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Abstract: Automobile, aerospace, and shipbuilding industries are looking for lightweight materials
for cost effective manufacturing which demands the welding of dissimilar alloy materials. In this
study, the effect of tool rotational speed, welding speed, tilt angle, and pin depth on the weld joint
were investigated. Aluminum 5052 and 304 stainless-steel alloys were joined by friction stir welding
in a lap configuration. The design of the experiments was based on Taguchi’s orthogonal array for
conducting the experiments with four factors and three levels for each factor. The microstructural
analysis showed tunnel defects, micro voids, and cracks which formed with 0◦ and 1.5◦ tilt angles.
The defects were eliminated when the tilt angle increased to 2.5◦ and a mixed stir zone was formed
with intermetallic compounds. The presence of the intermetallic compounds increased with the
increase in tilt angle and pin depth which further resulted in obtaining a defect-free weld. Hooks were
formed on either side of the weld zone creating a mechanical link for the joint. A Vickers hardness
value of HV 635.46 was achieved in the mixed stir zone with 1000 rpm, 20 mm/min, and 4.2 mm pin
depth with a tilt angle of 2.5◦, which increased by three times compared to the hardness of SS 304
steel. The maximum shear strength achieved with 800 rpm, 40 mm/min, and a 4.3 mm pin depth with
a tilt angle of 2.5◦ was 3.18 kN.

Keywords: dissimilar materials; friction stir lap welding; pin depth; tilt angle; tool rotational speed;
welding speed

1. Introduction

The joining of two different materials which are completely different in their mechanical, physical,
and chemical properties is always a challenge. Aluminum and steel are very difficult to weld because
of the large difference in their melting temperatures. Friction stir welding (FSW), which was introduced
in 1991 at The Welding Institute, has the advantage over fusion welding techniques in terms of joining
dissimilar materials. Friction stir welding depends entirely on how much heat is produced during the
process, an outcome of the friction between the rotation tool and the fixed plates. If the heat generated
is too high, the aluminum may reach its melting point which will not result in a sound joint; if the heat
generated is not enough to stir the steel into aluminum, it will result in a joint with many defects. Thus,
process parameters, such as tool rotational speed, welding speed, pin depth, and tilt angle, play a
crucial role in deciding the weld quality [1,2].

Friction stir lap welding (FSLW) of aluminum and steel is usually carried with the aluminum on
top and the steel on the bottom so that the heat generated will be enough for plastic deformation of
the materials to form a strong joint. Elrefaey et al. [3] welded commercially pure aluminum and low
carbon steel plates with different ranges in process parameters to investigate the joint strength and
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concluded that a minimal difference in the pin depth will have a large impact on the joint strength.
Lap joints between AA 5083 and SS 304 of 3 mm thickness were produced by Kimapong et al. [4] with a
pin depth of 3–3.3 mm and found that increasing the rotational speed decreased the joint strength and
vice versa with traverse speed and more intermetallic compounds forming with increased pin depth.
Chen et al. [5] welded three different types of steel with AC4C alloy and found that zinc-coated steel
had better fracture strength when compared with brushed and mirror-finished steel which was nearly
97.7% of the chosen steel. The effect of the cylindrical pin on 1.5 mm AA6181-T4 and HC340LA joints
was studied by Coelho et al. [6] where 0.2 µm thick intermetallic compounds were formed and the
weld had 73% joint strength of the aluminum base material. When Movahedi et al. [7] welded 3 mm
thick AA 5083 and St-12 with different tool rotational speeds and welding speeds, they found that the
joint strength increased with decreasing welding speed, and the microstructure revealed the presence
of intermetallic compounds. The effect of tool rotational speed and traverse speed on 6063 aluminum
and 1 mm thickness zinc-coated steel with a pin depth of 3.1 mm was investigated by Das et al. [8] and
achieved 58.6% failure load of the base aluminum alloy. Studies on FSLW of 1060 aluminum alloy and
1Cr18Ni9Ti steel were investigated by Wei et al. [9] which revealed that the joint strength increased
with the increase in pin depth when the tilt angle was maintained at 0◦. The maximum shear load of
7500N was achieved by Wan et al. [10] when 6082-T6 aluminum and Q235A steel were friction stir lap
welded with a tilt angle of 2.5◦ and resulted in defect-free weld. Various process parameters were used
by Nguyen et al. [11] to weld DP800 and AA6351 sheets, and they noticed that the weld joints with
high intermetallic thickness had a higher joint strength.

Not only do the process parameters and plunge depth effect the joint properties, but the pin
geometry along with pin material will also have an impact on the joint strength. A new cutting-edge
pin geometry was introduced by Xiong et al. [12]; the pin was made with YG8 cemented carbide rotary
burrs and inserted into an H13 tool holder to weld 1100 aluminum alloy and 1Cr18Ni9Ti stainless steel
sheets which yielded a shear strength of 89.7 MPa, which is stronger than that of the aluminum base
alloy. Shamsujjoha et al [13] used W-Re-HfC pin tools to weld 1018 stainless steel and 6061 aluminum
alloy and found that the longer pin tool achieved the highest joint strength which was 58% of the base
aluminum alloy. Pseudo steady-heat transfer analysis conducted by Das et al. [14] proved that the
presence of Al13Fe4 intermetallic compound (IMC) increases with the increase in rotational speed and
decrease in welding speed which results in almost a 70% joint strength of steel. Further, the study
on intermetallic compounds formed between the weld joints of 6061 aluminum and high-strength
interstitial free steel proved that thermo-dynamically stable IMC’s are formed, confirming that diffusion
plays a major role in joint strength [15]. The microstructure of the lap welded joints of AA 6061-T6
and low carbon steels revealed that the thickness of the IMC layer decreases with the increase in
welding speed which, in turn, will affect the joint strength [16]. Annealing was used to increase the
joint strength of 3 mm 5083 aluminum alloy and 1 mm St-12 steel sheet by Movahedi et al. [17] when
at 300 ◦C and 350 ◦C. The joint strength increased with the increase in annealing time, but the joint
strength decreased as the temperature was increased to 400 ◦C. Haghshenas et al. [18] found that the
joint strength achieved by diffusion bonding of 5754 aluminum alloy with coated high-strength steels
increased with the decrease in welding speed and increase in pin depth. Fatigue crack propagation and
fracture toughness of friction stir lap welded 3003 aluminum and SUS304 were examined by Hidehito
et al. [19] who noticed that fracture toughness depends on crack propagation. A novel technique called
self-riveting FSLW was developed by Huang et al. [20] to join a 6082-T6 aluminum alloy to QSTE340TM
steel, and they proved that the riveting technique in FSLW will improve the fracture load of the joint.

It is evident from the abovementioned studies [1–20] that the selection of process parameters
plays a significant role in determining the robustness of the weld. The objective of this study was to
investigate the effect of tilt angle and pin depth on the welded joint. The tool rotational speed ranges
used were from 800 rpm to 1200 rpm and the welding speed ranges used were from 20 mm/min to
40 mm/min. The pin depths chosen for the experimental procedure were between 4.1 mm and 4.3 mm
with tilt angles ranging from 0◦ to 2.5◦.
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2. Experimental Methodology

The base metals chosen for this study were aluminum 5052 alloy with the dimensions 200 mm
× 100 mm × 4 mm and 304 stainless steel alloy with the dimensions 200 mm × 100 mm × 2 mm.
The chemical compositions of the base metals are shown in Table 1.

Table 1. Composition of 304 stainless steel and 5052 aluminum.

SS 304 Elements Fe Cr Ni Mn N S C Si P

Percentage (wt.%) Bal 18 8 2 0.1 0.03 0.08 0.75 0.045

AA 5052 Elements Al Cr Mg Mn Fe Cu Zn Si Others

Percentage (wt.%) Bal 0.15–0.35 2.2–2.8 0.1 0.4 0.1 0.1 0.25 0.15

The base metals are welded in lap joint configuration with CNC FSW machine with a constant
inflow of argon gas to cool the tool from overheating. The schematic diagram of FSLW is shown
in Figure 1. Tool material was made with Tungsten–Rhenium (W–Re), with a shoulder diameter of
20 mm, cylindrical shaped pin diameter of 5 mm with a pin length of 4.1 mm. Based on the preliminary
results, the process parameters chosen for the design of experiments were tool rotational speed (TRS),
welding speed (WS), pin depth (PD), and tilt angle (TA). The ranges of these parameters are shown
in Table 2. The design of the experiments included four factors, each having three levels, and the
optimized number of experiments were chosen according to the Taguchi L9 orthogonal array as shown
in Table 3. The experiments were conducted using a load force of 7.5 kN.

Table 2. Process parameters and their levels.

Parameter Level 1 Level 2 Level 3

Tool Rotational Speed (rpm) 800 1000 1200
Welding Speed (mm/min) 20 30 40

Pin Depth (mm) 4.1 4.2 4.3
Tilt Angle (Degree) 0 1.5 2.5

Table 3. Taguchi L9 orthogonal array.

Run TRS (rpm) WS (mm/min) PD (mm) TA (degree)

FSLW-1 800 20 4.1 0
FSLW-2 800 30 4.2 1.5
FSLW-3 800 40 4.3 2.5
FSLW-4 1000 20 4.2 2.5
FSLW-5 1000 30 4.3 0
FSLW-6 1000 40 4.1 1.5
FSLW-7 1200 20 4.3 1.5
FSLW-8 1200 30 4.1 2.5
FSLW-9 1200 40 4.2 0

The welded joints were cut according to ASTM E8 (sub-size) standards perpendicularly to the
welding direction using wire-cut electrical discharge machining (EDM, Mitsubishi, Tokyo, Japan)
for tensile shear testing. The dimensions of the tensile shear test specimen are shown in Figure 2.
The tensile shear tests were carried out on a 100 kN universal testing machine at a speed rate of
3 mm/min. The hardness of the welded joints was determined with a Vickers hardness testing
machine (Leco LM 247AT, St. Joseph, MI, USA) by applying a load of 500 gf with a dwell time of
15 s. The hardness values were taken in the mixed stirred zone along the cross-section. Samples for
microstructural analysis were cut in 20 mm × 20 mm size with wirecut EDM. Keller’s reagent was used
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to etch the 5052 aluminum side and Nital was used to etch the SS 304 side. Microstructure analysis
was conducted using scanning electron microscopy (SEM, Phenom Pro X, Eindhoven, Netherlands).Materials 2019, 12, x FOR PEER REVIEW 4 of 11 
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Figure 2. Dimensions of the tensile shear test specimen (mm).

3. Results and Discussion

3.1. Macrostructure of the Lap Joints

Macrostructures of the welded samples will give a good perception of the welded zone.
The experiments were carried out with a 0◦ tilt angle, and the formation of a tunnel defect can
be observed in Figure 3a. This was the result of not enough stirring of material and heat input, because
the aluminum was thrown out of the mixed stir zone while stirring. The tunnel defect size increased
with the increase in the depth and resulted in more flash formation during the welding. When the
tilt angle was increased to 1.5 degrees with the same rotational and traverse speed and pin depth,
the tunnel defect was reduced, but some micro voids were formed (Figure 3b) in FSLW-2 and FSLW-6
where the pin depth was 4.1 mm (0.1 penetration mm in steel) and 4.2 mm (0.2 penetration mm
in steel). The micro voids were reduced to micro-cracks when the pin depth increased to 4.3 mm
(0.3 penetration mm in steel) in FSLW-7. The macrostructure of the dissimilar FSLW joint is shown in
Figure 3c, where a sound and defect-free joint was obtained. In the nugget zone, the material was
extruded from the advancing side towards the retreating side of the weld, forming a mechanical link
between the aluminum and steel plates.
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3.2. Microstructure of the Lap Joints

Microstructures of the welded zone were obtained using a scanning electron microscope. As a
result of the tunnel defect shown in Figure 4, different sizes of scattered steel fragments were found in
the mixed stir zone. The uneven distribution of steel fragments into aluminum increased with the
increase in tool rotational speed. Due to the movement of the tool in the welding direction, the steel
particles from the surface of the steel were dragged along the welding direction which is the reason for
the uneven scattering of the steel fragments. The tunnel defect was observed on the advancing side
whereas the stir zone on the retreating side was good and without any defects.

Increasing the tilt angle to 1.5◦ reduced the tunnel defect, but the formation of micro voids and
root cracks can be observed. The uneven distribution of steel and aluminum fragments is observed in
Figure 5 in the mixed stir zone (MSZ). The rotation of the tool was in the clockwise direction, and by
increasing the tilt angle, the escaping of material from the stir zone was reduced, and because of the
pin depth, a mixed stir zone was formed consisting of aluminum and steel fragments alongside the
intermetallic compounds. A wave-like streamline was detected which is evidence that the mixture of
both materials is occurring. However, the flash formed was less when compared to the 0◦ tilt angle,
because the stirred material was pushed inside instead of escaping from the stirred zone.
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Figure 5. SEM images of the mixed stir zone with a 1.5◦ tilt angle.

Further increasing the tilt angle to 2.5◦, a sound weld was obtained with proper mixing of
aluminum and steel and without any defects as can be seen in Figure 6. The small voids which were
seen with the 1.5◦ tilt angle were also eliminated. The increase in tilt angle and pin depth eliminated
the uneven distribution of fragments in the stir zone. There was a hook-like mechanical link formed
on either side of the stir zone as shown in Figure 6. The formation of the hook depends on the depth of
the pin. Even here, the intermetallic compounds can be perceived in the mixed stir zone (MSZ) of the
weld. The mechanical link which was formed on either side of the weld zone holds a crucial role in
deciding the strength of the joint. The hook formed with FSLW-8 was less when compared to FSLW-3
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and FSLW-4, and, as a result, the maximum tensile shear strength of 3.18 kN and 3.13 kN was achieved
with FSLW-3 and FSLW-4, respectively.Materials 2019, 12, x FOR PEER REVIEW 7 of 11 
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3.3. Mechanical Properties of the Lap Joint

Tensile shear test results showed that a maximum of 3.18 kN shear strength can be achieved with
a tool rotational speed of 800 rpm, welding speed of 40 mm/min with a pin depth of 4.2 mm when the
angle was tilted to 2.5 degrees, and the least, 0.64 kN, was obtained with a TRS of 1000 rpm, WS of
30 mm/min, with a pin depth of 4.3 when the angle was not tilted. It is evident from the results that
tensile shear strength mostly depends on the tilt angle and pin depth rather than tool rotational speed
and welding speed. The top three tensile shear test results were obtained when the angle was tilted to
2.5 degrees, the least three were obtained when there was no tilt in the angle, and the medium results
were obtained when the angle was tilted to 1.5 degrees.

The effect of pin depth and tilt angle on tensile shear strength is shown in Figure 7. At 0◦ tilt
angle, the shear strength decreased with the increase in pin depth, and, at a 2.5◦ tilt angle, it increased
with the increase in pin depth. This pattern shows that the increase in tilt angle can stir and hold
the material together in the mixed stir zone such that the tunnel defects, which were formed at 0◦,
are eliminated. But, when at 1.5◦, the pin depth did not show much variation in the joint strength.

The Vickers hardness results confirm that a maximum of 635.46 HV was obtained when the tool
rotational speed was 1000 rpm, welding speed was 20 mm/min, the pin depth was 4.2, and the tilt angle
2.5◦. The hardness results also followed the same pattern as the tensile shear test results, where the
highest hardness was obtained when the tilt angle was 2.5◦ and the least when the tilt angle was 0◦.
The pin depth variation did not show much effect on the hardness like the tilt angle. As shown in
Table 4, the hardness values with different pin depths at the same tilt angles were almost near to one
another. The effect of the pin depth and tilt angle on hardness is shown in Figure 8. According to
Basariya et al. [21], high hardness values can be obtained when intermetallic compounds are formed.



Materials 2019, 12, 3901 8 of 11

Materials 2019, 12, x FOR PEER REVIEW 8 of 11 

 

 
Figure 7. Effect of tilt angle on shear strength at various pin depths. 

The Vickers hardness results confirm that a maximum of 635.46 HV was obtained when the tool 
rotational speed was 1000 rpm, welding speed was 20 mm/min, the pin depth was 4.2, and the tilt 
angle 2.5°. The hardness results also followed the same pattern as the tensile shear test results, where 
the highest hardness was obtained when the tilt angle was 2.5° and the least when the tilt angle was 
0°. The pin depth variation did not show much effect on the hardness like the tilt angle. As shown in 
Table 4, the hardness values with different pin depths at the same tilt angles were almost near to one 
another. The effect of the pin depth and tilt angle on hardness is shown in Figure 8. According to 
Basariya et al. [21], high hardness values can be obtained when intermetallic compounds are formed. 

Table 4. Hardness and tensile shear strength values of the specimens. 

Run TRS 
(rpm) 

WS 
(mm/min) PD (mm) Tilt Angle 

(degree) 
Hardness 

(HV) 
Shear Strength 

(kN) 
FSLW-1 800 20 4.1 0 333.32 1.73 
FSLW-2 800 30 4.2 1.5 524.02 2.21 
FSLW-3 800 40 4.3 2.5 576.9 3.18 
FSLW-4 1000 20 4.2 2.5 635.46 3.13 
FSLW-5 1000 30 4.3 0 355.42 0.64 
FSLW-6 1000 40 4.1 1.5 516.42 1.98 
FSLW-7 1200 20 4.3 1.5 517.9 2.09 
FSLW-8 1200 30 4.1 2.5 588.86 2.30 
FSLW-9 1200 40 4.2 0 214.84 0.98 

0

0.5

1

1.5

2

2.5

3

3.5

0° TA 1.5° TA 2.5° TA

Effect of PD and TA of Shear Strength (kN)

4.1 4.2 4.3

Figure 7. Effect of tilt angle on shear strength at various pin depths.

Table 4. Hardness and tensile shear strength values of the specimens.

Run TRS (rpm) WS
(mm/min) PD (mm) Tilt Angle

(degree) Hardness (HV) Shear
Strength (kN)

FSLW-1 800 20 4.1 0 333.32 1.73
FSLW-2 800 30 4.2 1.5 524.02 2.21
FSLW-3 800 40 4.3 2.5 576.9 3.18
FSLW-4 1000 20 4.2 2.5 635.46 3.13
FSLW-5 1000 30 4.3 0 355.42 0.64
FSLW-6 1000 40 4.1 1.5 516.42 1.98
FSLW-7 1200 20 4.3 1.5 517.9 2.09
FSLW-8 1200 30 4.1 2.5 588.86 2.30
FSLW-9 1200 40 4.2 0 214.84 0.98
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3.4. Signal-to-Noise Ratio Analysis

The obtained tensile shear strength and hardness values were further analyzed using Taguchi’s
signal-to-noise (S/N) ratios to obtain the influence of factors on the responses. The approach for the S/N
ratio in this study was “the larger the better” in order to obtain the maximum response. The calculated
S/N ratios for the criteria for “the larger the better” and mean responses are shown in Table 5.

Table 5. Signal-to-noise ratios of the experiments.

Level Tool Rotational Speed Welding Speed Pin Depth Tilt Angle

1 67.25 67.04 65.99 60.25
2 63.99 63.43 65.57 66.43
3 64.52 65.29 64.21 69.08

Delta 3.25 3.61 1.78 8.83
Rank 3 2 4 1

The output of S/N ratios are plotted in Figure 9. According to “the larger the better” criteria, it is
revealed from the plot that the maximum tensile strength and hardness can be achieved with a tool
rotational speed of 800 rpm, welding speed of 20mm/min, 4.1 mm pin depth, and a tilt angle of 2.5◦

where the tilt angle is the most influential factor ranked at 1 followed by welding speed, tool rotational
speed, and pin depth.Materials 2019, 12, x FOR PEER REVIEW 10 of 11 
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4. Conclusions

In this study, friction stir lap welding of 5052 aluminum and 304 stainless-steel alloys were
successfully achieved without any defects, and the following conclusions were drawn from the results.

1. Microstructural analysis revealed that a defect-free joint can be achieved with a tilt angle of 2.5◦ if
the mixed stir zone is visible with respect to pin depth. Micro voids are formed if the tilt angle
is reduced to 1.5◦ with steel fragments scattering in the mixed stir zone, and tunnel defects are
clearly visible on the advancing side of the stir zone and uneven distribution of steel particles on
the retreating side when the tilt angle is further reduced to 0◦.
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2. Tensile shear test results showed that a maximum strength of 3.18 N was achieved with 800 rpm,
40 mm/min, and a pin depth of 4.3 mm when the angle was tilted to 2.5◦ due to the fact of a good
mixed stir zone with intermetallic compounds.

3. Eliminating the micro voids and tunnel defects achieved a maximum hardness of HV 635.36 with
1000 rpm, 20 mm/min, and a pin depth of 4.2 mm when the angle was tilted to 2.5◦ and when a
defect-free weld was obtained.

4. From the microstructural analysis and tensile shear strength result, it is evident that a better joint
strength is achieved with a tilt angle of 2.5◦ and a pin depth of 4.3 mm.
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