with damaged dental pulp aims to both prevent and cure
apical periodontitis. If the tooth is re-infected as a result of a poorly obturated root canal, periapical
periodontitis may set-in due to invading bacteria. To both avoid any re-infection and improve the
success rate of endodontic retreatment, a treated root canal should be three-dimensionally obturated
with a biocompatible filling material. Recently, bioactive glass, one of the bioceramics, is focused on
the research area of biocompatible biomaterials for endodontics. Root canal sealers derived from
bioactive glass-based have been developed and applied in clinical endodontic treatments. However,
at present, there is little evidence about the patient outcomes, sealing mechanism, sealing ability,
and removability of the sealers. Herein, we have developed a bioactive glass-based root canal sealer
and provided evidence concerning its physicochemical properties, biocompatibility, sealing ability,
and removability. We also review the classification of bioceramics and characteristics of bioactive
glass. Additionally, we describe the application of bioactive glass to facilitate the development
of a new root canal sealer. Furthermore, this review shows the potential application of bioactive
glass-based cement as a root canal filling material in the absence of semisolid core material.
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1. Introduction

Endodontic treatment for a tooth with damaged dental pulp aims to both prevent and cure apical
periodontitis. After a root canal preparation and irrigation in order to both remove bacteria and
suppress the inflammation of the periodontal ligament around root apex, dentists obturate the treated
root canal with filling materials [1]. If the post-treatment tooth is re-infected due to a poor root canal
obturation, periapical periodontitis sets-in due to an invasion of bacteria into the canal. It is well known
that the success rate of endodontic retreatment on periapical periodontitis is no higher than that of
the initial treatment [2–5]. Three-dimensional obturation of the treated root canal with biocompatible
filling materials is vital to avoid re-infection as well as the root canal preparation and irrigation steps,
thereby increasing the success rate of retreatment [6,7].

The primary functions of any root canal filling material are to seal the bacterial in-growth so as
to prevent fluid influx from providing nutrients to the trapped bacterium [8]. Endodontic treatment
techniques have been changing due to technological advances, and advances in root canal filling
material have significantly contributed to increased rates in the successful treatment of patients. Root
canal sealer, one of the many filling materials, has been shown to be essential for successful obturation,
as the sealer should bond to the dentin of the canal walls and close-off the periapical area of the root
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canal system. However, conventional root canal sealer typified by Grossman’s formula is hardly ideal
as it is neither adhesive nor does it have a bonding effect with dentin.

Mineral trioxide aggregate (MTA)-based root canal sealers, such as EndoSequence BC Sealer
(Brasseler USA, Savannah, GA, USA), have been developed and are now commercially available;
these MTA-based sealers provide ideal performance as a root canal sealer. MTA is formulated
from commercial Portland cement (tricalcium silicate, dicalcium silicate, tricalcium aluminate,
tetracalcium aluminoferrite, calcium sulfate) [9,10], combined with bismuth oxide powder for
radiopacity. MTA-based root canal sealer is generally believed to be a bioceramic-based sealer. However,
MTA is not bioceramic as its crystals are non-vitreous. It has been reported that some MTA-based sealers
show good physical and biological properties [11–13], as well as the ability to produce hydroxyapatite
on its surface in the presence of phosphate-buffered saline [14,15]. A hypothesized mechanism for
the formation of hydroxyapatite is initiated by the release of calcium hydroxide from MTA, which
interacts with a phosphate-containing solution to produce a calcium-deficient apatite achieved via
an amorphous calcium phosphate phase [16]. These characteristics indicate that MTA-based sealers
may display bioactivity. However, several studies report that some MTA-based root canal sealers
show non-biocompatibility due to the presence of arsenic, a low ability to seal, long setting time,
and non-retreatability [17,18].

Recently, bioactive glass, one of confirmed bioceramics, has been the focus of a great deal of
research in biomaterials for Endodontics. Furthermore, bioactive glass-based root canal sealers
have been developed and applied within clinical endodontic treatments. Herein we will review the
appropriate classification of materials as bioceramics and the specific characteristics of bioactive glass.
Additionally, we describe the possible application of bioactive glass as a newly developed root canal
sealer is described. Furthermore, this review promises the potential of bioactive glass-based cement as
a root canal filling material.

1.1. Bioceramics

Biomaterials are defined as synthetic or natural materials that are capable of either replacing parts
of a living system or functioning while in intimate contact with living tissues [19]. Biomaterial-based
implants and medical devices are widely used to replace or to restore the functionality of traumatized
or degenerated tissues. The foremost requirement when selecting a biomaterial is its biological
acceptability as a long-term non-rejected implant within the body. To achieve this acceptability,
applicable biomaterials must be non-toxic, non-carcinogenic, chemically inert, stable, and mechanically
strong. The most common biomaterial classes are metals, polymers, and ceramics. These three classes
are used either solely or in combination to form the most presently available implantation devices.

Ceramics, a class of biomaterial, are polycrystalline materials that display characteristic hardness,
brittleness, strength, stiffness, resistance to corrosion and wear, and low density. Bioceramics are
utilized to restore functionality to diseased or damaged hard tissues and are used in several different
fields such as dentistry, orthopedics, and medical sensors. Presently available bioceramics come in three
basic types: bioinert, bioactive, and bioresorbable ceramics [20]. The first generation of bioceramics was
comprised of alumina and zirconia [21]. The main features of first-generation bioceramics were their
good mechanical properties, especially their wear resistance. The second generation of bioceramics
was comprised of bioactive glass (BG), hydroxyapatite, and calcium phosphate-based cement. Second
generation bioceramics bond to and integrate with the living bone of the body without forming a
fibrous tissue around them and without promoting either inflammation or toxicity [22]. Unique among
the second-generation bioceramics, BG has instigated a revolution in healthcare appliances and has
paved the way for modern biomaterial-driven medicine [23,24].

1.2. Bioactive Glass

BG contains the glass type of Na2O-CaO-SiO2-P2O5 in specific proportions [25], as a component
of silica (SiO2) is ≤ 50 mol%. The compositional phase diagram for BG, also highlighting at what
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mixture-levels particular biomaterial properties arise, is provided as Figure 1 [25,26]. BG has been
applied in clinical settings for orthopedic surgery for several decades. When BG is implanted in a defect
area close to bone, reactions on BG surfaces lead to the release of critical concentrations of soluble Si, Ca,
P and Na ions, which induce favorable intracellular and extracellular responses leading to rapid bone
formation [27]; this bone formation is then followed by the formation of silica-rich gel on its surface.
Silica-rich gel reacts with ions present in bodily fluids, resulting in the formation of hydroxyapatite
(HAp)-like on the surface of BG. Furthermore, osteoblasts produce new bone in the silica-rich gel,
allowing BG to bond with the bone through both the formation of bone-like hydroxyapatite layers
and biological interactions with collagen (Figure 2) [22,28]. Additionally, BG is able to stimulate bone
cells to regenerate and self-repair, thus significantly accelerating tissue healing kinetics [27]. These
properties are termed osteoconductivity and osteoinductivity [23,29]. BG has been mainly used for
applications where it will contact bone tissue, yet BG has recently shown promise in inducing the repair
of soft tissues, too [30,31]. BG has attracted the interests of many researchers, as the ionic dissolution
products of BG were found to stimulate angiogenesis. Furthermore, there now exist other BG-based
products for applications in wound healing and peripheral nerve regeneration [32]. These applications
suggest that BG shows suitability and biocompatibility as a biomaterial capable of being applied both
to hard tissues such as dentin or cementum—as these materials are similar to the bone—and to soft
tissues such as dental pulp and periapical tissue [33].
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1.3. Bioceramic-Based Root Canal Sealer

General practitioners desire a root canal sealer capable of strongly bonding to root canal walls with
high sealing properties, high biocompatibility, as well as removability to accommodate retreatment.
Researchers have found promising results in the application of bioceramics to solve these issues.
Bioceramic-based materials have recently been introduced as endodontics materials as both repairing
cement [34,35] and root canal sealer [13,36–39]. Bioceramic-based materials show an alkaline pH,
antibacterial activity, radiopacity, biocompatible, nontoxic, non-shrinking, and are chemically stable
within the biological environment. A further advantage of bioceramic materials is that they promote
the formation of hydroxyapatite, ultimately facilitating a bond between dentin and the filling material
during the setting process [11,38]. However, conventional bioceramic-based sealers show clinical
disadvantages such as difficulty in handling, higher cytotoxicity in its freshly mixed state, a high
pH during setting, long setting times, and that hardening requires sufficient moisture [18,40–43].
An additional disadvantage is that bioceramic-based sealers are difficult to remove when facilitating
retreatment [44]. To overcome these disadvantages, we developed a next-generation bioceramic-based
root canal sealer based on previous medically reliable BG-based materials, Nishika Canal Sealer BG
(Nippon Shika Yakuhin, Yamaguchi, Japan).

1.4. Bioactive Glass-Based Root Canal Sealer

There are two well-known commercialized root canal sealers that include BG. One is GuttaFlow
Bioseal (GFB) (Coltène/Whaledent AG, Altstätten, Switzerland), which is composed of gutta-percha,
polydimethylsiloxane, platinum catalyzer, zirconium dioxide, and BG. GFB has shown a low solubility,
low porosity, alkalization capacity [45], dentin penetrability [46], and cytocompatibility [47,48].
At present, only limited evidence is available concerning either the mechanism of GFB hardening
or its ability to seal the canal and be removed for retreatment. The second product is Nishika
Canal Sealer BG (CS-BG), shown in Figure 3; presently there exists compelling evidence concerning,
with evidences about its physicochemical properties, biocompatibility, sealing ability, and removability.
CS-BG was developed from BG-based biomaterials and originally intended for both dental pulp and
bone regeneration therapies. CS-BG is a two-phased paste; Paste A consists of fatty acids, bismuth
subcarbonate, and silica dioxide, whereas Paste B consists of magnesium oxide, calcium silicate glass
(a type of BG), and silica dioxide, etc. By pushing the plunger of a double syringe, the two-phase paste
can be dispensed at a 1:1 ratio. The dispensed paste can be mixed easily and quickly; this procedure
is captured in Figure 4. A stainless-steel spatula may be corroded by the ingredients of the paste,
we recommend the use of a plastic spatula to avoid contamination of metal implements. CS-BG paste
tends to get hardened when exposed to heat or moisture. Therefore, it is recommended to store the
syringes in the resealable aluminum foil bag, then placing the bag in a cold storage location (1–10 ◦C)
without freezing.
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2. Physicochemical Properties

2.1. Physical Properties

Physical properties of CS-BG were analyzed according to the International Organization for
Standardization (ISO) standards of root canal sealing materials (ISO 6876:2012 Requirement), and it is
found that the properties of CS-BG were suitable for use as an endodontic sealer (Table 1).

Table 1. Physical properties of CS-BG.

Flow 28.7 mm Solubility 0.5%
Working time 15 mm Disintegration None
Setting time 180 min Radiopacity 5 mmAl.

Film thickenss 27.9 µm

2.2. pH Change

The pH of a CS-BG sample that was hardened in simulated body fluid (SBF) was measured in
the purified water. The pH gradually decreased during periodic immersion and stabilized at around
pH = 10 (Figure 5); this pH is optimal for the formation of HAp on the BG surface [49–51]. This alkaline
pH is maintained by ions evolving from non-BG components.Materials 2019, 12, x FOR PEER REVIEW 6 of 16 
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2.3. HAp Formation on the Surface of CS-BG in SBF

The surface-structures of CS-BG discs (diameter 3.5 mm, height 6 mm) hardened in either SBF or
purified water were analyzed using Field emission scanning electron microscope analysis (FE-SEM).
The surface structure of CS-BG after immersion in SBF showed typical spherules of petal-like crystals
(Figure 6a). X-ray diffraction analysis (XRD) showed that petal-like crystals were HAp. In SBF, HAp
crystallization on the surface increased in a time-dependent manner (Figure 6c) [51]. On the other
hand, the surface structure of CS-BG after immersion in purified water showed no petal-like crystals
(Figure 6b,d).
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Figure 6. FE-SEM images and XRD patterns of the CS-BG surface. (a) FE-SEM images of CS-BG
immersed in SBF. (b) FE-SEM images of CS-BG immersed in purified water. Scale bar 1 µm. (c) XRD
patterns of CS-BG after immersion in SBF for four and seven days. (d) XRD patterns of CS-BG after
immersion in purified water for seven days [51].
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3. Biocompatibility

Biocompatibility is an essential property of any root filling material that is in direct contact
with both hard tissues (e.g., dentin or cementum) and soft tissues (e.g., periodontal ligament) [52,53].
Reiterating, biocompatibility is the ability of a material to achieve a stable and advantageous host
response during application [54]. Biocompatibility is typically assessed by cytotoxic tests in most
studies [55]. The cytotoxicity of bioceramic-based sealers has been evaluated in vitro using mouse
osteoblast cells, human osteoblast cells [38,56,57], and human periodontal ligament cells [58–60].

The in vitro biocompatibility of CS-BG was demonstrated by cell migration and viability assays
using human periodontal ligament cells (HPDLC) and osteoblast-like cells. Migration and survival of
both HPDLC and osteoblast-like cells under CS-BG showed no significant difference when compared
to control (Figures 7 and 8) [61]. HPDLC and osteoblast-like cells proliferated and migrated in direct
contact with the surface of hardened CS-BG (Figure 9) [62]. The in vivo biocompatibility of CS-BG was
analyzed by both rat pulpectomy and root canal obturation models. These in vivo tests indicate that
CS-BG does not inhibit the wound healing process of periapical tissue around the root apex of a canal
filled with CS-BG (Figure 10) [63]. These in vitro and in vivo studies show that CS-BG has excellent
biocompatibility for periapical tissue.
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Figure 8. Effects of root canal filling sealers on cell viability. (a) Schematic of culture method. The cells
(1 × 105/ well) were separately subcultured in 24-well Transwell plates. Transwell filter inserts
including fresh and hardened sealers were inserted into the wells. (b,c) fresh sealer. (d,e) hardened
sealer. (b,d) HPDLCs. (c,e) osteoblast-like cells. Control: no sealer, CS-EN: eugenol-based sealer,
CS-EQ: eugenol-based sealer quick, CS-N: non-eugenol-based sealer, CS-BG: BG-based sealer. Each bar
represents a mean ± SD. *, **: significant differences with p < 0.05 and p < 0.01, respectively [61].

Materials 2019, 12, x FOR PEER REVIEW 9 of 16 

 

Figure 8. Effects of root canal filling sealers on cell viability. (a) Schematic of culture method. The cells 
(1 × 105/ well) were separately subcultured in 24-well Transwell plates. Transwell filter inserts 
including fresh and hardened sealers were inserted into the wells. (b, c) fresh sealer. (d, e) hardened 
sealer. (b, d) HPDLCs. (c, e) osteoblast-like cells. Control: no sealer, CS-EN: eugenol-based sealer, CS-
EQ: eugenol-based sealer quick, CS-N: non-eugenol-based sealer, CS-BG: BG-based sealer. Each bar 
represents a mean ± SD. *, **: significant differences with p < 0.05 and p < 0.01, respectively [61]. 

  

(a)                          (b) 

Figure 9. Phase-contrast microscopic photographs showed the attachment of cells to CS-BG (＊). (a) 
HPDLCs. (b) osteoblast-like cells [62]. Scale bar 200 μm. 

4. Sealing ability 

The invasion of microorganisms into the interfacial region between filling materials and the root 
canal dentinal wall should be prevented to avoid re-infection [64–66]. Properly sealing this interface 
is dependent on the ability of the filling material to bind to the dentinal wall. There exists no standard 
method for measuring the sealing ability of a root canal sealer [67–70]. To assess the sealing ability of 
CS-BG, a dye leakage test was used to simulate the seepage of nutrient fluid into the sealed cavity. 
An amount of dye was sealed within the root canal and sealed with a combination of gutta-percha 
point and CS-BG by the lateral condensation technique. The total amount of leakage was 
approximately half in comparison with conventional root canal sealers (eugenol-based and non-
eugenol-based sealer), and the leakage gradually decreased over time (Figure 11a, b) [71]. When a 
root canal was filled with CS-BG by the single-cone technique, the leakage was less than that observed 
for the CS-GB material applied by the lateral condensation technique (Figure 11a, b) [71]. These 
results showed the excellent sealing ability of CS-BG, especially when applied by the single cone 
method. 

The characteristics of the interface between the hardened CS-BG and the root canal wall was 
analyzed by both FE-SEM and Energy-dispersive X-ray spectrometry (EDX). The FE-SEM showed 
the formation of a tag-like structure comprised of typical spherules of petal-like crystals embedded 
into dentinal tubules and at the entrance of the tubules (Figure 11c) [71]. These crystals were 
identified as HAp by EDX analysis [71].  

Figure 12 shows a proposed mechanistic scheme for the bonding of CS-BG to the dentin-based 
root canal wall. After the obturation of a root canal with CS-BG, the CS-BG makes contact with a 
small amount of dental fluid on the dentin. During hardening, the CS-BG releases ions from its 
matrix, these components consist of the non-BG component of the sealing paste. The evolution of 
these ions maintains a pH of approximately 10 in the surrounding dentinal fluid, which is the optimal 
pH for the formation of HAp on the surface of BG. The BG within the sealer mixture then reacts to 
the dental fluid, resulting in the release of critical concentrations of soluble Si, Ca, P, and Na ions. 
This causes the formation of a silica-rich gel on the BG surface that reacts with the ions now present 
in the dentinal fluid. As a result, HAp-like crystal layers are formed on the surface of BGs. Finally, 
HAp-like crystal tags interstitially grow into dentin tubules. The overall CS-BG bonding with the 
dentin wall is formed through the formation of these HAp layers and tags within the dentin tubules 
(Figure 12). 

Figure 9. Phase-contrast microscopic photographs showed the attachment of cells to CS-BG (∗).
(a) HPDLCs. (b) osteoblast-like cells [62]. Scale bar 200 µm.

Materials 2019, 12, x FOR PEER REVIEW 10 of 16 

 

Figure 12 shows a proposed mechanistic scheme for the bonding of CS-BG to the dentin-based 

root canal wall. After the obturation of a root canal with CS-BG, the CS-BG makes contact with a 

small amount of dental fluid on the dentin. During hardening, the CS-BG releases ions from its 

matrix, these components consist of the non-BG component of the sealing paste. The evolution of 

these ions maintains a pH of approximately 10 in the surrounding dentinal fluid, which is the optimal 

pH for the formation of HAp on the surface of BG. The BG within the sealer mixture then reacts to 

the dental fluid, resulting in the release of critical concentrations of soluble Si, Ca, P, and Na ions. 

This causes the formation of a silica-rich gel on the BG surface that reacts with the ions now present 

in the dentinal fluid. As a result, HAp-like crystal layers are formed on the surface of BGs. Finally, 

HAp-like crystal tags interstitially grow into dentin tubules. The overall CS-BG bonding with the 

dentin wall is formed through the formation of these HAp layers and tags within the dentin tubules 

(Figure 12). 

   
(a) (b) (c) 

 

 

                       (a)                     (b)                  (c) 

Figure 10. Semi-quantitative analysis of the tissue responses on periapical tissue after root canal 

obturation with CS-BG. (a) Each site of measurement for the width of periapical bone alveolar 

resorption (†) and the thickness of cementum (‡). Scale bar 200 μm. (b) Width of periapical alveolar 

bone resorption area. (c) The thickness of cementum in the periapical region. CS-N: non-eugenol-

based sealer. Each bar represents a mean ± SD. *: significant differences with p < 0.05 [63]. 

 

                           (a)                                      (b) 

Figure 10. Semi-quantitative analysis of the tissue responses on periapical tissue after root canal
obturation with CS-BG. (a) Each site of measurement for the width of periapical bone alveolar
resorption (†) and the thickness of cementum (‡). Scale bar 200 µm. (b) Width of periapical alveolar
bone resorption area. (c) The thickness of cementum in the periapical region. CS-N: non-eugenol-based
sealer. Each bar represents a mean ± SD. *: significant differences with p < 0.05 [63].
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4. Sealing Ability

The invasion of microorganisms into the interfacial region between filling materials and the root
canal dentinal wall should be prevented to avoid re-infection [64–66]. Properly sealing this interface is
dependent on the ability of the filling material to bind to the dentinal wall. There exists no standard
method for measuring the sealing ability of a root canal sealer [67–70]. To assess the sealing ability of
CS-BG, a dye leakage test was used to simulate the seepage of nutrient fluid into the sealed cavity.
An amount of dye was sealed within the root canal and sealed with a combination of gutta-percha point
and CS-BG by the lateral condensation technique. The total amount of leakage was approximately half
in comparison with conventional root canal sealers (eugenol-based and non-eugenol-based sealer),
and the leakage gradually decreased over time (Figure 11a,b) [71]. When a root canal was filled with
CS-BG by the single-cone technique, the leakage was less than that observed for the CS-GB material
applied by the lateral condensation technique (Figure 11a,b) [71]. These results showed the excellent
sealing ability of CS-BG, especially when applied by the single cone method.Materials 2019, 12, x FOR PEER REVIEW 11 of 18 
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Figure 11. Sealing ability of root canal sealers after root canal obturation. (a) Time-dependent leakage
evaluation of six different root canal obturations using dye penetration test. (b) The total leakage
amount measured for 28 days. A: Eugenol-based root canal sealer (lateral condensation technique),
B: Non-eugenol-based root canal sealer (lateral condensation technique), C: Bioceramics-based root
canal sealer (lateral condensation technique), D: Bioceramics-based root canal sealer (single cone
technique), E: CS-BG (lateral condensation technique), F: CS-BG (single cone technique). (c) FE-SEM
images of the interface between the filled sealer and root canal wall. S: CS-BG, D: dentin. Arrows:
the formation of tag-like structures in dentinal tubules, arrowheads: hydroxyapatite-like crystals in
dentinal tubules [71]. Scale bar 10 µm.

The characteristics of the interface between the hardened CS-BG and the root canal wall was
analyzed by both FE-SEM and Energy-dispersive X-ray spectrometry (EDX). The FE-SEM showed the
formation of a tag-like structure comprised of typical spherules of petal-like crystals embedded into
dentinal tubules and at the entrance of the tubules (Figure 11c) [71]. These crystals were identified as
HAp by EDX analysis [71].

Figure 12 shows a proposed mechanistic scheme for the bonding of CS-BG to the dentin-based
root canal wall. After the obturation of a root canal with CS-BG, the CS-BG makes contact with a
small amount of dental fluid on the dentin. During hardening, the CS-BG releases ions from its matrix,
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these components consist of the non-BG component of the sealing paste. The evolution of these ions
maintains a pH of approximately 10 in the surrounding dentinal fluid, which is the optimal pH for the
formation of HAp on the surface of BG. The BG within the sealer mixture then reacts to the dental
fluid, resulting in the release of critical concentrations of soluble Si, Ca, P, and Na ions. This causes the
formation of a silica-rich gel on the BG surface that reacts with the ions now present in the dentinal
fluid. As a result, HAp-like crystal layers are formed on the surface of BGs. Finally, HAp-like crystal
tags interstitially grow into dentin tubules. The overall CS-BG bonding with the dentin wall is formed
through the formation of these HAp layers and tags within the dentin tubules (Figure 12).
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Figure 12. Schematic of the proposed mechanism for CS-BG to bond to dentin. (a) CS-BG matrix
generates a pH of 10.3 in the dental fluid at the sealer-dentin interface. (b,c) CS-BG matrix displays an
amphiphilic property and facilitates the growth of HAp. (d) After bonding with dentin, HAp crystals
grow into the dentinal tubule.

5. Removability

When re-infection occurs at the periapical tissue of a treated tooth, dentists must first remove any
present root canal sealer from the canal before proceeding with endodontic retreatment [72–74]. In vitro
studies demonstrated that CS-BG is capable of being removed entirely by the standard methods of
re-preparation and irrigation with an EDTA solution. Furthermore, the dentinal tubules of the dentin
wall were reopened upon removal of CS-BG, shown by FE-SEM images in Figure 13 [75]. The easily
removed nature of the sealer, coupled with the reopening of the dentin cavities, indicates that CS-BG
does not inhibit retreatment.
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Figure 13. Root canal wall after the removal of hardened CS-BG and irrigation with a solution of EDTA.
Dentinal tubules were observed [75]. Scale bar 10 µm.

6. Clinical Performance of Bioactive Glass-Based Root Canal Sealer

CS-BG is now available for use in root canal obturation and has been shown to induce good wound
healing of periapical tissues. Figure 14 shows a clinical case (40-year-old female) upon whom CS-BG was
applied during a root canal obturation. The radiographic image taken during pre-endodontic treatment
(Figure 14a) shows an apparent radiolucency at the periradicular area of the maxillary left canine;
this radiographic translucency was diagnosed as symptomatic apical periodontitis. After standard
endodontic treatment, the canal was obturated using CS-BG and gutta-percha by a non-compaction
technique (Figure 14b). Wound healing and bone formation of the periapical tissues were observed at
both six and 14 months after the obturation (Figure 14c,d). From now on, we will follow the cases
obturated using CS-BG for longer-term clinical efficacy.
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7. Potential of Bioactive Glass-Based Sealer as Root Canal Filling Material Without Semisolid
Core Materials

At present, there are various techniques to obturate root canal systems, including sealer, sealer
plus a single-core material, sealer coating combined with cold compaction of core materials, sealer
coating combined with warm compaction of core materials, and sealer coating combined with a
carrier-based core material [76,77]. It has also been reported that a significant number of general
practitioners have chosen cold lateral or warm gutta-percha compaction with either eugenol-based or
non-eugenol-based sealer [78–82]. However as revealed by several reviews, bioceramic-based root
canal sealers applied by the single cone technique are more appropriate sealers to obtain good sealing
of an obturated root canal [83,84]. When undertaking the single cone technique, the sealer delivery
method is important. The root canal sealer should be delivered to the root apex before the insertion of
the single-core material. Slight pressurization occurs during the insertion of core material; this pressure
can cause the sealer within the canal to flow into lateral branches of the root canal. Within this review,
it is indicated that CS-BG has the high sealing ability, suggestive of its potential as a sealer for root canal
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obturation even without semisolid core material such as a gutta-percha point. In hopes to achieve
the best possible patient outcome after obturation with CS-BG—with or without a semisolid core
material—the delivering device of the bioceramic-based sealer should be one of the next targets for
translational research in Endodontics.

8. Conclusions

The next-generation bioactive glass-based root canal sealer examined in this work has displayed
capabilities to form hydroxyapatite-like precipitations, biocompatibility, sealing ability, and removability.
CS-BG is now available for use in root canal obturation and has been shown to induce good wound
healing of periapical tissues in clinical cases. This accumulation of characteristics is suggested that
CS-BG has its potential as a sealer for root canal obturation even without a semisolid core material.
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