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Abstract: Ammonium sulfide ((NH4)2S) was used for the passivation of an InP (100) substrate
and its conditions were optimized. The capacitance–voltage (C–V) characteristics of InP
metal-oxide-semiconductor (MOS) capacitors were analyzed by changing the concentration of
and treatment time with (NH4)2S. It was found that a 10% (NH4)2S treatment for 10 min exhibits
the best electrical properties in terms of hysteresis and frequency dispersions in the depletion or
accumulation mode. After the InP substrate was passivated by the optimized (NH4)2S, the results of
x-ray photoelectron spectroscopy (XPS) and the extracted interface trap density (Dit) proved that the
growth of native oxide was suppressed.
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1. Introduction

As silicon-based, complementary metal-oxide-semiconductor (CMOS) technology has been
approaching its fundamental limits, III–V semiconductors have been focused on as alternative channel
materials due to their high electron mobility. In particular, indium phosphide (InP) is considered one
of the promising materials due to its larger band gap than silicon (~1.34 eV), which results in low
off-state leakage current and high breakdown field [1–3]. In addition, InP is preferred to a barrier
layer between the gate oxide and the InxGa1−xAs channel [4]. Despite these advantages, the poor
interfacial quality between a high-k dielectric and an InP substrate compared to SiO2 and Si is still
a major obstacle to overcome before high-performance MOS field-effect-transistors (MOSFETs) can be
realized. Thus, every endeavor to keep the InP substrate clear of the native oxide growth and external
contamination prior to deposition of the high-K dielectric is required for a reduction of Dit. For this
purpose, ex situ cleaning methods using wet chemicals, such as HCl, H2SO4, NH4OH, and HF, have
consistently been developed [5]. Various works have been done for the enhancement of the interfacial
quality over the last few decades [6–8]. Recently, Cuypers et al. reported that sulfur passivation by
(NH4)2S was useful for suppressing unwanted effects arising from pre-existing defects and the rapid
re-oxidation of the surface after wet chemical cleaning [9]. As the group VI element, sulfur and oxygen
have the same number of valence electrons; however, the electronegativity of sulfur is lower than that
of oxygen. Hence, the interface of In–S become stable so that the formation of the native oxide can be
effectively inhibited. To take advantage of this feature, (NH4)2S has widely been employed [1–3,10–13].
However, comprehensive analyses regarding the process parameters used in sulfur passivation which
affect the InP MOSFETs remain insufficient.

In this work, the conditions of (NH4)2S passivation were optimized to enhance the performance
of the device. The electrical characteristics of an InP MOS capacitor (MOSCAP) were investigated
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while varying the passivation conditions of (NH4)2S, in this case the concentration and treatment time.
Then, the chemical properties of the sulfur-passivated interface with the optimized conditions were
compared with those of a non-passivated interface. Furthermore, the Dit distribution across the InP
energy bandgap was extracted using a conductance method [14–17] in order to evaluate the interfacial
quality, which affects the performances of InP MOSFETs.

2. Experimental

MOSCAPs were fabricated on an undoped InP (100) wafer with an n-type carrier concentration of
5 × 1015 cm−3. Initially, the substrates were cleaned with a 1% HF solution for 5 min, after which they
were treated with (NH4)2S at concentrations of 1%, 5%, 10%, and 22% which were diluted by deionized
H2O for 10 min at room temperature (300 K). Other substrates were treated with the fixed concentration
of 10% (NH4)2S for 5 min, 10 min, and 30 min. As the gate oxide, 7 nm of Al2O3 was deposited on the
substrate at a temperature of 150 ◦C by means of atomic layer deposition (ALD) after a rinse by water
was performed. In the ALD process, trimethylaluminum (TMA) and H2O were sequentially supplied
under purging with N2 during each deposition cycle. For a gate electrode, 10 nm of Ni and 100 nm of
Au were deposited using a thermal evaporator through a shadow mask. Afterwards, the MOSCAPs
were annealed with ambient gas (4% H2/96% N2) at 400 ◦C for 30 min.

3. Discussion and Results

The structural properties of the Au/Ni/Al2O3/InP samples were characterized by high-resolution
transmission electron microscopy (HR-TEM) using a field-emission transmission microscope operated
at 300 kV (Tecnai G2 F30). In order to study the bonding status at the Al2O3/InP interface, ex situ X-ray
photoelectron spectroscopy (XPS) was analyzed using a monochromated Al Kα (1486.7 eV) source
with a base pressure in the mid-10−10 Torr range. Capacitance-voltage (C–V) and conductance–voltage
(G–V) measurements were carried out using an E4980A precision LCR meter at room temperature.

A schematic of the MOSCAP is shown in Figure 1a. Al2O3 was deposited over the entire InP
substrate. Afterwards, patterned Ni and Au were deposited through a shadow mask which had holes
with a diameter of 300 µm. Figure 1b shows a cross-sectional HR-TEM image of the MOSCAP on the
InP substrate, which was treated with the 10% (NH4)2S solution for 10 min. The TEM image indicates
that the ALD Al2O3 has a uniform thickness and an amorphous structure. Moreover, an abrupt
interface was created without the growth of the native oxide.
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Figure 2a–e shows the C–V characteristics of the devices treated with diluted (NH4)2S solutions at
different concentrations. Three issues exist in all of the curves. First, the accumulation capacitance
cannot reach the theoretical value of the oxide capacitance, which is calculated according to the actual
thickness of the gate dielectric. This phenomenon originates from the low density of states (DOS) of
the InP substrate above the conduction band. Secondly, there is frequency dispersion in the depletion
mode, an indicator of the level of Dit, which is an important characteristic in terms of enhancing
the performance of MOSFETs. Lastly, there is also frequency dispersion in the accumulation mode.
This is associated with conductive losses, which are mostly caused by border traps located in the gate
dielectric near the interface [16,18,19]. As shown in Figure 2f, hysteresis and frequency dispersion
in the accumulation are effectively suppressed in the sample treated with the 10% (NH4)2S solution.
Consequentially, the smallest Dit and border trap distribution were achieved by the 10% (NH4)2S
treatment, whereas (NH4)2S concentrations of 1% and 5% were not sufficient for substrate passivation,
and a concentration of 22% resulted in excessive surface roughness [20].
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Figure 2. The capacitance–voltage (C–V) characteristics of (a) 0%, (b) 1%, (c) 5%, (d) 10%, and (e) 22%
(NH4)2S treated Au/Ni/Al2O3/InP. They were measured at room temperature under various frequencies
of 100 Hz, 1 kHz, 10 kHz, 100 kHz, and 1 MHz. (f) Measured hysteresis at 100 kHz for all samples.
Frequency dispersion of the accumulation capacitance ranging from 100 Hz to 1 MHz (four decades).

Subsequently, based on a concentration of 10%, a short-term treatment time such as 5 or 10 min is
proper for passivation, while a longer treatment time such as 30 min could attack the surface akin to
the process with the 22% solution at 10 min (refer to the Supplementary Figure S1). On the other hand,
other concentrations are also able to passivate the substrate, but they are not appropriate, because the
1% and 5% solutions require longer treatment times and 22% causes excessive surface roughening;
there are no additional advantages compared with 10%. In this regard, another substrate, such as
In0.53Ga0.47As [8,21] or InSb [20], shows the same trend depending on the concentration and treatment
time of the solution. Therefore, the 10% (NH4)2S solution for 10 min is an optimal passivation condition
for the InP (100) as well as other III–V substrates to attain the best electrical characteristics.

Using the 10% (NH4)2S treatment as the optimum condition for InP substrates, the interface
characteristics of Al2O3/InP were further studied through an analysis of the chemical properties and
Dit distributions beyond the electrical properties.

Figure 3a,b shows the In 3d core level spectra of InP substrates with or without sulfur passivation,
respectively. There are three deconvoluted peaks caused by the native oxides of indium oxides—InO,
InPO4/In(PO3)3, and InPOx with binding energy levels of 444.9 eV, 445.5 eV, and 446.1 eV, apart
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from another peak caused by the InP substrate with a binding energy of 444.4eV [9,22]. Importantly,
according to a comparison of Figure 3a,b, the peaks related to InPO4/In(PO3)3 and InPOx were reduced
due to sulfur passivation, which prevented the native oxide from growing. A similar trend was also
observed at P 2p core level spectra of the InP substrate, as shown in Figure 3c,d. There were two peaks
caused by In(PO3)3 and the InP substrate with binding energies of 134.1 and 129 eV [9,22]. In addition
to the In 3d spectra, the P 2p spectra also indicated that the native oxide was reduced due to sulfur.
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Figure 4 illustrates G–V contour maps and the Dit extracted from the InP MOSCAPs with or
without sulfur passivation. These contour maps exhibit the magnitude of the normalized parallel
conductance, (Gp/ω)/Aq, versus both the AC frequency and the gate voltage, whereω is the frequency,
A is the area of the MOSCAP, and q is the elementary charge. From the contour maps, the line to
connect the maximum value of (Gp/ω)/Aq represents the band bending efficiency and the Fermi level
movement with gate bias [15,23,24]. The maximum value of (Gp/ω)/Aq increases with a steeper slope
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with the 10% (NH4)2S compared to the case with no sulfur passivation, as shown in Figure 4a,b.
Therefore, it should be noted that the sulfur passivation leads to the depinning of the Fermi level,
making the band bending more efficient. Moreover, border traps were validated again. In the case
with no passivation, the (Gp/ω)/Aq peak spreads over the entire frequency range in the accumulation,
compared to the case with 10% (NH4)2S passivation. This implies that the conductive loss is caused
by two factors: border traps and series resistance. The maximum value of (Gp/ω)/Aq extracted by
the measurement equipment was used as the level of the Dit distribution across the maps. Figure 4c
indicates that the MOSCAP with a sulfur treatment shows a lower Dit distribution than that without
a sulfur treatment. This result is consistent with the C–V characteristics shown in Figure 2a,d.
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