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Abstract: The properties and curing mechanism of leaded samples solidified with phosphorous-slag-based
cementitious pastes are studied. The compressive strength, pH of percolate, and lead-ion concentrations
of leaded samples stabilized with the phosphorous-slag-based cementitious pastes and cement were
analyzed. Results confirmed that the phosphorous-slag-based cementitious paste performed much
better than cement in terms of solidifying lead. The cured form of lead with phosphorous-slag-based
cementitious pastes had higher compressive strength, lower lead leaching, and smaller change in
pH. Higher lead content corresponded with more obvious advantagees of phosphorus-slag-based
cementitious pastes and lower risk of environmental pollution. By means of X-ray Diffraction (XRD),
Fourier Transform Infrared Spectroscopy (FTIR), and Energy Dispersive Spectrometer-Scanning
Electron Microscope (EDS-SEM) analyses, we found that the hydration of phosphorus-slag-based
cementitious pastes produced hydrated calcium silicate gels, ettringite and other minerals with
large specific surface areas, as well as some leaded products that can combine with lead ions to
form chemically stable leaded products. This finding well explained the high performance of
phosphorus-slag-based cementitious pastes in terms of lead solidification and stabilization.
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1. Introduction

Lead, which is widespread in soils contaminated with heavy metals, has strong accumulation
capacity and strong biological toxicity [1]. This metal originates mostly from mining [2], metal smelting
and processing, sewage discharge, sewage irrigation, and the use of leaded gasoline; thus, soil pollution
by lead has become a primary concern. Cement-based solidification/stabilization process is extensively
used to control heavy-metal pollution [3], but this process has the drawbacks of relatively high
volume-change ratio, high cement cost, unstable solidified products [4] and environmental-related
problems during cement production [5,6].

Phosphorous slag is a by-product of granular industrial production in the yellow phosphorus
industry. Generally, 8–10 tons phosphorous slag is produced for every 1 ton of yellow phosphorus
product [7]. For instance, the amount of phosphorous slag exceeds 8.0 million tons annually, so the
accumulation and pollution of phosphorus slag has become a serious problem in China [8]. The main
components of phosphorus slag are calcium phosphate, pseudo-wollastonite, quartz, apatite, cuspidine,
tricalcium silicate, and dicalcium silicate [9,10]. Building-material scientists have explored many
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application approaches of phosphorus slag as cementitious pastes for producing high-performance
concrete [11], but very few have focused on using phosphorus slag in the solidification/stabilization of
lead-containing soil. Li et al. [12] found that phosphorous slag could effectively reduce the leaching
concentration of lead in the cured form compared with cement-solidified leaded soil. The researchers
have solidified lead-contaminated soil with the binder consisting of 70% ordinary Portland cement and
30% phosphorus slag at a binderto-dry soil ratio (wt./wt.) of 0.5. After curing the solidified samples at
20± 1 ◦C and 95% Rh, the concentration of Pb leaching by acetic acid decreases to 1.98 mg/L after 28 days
of aging. However, the curing agent has 70% cement, and thus remains cement in essence, so the toxicity
of leaching solution and the changes in microstructure require further investigation. Phosphorus
slag contains small amounts of calcium phosphate and apatite that can solidify/stabilize leaded
soils [13,14]. Accordingly, the curing effect and mechanism of phosphorus-slag-based cementious
material as an alternative cement-curing agent for lead-contaminated soil needs further study in order
to expand phosphorus-slag application and contribute to our knowledge on regarding disposal of
phosphorous slag.

In the present study, phosphorus slag was mixed with slag, clinker, and a small amount of
chemical activator as curing agent for the heavy metal lead. The curing effect of phosphorus slag
was compared with that of cement. The unconfined compressive strength, lead concentration and
pH change of the solidified body were studied. The hydration products of lead samples stabilized
with phosphorous-slag-based cementitious pastes were analyzed with X-ray Diffraction (XRD),
Fourier Transform Infrared Spectroscopy (FTIR), and Energy Dispersive Spectrometer-Scanning
Electron Microscope (EDS-SEM). The results may confirm the phosphorous-slag-based cementitious
pastes’ good solidification ability for lead and reveal the underlying mechanism through microscopic
analysis of the hydration products. The findings may also serve as a basis for further applying
phosphorus slag as cementitious pastes with high efficiency.

2. Materials and Methods

2.1. Solidified Materials

The curing agents used were phosphorus-slag-based cementitious pastes (PS) and P•C 32.5 cement
(PC). PS was composed of 50% phosphorus slag (PP), 17% blast furnace slag (BS), 25% clinker (CC),
2% sodium hydroxide, 3% sodium sulfate, and 3% sodium silicate. PC was obtained from Gezhouba
Group Cement Corp. Ltd. (Gezhouba, China). By using a specific-surface-area analyzer (Mastersizer
2000, Malvern Panalytical, Malvern, England), the Blaine’s surface areas of PC, PP, BS, and CC were
determined to be 340.1, 502.4, 321.3, and 334.6 m2/kg, respectively. The chemical compositions of the
original materials are shown in Table 1.

Table 1. Chemical compositions of the main raw materials (mass ratio, %).

Materials CaO SiO2 Al2O3 MgO SO3 Fe2O3 P2O5 F

PP 45.3 42.1 3.31 1.77 – 1.31 3.67 2.49

BS 38.7 29.9 15.9 8.0 3.7 1.2 – –

CC 65.5 20.0 4.4 1.6 1.9 3.3 – 0.3

PC 45.87 27.37 10.46 6.68 2.64 2.29 – –

2.2. Experimental Methods

2.2.1. Stabilization Experiment

Each component of PS as the previous formula of PS curing body was weighed. A volume of
lead nitrate and distilled water was added into the mixture of PS components according to a given
mass ratio 0.4 of water/cement. The resulting lead-ion concentrations (mass ratios) in the mixture was
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0%, 0.31%, 0.63% and 1.26%, respectively. The prepared mixture was placed in a mortar mixer and
stirred for 3 min. All pastes were casted into 40 mm cubic molds and vibrated for 30 s in a flat-panel
vibration machine before curing at 20 ± 1 ◦C and 95% Rh for 24 h. After demoulding, the cubic
specimens were cured under water at 20 ± 1 ◦C to the provisions of aging. These samples’ compressive
strengths were determined at predetermined ages according to the Chinese Standard “Method of
testing cements–Determination of strength” (GB/T 17671-1999) [15].

2.2.2. Leaching Toxicity Experiment

The solidified body was dried to a constant weight at 60 ◦C and crushed below 3 mm. The samples
and deionized water were weighed and mixed according to a mass ratio of 1:10. The percolate
was prepared according to the Solid waste-extraction procedure for leaching toxicity-Acetic acid
buffer solution method (HJ/T 300-2007). The pH of percolate and the concentration of total lead
were measured.

2.2.3. Microstructure Analysis

The solidified body was taken out after being immersed in absolute ethanol for 48 h, and dried
at 60 ◦C to a constant weight for XRD, FT-IR, and SEM analyses. A scanning electron microscope
(JSM-5610LV, JOEL, Tokyo, Japan) united with the Energy Dispersive Spectrometer (Phoenix, EDAX,
Mahwah, NJ, America) were used to scan the micromorphology and analyze quantitatively the contents
of elements. The XRD patterns of crushed samples were obtained on a Rigaku Ultima IV diffractometer
(Ultima IV, Shimadzu, Kyoto, Japan) with a Cu target. FT-IR spectra were recorded on a Nicolet iS 50
Fourier transform infrared spectrometer (Nexus, Thermo Nicolet, Waltham, MA, America).

3. Results and Discussion

3.1. Solidification Properties

The compressive strength of samples doped with the same lead content increased with aging
regardless of PC or PS as curing agent (Figures 1 and 2). With increased lead content from 0.31% to
1.26%, the compressive strength of samples cured with PC decreased from 28.9, 36.9, and 53.4 MPa
to 1.65, 25.8, and 36.5 after 3, 7, and 28 days of aging, respectively. The variations in compressive
strength of the samples with the different lead contents ware −94.3%, −30.1%, and −31.6%, respectively,
among which the compressive-strength reduction after 3 days of aging was the most prominent.
However, with a relatively short aging time, lead content did not contribute to the compressive strength
of leaded samples cured with PS. In particular, the compressive strength of leaded samples stabilized
with PS remained constant after 3 or 7 days of aging with increased lead content. When the aging of
leaded samples cured with PS lasted until day 28 of aging, the change trend of compressive strength
appeared to be significant. The 28-day compressive strength of samples with 0.31% lead content was
38.9 MPa, whereas 0.63% and 1.26% lead content resulted in 1.37 and 1.48 times the compressive
strength, respectively. Thus, the compressive strength of the cured samples after long-time aging can
be improved by increasing the lead content.

Figures 3 and 4 show the change in pH with lead content for different aging times. With increased
lead concentration in the sample, the pH of PS solidified sample percolate remained nearly unchanged,
which may benefit situations wherein the actual lead-pollution concentration greatly fluctuated.
However, the pH of percolate from samples stabilized with PC greatly fluctuated, which was not
conducive to lead stability and adsorption. The pH of percolate from samples cured by PS with the
same lead content were higher than those cured by PC for different curing ages except for the samples
aged of 3 days. After 3 days of aging, the pH of percolate from samples cured with PS averaged at 11.7
and hardly fluctuated, whereas that cured with PC averaged at 12.1 and decreased with increased of
lead-ion content. After 7 days of aging, the pH of percolate from samples stabilized with PS was 13.4
on average, whereas that of PC was 12.1.
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After 28 days of aging, the pH of percolate from samples stabilized with PS exceeded 12.6,
whereas that stabilized with PC was between 12.55 and 12.68. The possible reason for this was that the
amount of lead adsorbed by the hydration products of PS was more than that of PC. Many hydroxide
products were present in samples stabilized with PC, so the alkalinity of the cured body may have
decreased [16]. The pH values of the two kinds of cured samples after 28 days of aging were relatively
close, and remained stable with the change in content, indicating that most absorbable lead and
precipitated lead had achieved stability.

"N/A" means that the concentration of lead in the percolate is lower than the limit of detection.
For the original sample with high concentration of lead, the lead concentration in the percolate from
the solidified body cured with PC or PS decreased significantly. According to Table 2, when the content
of Pb2+ was 0.31%, the lead concentration in the percolate of solidified body cured with PC at 3 days of
aging was 2.61 times of that cured with PS. The lead concentration in the percolate from cured body
that stabilized after 7 days of aging was significantly larger than that stabilized after 3 days of aging,
whereas the lead concentration of cured body stabilized with PC was 7.65 times that cured with PS.
Conversely, when the initial lead concentration was 0.63%, the lead concentration in the percolate
from the cured body with PC after 3 days of aging was only 24.0% of that cured with PS. The lead
concentration in the percolate of solidified body cured with PC after 7 days of aging increased by 10.2
times compared with that after 3 days of aging. However, the lead content in the percolate of solidified
body cured with PS after 7 days of aging decreased to 43.9% compared with that after 3 days of aging.
The lead concentration stabilized with PC was 6.13 times that stabilized with PS.

Table 2. Lead concentration of samples stabilized with different materials at different ages.

Lead
(wt.%)

Lead Concentration of Samples Cured With
PC (mg/L)

Lead Concentration of Samples Cured With
PS (mg/L)

3 days 7 days 28 days 3 days 7 days 28 days

0.31 0.086 0.352 N/A 0.033 0.046 N/A
0.63 0.258 2.891 1.810 1.076 0.472 0.311
1.26 0.648 1.537 1.551 1.761 0.958 0.622

After 3 days of aging, the lead concentration in the percolate of PC solidified body was higher
than that of PS only except when the initial lead content was 0.31%. These findings may be due to
the significantly higher calcium hydroxide produced by PC hydration than PS at early-stage curing.
The lead precipitation reaction developed effectively in the presence of calcium hydroxide, inducing
low lead concentration in the percolate of cured body with PC. This phenomenon was in accordance
with our finding that the pH of percolate from PC-cured body was slightly higher than that from
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PS-cured body. It was also related to the high alkalinity of PC, the setting-retarding effect of PS, and the
few hydration products at the early stage. Conversely, after 7 and 28 days of aging, the lead content of
the percolate from the cured body solidified with PS was lower than that with PC at a given initial lead
concentration, which may have resulted from the numerous generated adsorptive products with strong
adsorption capacity from the series of reactions. These products further adsorbed a large amount of
residual lead.

Compared with PC, PS showed an overall higher lead-solidification performance, which became
more noticeable with higher lead contents.

3.2. XRD Analysis

Figure 5 shows the XRD patterns of 1.26% lead samples stabilized respectively with PS and
PC at different hydration ages. As seen from Figure 5a, substances such as Portlandite (Ca(OH)2),
hydrated calcium silicate gels (Ca6Si3O12·H2O), calcite (CaCO3) were detected at day 3 hydration
age [17], indicating that they easily formed in the early stages. With prolonged hydration time
(28 days), the characteristic peaks of ettringite (Ca6Al2(SO4)3(OH)12·26H2O) were significantly
enhanced, indicating ettringite was still continuously generated. The characteristic peaks of calcium
silicate hydrate gels were obviously weakened and larnite (Ca2SiO4) was simultaneously detected,
which may be ascribed to crystal phase transition of calcium silicate hydrate. Along with the
decrease in characteristic peaks of calcite, the peaks of hydrocerussite (Pb(CO3)2(OH)2) were
enhanced noticeably. Meanwhile, the characteristics peak of lead carbonate hydroxide hydrate
(3PbCO3·2Pb(OH)2 ·H2O) was slightly developed [16]. By contrast, it can be seen from Figure 5b
that the cured products from pure cement solidified lead after 28 days mainly exist in the form of
lead hydroxide [18], which is chemically unstable and easily dissolved in strong alkaline solution or
carbonized. Certainly, the hydration products cured with PC also include substances such as calcium
silicate hydrate, ettringite and so on, which can absorb lead. These might be the main reason that
cement can solidify lead but the solidification effect is lower than phosphorus slag solidified lead
compared with Figure 5a. These phenomena may involve a series of complex mineral-recombination
reactions, which can drive calcite transform into compounds such like lead carbonate hydroxide
hydrate, hydrocerussite, and others containing elemental lead.
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Figure 5. X-ray Diffraction (XRD) patterns of leaded solidified samples at different hydration ages.
1-Ettringite, 2-Portlandite, 3-Calcium Silicate Hydrate, 4-Lead carbonate hydroxide hydrate, 5-Calcite,
6-Hydrocerussite, 7-Larnite, 8-Calcite, 9-Gypsum, a-Lead Hydroxide, b-Quartz. (a): 3-day-PS and
28-day-PS, (b): 28-day-PC.

3.3. EDS-SEM Analysis

The SEM image (Figure 6) clearly revealed the pores and spaces between the hydration products
in the microstructure, indicating that the filiform hydrated calcium silicate and lamellar hydrated
calcium hydroxide constituted a spatial network. In order to verify the solidification results of leaded
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solidified samples, EDS was employed to analyze the element-content distribution in the solidified
materials. It can be seen from Figure 6c that the lead content of the hydrated product adsorbed by
the solidified body cured with PC after 28 days of aging is only 1.98%, significantly lower than the
solidified body cured with PS (3.04% after 3 days and 4.55% after 28 days). Points a, b and c in the
samples with different hydration ages were respectively taken and marked in the images.
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The 3-day-hydrated calcium silicate gel contained a certain amount of elemental lead, indicating
that lead can replace elemental calcium in hydrated calcium silicate gel [19] or enter its microstructure
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in ionic form [20]. The lead content of the crystallized hydrated calcium silicate may be higher
after 28 days. In terms of sulfur elements, lead ions may have also been displaced into the lattices
of ettringite [21]. The above microstructure photos for different hydration ages (Figure 7a,b) were
analyzed with Image Pro-Plus software, and the porosity of the 3 day-hydrated sample was 31.99%,
whereas that of the 28 day-hydrated sample was 2.06% [22]. However, compared with the solidified
body cured with PS, the porosity of the 28-days solidified body cured with PC is 13.38% (Figure 7c).
We further concluded that the compactness of the microstructure of samples hydrated for 28 days
increased, thereby increasing the difficulty of lead leaching. Consequently, the leaching concentration
of lead in the 28 day-hydrated sample was lower than that of the 3 day-hydrated sample.
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3.4. FTIR Analysis

In order to further discuss the stability of leaded solidified samples cured with PS at different
hydration ages, the microsurrounding of the sample structure was studied by FT-IR spectroscopy,
which was exhibited in Figure 8. In the solidified samples, an additional spectroscopic feature was
related to the presence of γ2-H2O at 1648 cm−1 assigned to deformation water mode in ettringite [23].
The peaks at 607 and 633 cm−1 were also due to the SO4

2− bending vibration in ettringite [24]. The band
at 876 cm−1 was due to the symmetric and asymmetric vibrations of Al–OH band in the Al(OH)6

octahedral structure of ettringite [25]. The absorption bands at 962 and 669 cm−1 were due to the
Si–O–Si vibrations of Q2 tetrahedral, indicating the formation of calcium silicate hydrate gel [26,27].
At different hydration ages, absorption bands at 712 and 1397 cm−1 were observed and attributed to the
formation of the –CO3 group, which indicated the presence of lead carbonate and thus the formation
of lead carbonate hydroxide hydrate or hydrocerussite [28,29]. The absorption band at 1796 cm−1
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remained basically unchanged throughout the hydration phase corresponding to stretching vibrations
of the –CO3 group, which proved the presence of calcite [30].Materials 2019, 12, x FOR PEER REVIEW 12 of 14 
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4. Conclusions

Lead content significantly affected the compressive strength of cured body stabilized with PC.
A higher lead content corresponded with lower strength. However, the compressive strength of cured
body stabilized with PS showed a different pattern. The change in strength of the solidified body with
increased lead content of the sample aged for 3 days was not apparent. By contrast, the change in
strength obviously increased with increased lead content of the sample aged for 28 days.

Regardless of lead solidification with PC or PS, the pH of percolate from solidified samples
remained stable at day 28 of aging with increased lead content, which guaranteed the stability of
adsorption or precipitation of lead. However, the pH of percolate from samples solidified with PC
varied greatly with different initial lead contents, whereas lead content exerted little impact on those
solidified with PS, indicating its superior solidification stability.

The long-term stability of alkalinity can ensure the stability of hydration products and structures
of solidified bodies, and the risk of lead-leaching contamination in solidified body with PS was
significantly lower than that with PC.

PS was hydrated to produce hydrated calcium silicate gels, ettringite, and other minerals with
large specific surface area. At the same time, some ingredients can combine with lead ions to form
leaded products with stable chemical properties, which was the main reason for the high performance
of PS in terms of curing and stabilizing lead. Moreover, the increased compactness of microstructure
with increased age also contributed to the greater solidification/stabilization of lead in cured body
solidified with PS.

Based on the present findings, further studies on the long-term performance of solidified body
under acid rain or CO2 erosion, and the solidification/stabilization of actual lead-contaminated soil
and waste residue can benefit the high-quality utilization of phosphorus slag and serve as a basis for
new soil-remediation technologies.
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