

Article

## MDPI

## White and Red Brazilian São Simão's Kaolinite–TiO<sub>2</sub> Nanocomposites as Catalysts for Toluene Photodegradation from Aqueous Solutions

Lucas D. Mora <sup>1</sup>, Larissa F. Bonfim <sup>1</sup>, Lorrana V. Barbosa <sup>1</sup>, Tiago H. da Silva <sup>1</sup>, Eduardo J. Nassar <sup>1</sup>, Katia J. Ciuffi <sup>1</sup>, Beatriz González <sup>2</sup>, Miguel A. Vicente <sup>2</sup>, Raquel Trujillano <sup>2</sup>, Vicente Rives <sup>2</sup>, Maria Elena Pérez-Bernal <sup>2</sup>, Sophia Korili <sup>3</sup>, Antonio Gil <sup>3</sup> and Emerson H. de Faria <sup>1,\*</sup>

- <sup>1</sup> Grupo de Pesquisas em Materiais Lamelares Híbridos (GPMatLam), Universidade de Franca (Unifran), Av. Dr. Armando Salles Oliveira, 201 Parque Universitário, Franca-SP, 14404-600 Brazil
- <sup>2</sup> GIR-QUESCAT, Dep. de Química Inorgánica, Universidad de Salamanca, E-37008 Salamanca, Spain
- <sup>3</sup> INAMAT, Departamento de Ciencias, Universidad Pública de Navarra, E–31006 Pamplona, Spain
- \* Correspondence: emerson.faria@unifran.edu.br; Tel.: +55-16-3711-8969

Received: 30 October 2019; Accepted: 26 November 2019; Published: 28 November 2019



**Figure S1.** Detail plot of the high- and low-wavenumber region of the FTIR spectra of the different solids.





Figure S2. SEM analyses (BSE detector) of Kaol-R (A), Kaol-R-DMSO (B), Kaol-R-TiO<sub>2</sub> (C), Kaol-R-TiO<sub>2</sub>-400 (D), Kaol-R-TiO<sub>2</sub>-700 (E), Kaol-R-TiO<sub>2</sub>-1000 (F). Magnification 30000.







D









G

Figure S3. SEM analysis (BSE detector) of Kaol (A), Kaol-DMSO (B), Kaol-TiO<sub>2</sub>(C), Kaol-TiO<sub>2</sub>-400 (D), Kaol-TiO<sub>2</sub>-700 (E), Kaol-TiO<sub>2</sub>-1000 (F) (Magnification 5000X) and Kaol-TiO<sub>2</sub>-700 (G) (Magnification 30000X).



Figure S4. EDX spectrum of Kaol-TiO<sub>2</sub>.





Figure S5. EDX spectrum of Kaol-TiO<sub>2</sub>-400.



7

Figure S6. EDX spectrum of Kaol-TiO<sub>2</sub>-700.



Figure S7. EDX spectrum of Kaol-R-TiO<sub>2</sub>.





Figure S8. EDX spectrum of Kaol-R-TiO<sub>2</sub>-400.



13

Figure S9. EDX spectrum of Kaol-R-TiO<sub>2</sub>-700.



15

Figure S10. EDX spectrum of Kaol-R-TiO<sub>2</sub>-1000.





|        |             |                                                                                                                 |                 | ~                |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------|
|        |             | ba di seconda di second |                 |                  |
| Al     | Al          | Al                                                                                                              | Al              | Al               |
|        | 57          |                                                                                                                 |                 |                  |
| Fe     | Fe          | Fe                                                                                                              | Fe              | Fe               |
|        |             |                                                                                                                 |                 |                  |
| 0      | 0           | 0                                                                                                               | 0               | 0                |
|        |             |                                                                                                                 | P2              |                  |
| Si     | Si          | Si                                                                                                              | Si              | Si               |
|        |             |                                                                                                                 |                 |                  |
| Ti     | Ti          | Ti                                                                                                              | Ti              | Ti               |
| (Kaol) | (Kaol-TiO2) | (Kaol-TiO2-400)                                                                                                 | (Kaol-TiO2-700) | (Kaol-TiO2-1000) |
| 6      | <b>E'</b>   |                                                                                                                 |                 |                  |

16

Figure S11. EDX mapping of Kaol derivatives.

Materials 2019, 12, 3943; doi:10.3390/ma12233943

2 of 9





Figure S12. EDX mapping of Kaol-R derivatives.





Table S1. FTIR assignments (cm<sup>-1</sup>) of the solids derived from white kaolinite.

| Assignment                                            | Kaol             | Kaol-DMSO  | Kaol-TiO2  | Kaol-TiO2- | Kaol-TiO2- | Kaol-TiO2- |
|-------------------------------------------------------|------------------|------------|------------|------------|------------|------------|
|                                                       |                  |            |            | 400        | 700        | 1000       |
| v (OH)inner                                           | 3622             | 3622       | 3622       | 3622       | -          | -          |
| u (OH)inner surface                                   | 3696, 3666, 3660 | 3662,3700  | 3662, 3696 | 3654, 3696 | -          | -          |
| δ H-O-H                                               | 1628             | 1652       | 1650       | 1654       | 1620       | 1622       |
| N Si-O                                                | 1026, 1110       | 1026,1102  | 1026, 1102 | 1030, 1108 | 1072       | 1088       |
| $\nu$ Al-OH <sub>inner</sub>                          | 916              | 908        | 906        | 916        | -          | -          |
| $\nu$ Al-OHinter                                      | -                | 962        | 962        | -          | -          | -          |
| SiO2 or quartz                                        | 792              | 786        | 786        | 792        | 814        | 804        |
| δ Si-O-Al                                             | 754              | 744        | 744        | 754        | -          | -          |
| $\delta  Si\text{-}O\text{-}Si   {\rm out}  {\rm of}$ | 698              | 688        | 688        | 698        | -          | -          |
| plane                                                 |                  |            |            |            |            |            |
| $\Delta$ Si-O-Aloct                                   | 540              | 554        | 554        | 542        | -          | -          |
| $\delta$ Si-O-Si in plane                             | 470              | 466        | 466        | 472        | 450        | 474        |
| N Si-O                                                | 430              | 434        | 434        | 430        | -          | -          |
| S=OHO                                                 | -                | 3504, 3540 | 3506, 3540 | 3550       | -          | -          |
| Ω C-H                                                 | -                | 3022, 2936 | 3022, 2936 | -          | -          | -          |

Table S2. FTIR assignments (cm<sup>-1</sup>) of the solids derived from red kaolinite.

| Assignment                      | K al D     | Kaol-R-    | Kaol-R-          | Kaol-R-    | Kaol-R-               | Kaol-R-                |
|---------------------------------|------------|------------|------------------|------------|-----------------------|------------------------|
|                                 | Ka01-K     | DMSO       | TiO <sub>2</sub> | TiO2-400   | TiO <sub>2</sub> -700 | TiO <sub>2</sub> -1000 |
| ν (OH)inner                     | 3622       | 3622       | 3622             | 3622       | -                     | -                      |
| $\nu$ (OH)inner surface         | 3696, 3658 | 3662, 3700 | 3662, 3696       | 3656, 3694 | -                     | -                      |
| δ Н-О-Н                         | 1632       | 1648       | 1648             | 1634       | 1630                  | 1620                   |
| N Si-O                          | 1026, 1108 | 1034, 1104 | 1026, 1102       | 1030, 1110 | 1088                  | 1074                   |
| $\nu$ Al-OH <sub>inner</sub>    | 916        | 910        | 908              | 916        | -                     | -                      |
| v Al-OHinner<br>surface         | -          | 960        | 962              | -          | -                     | -                      |
| SiO2 or quartz                  | 792        | 788        | 788              | 792        | -                     | -                      |
| δ Si-O-Al                       | 754        | 746        | 746              | 756        | -                     | -                      |
| δ Si-O-Si out of<br>plan        | 696        | 690        | 688              | 698        | -                     | -                      |
| $\Delta$ Si-O-Al <sub>oct</sub> | 540        | 554        | 554              | 542        | -                     | -                      |
| $\delta$ Si-O-Si in plane       | 470        | 468        | 466              | 472        | 464                   | 464                    |
| N Si-O                          | 430        | 434        | 434              | 430        | -                     | -                      |
| S=OHO                           | -          | 3504, 3540 | 3506, 3542       | 3436       | -                     | -                      |
| $\Omega$ C–H                    | -          | 3022, 2936 | 3022, 2936       | -          | -                     | -                      |

20



© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

21