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The Autocorrelation Function (ACF) is calculated along with the Partial Autocorrelation 
Function (PACF) to determine the coefficients of the models in the context of the Time Series Analysis 
(TSA) [1,2]. The ACF helps to visualize the statistical information related to the correlation between 
the data of successive cycles within a resistive switching series. The mean value (Equation (A1)) of 
the data is needed for the ACF determination: 

𝐸𝐸(𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡) = 𝐸𝐸(𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘) = μ (A1) 
 

where 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡  is the resistance in the low resistance state in the current cycle of a Resistive Switching 
(RS) series, and 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 is the resistance in the low resistance state lagged k cycles, i.e., the resistance 
in the low resistance state measured k cycles before the current cycle t in the RS series. 

As the variance is also required for the ACF determination, it can be obtained as shown in 
Equation (A2): 

Var �𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡� = E��𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 − μ�2� = Var�𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘� = σ. (A2) 
 

 

The autocovariance is obtained as follows: 

γ(k) = Cov�𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 ,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡� = E��𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 − μ��𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 − μ��. (A3) 
 

 

Hence, with all this information, the ACF can be calculated as shown in Equation (A4), and it 
can be employed to estimate the degree of dependence among the data (resistance in the low 
resistance state in this case) of different cycles. Precisely, for our case, the ACF summarizes how 
correlated the data lagged k cycles are. If we take into consideration that γ(0) stands for the variance, 
Equation (A4) can be simplified. 

𝜌𝜌(𝑘𝑘) = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 ,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡� =
Cov(𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 ,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡)

�Var(𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡)Var(𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘)
 =

𝛾𝛾(𝑘𝑘)
𝛾𝛾(0)

. (A4) 
 

 

TIME SERIES MODEL 
The formulation of an AutoRegressive Moving Average (ARMA) time series model, ARMA(p,q), 

is given as follows, 

𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 = ∅0 +  ∅1𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 + ⋯+ ∅𝑝𝑝𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑝𝑝 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + ⋯− 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞 (A5) 
 

 

where 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡  is the modeled low resistance states of the device in the current cycle of an RS series, 
𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 is the modeled device resistances lagged k cycles (namely, the k device resistance values of the 
previous RS cycles) and εt−k stands for the residuals found in the modeling process from earlier 
cycles (differences between the modeled and measured data in each cycle) with ∅𝑖𝑖(i=1, …, p) and 
𝜃𝜃𝑗𝑗(j=1, …, q) being the unknown regression coefficients to be estimated. In time series methodology, 
𝜀𝜀𝑡𝑡 is also considered; however, in our case, we assume that it is not included in the formulation as in 
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Reference [3]. Therefore, the actual device resistance in the LRS can be calculated by means of two 
linear polynomials: one for the autoregressive part (AR, in this case a linear function of some of device 
resistance past values), and the other for the moving average part (MA, a linear combination of the 
past residuals). p and q indicate the orders of the autoregressive and the moving average terms, 
respectively.  

ARMA modeling can be carried out in five stages: stationarity check, model identification, 
parameter estimation, validation and prediction. Each one is briefly described as follows: 
1. Stationarity Check 

We must ensure that the time series is stationary. This means that no change in the mean and 
the variance is observed over time. These values have to be distributed around a value (the mean) 
and the fluctuations above and under this value have to be similar in all the series range (the series 
data have to be within a constant interval). In addition, the sample ACF must tail off near zero after 
a few lags. Some transformations of the original variable to be modeled (logarithm, differentiation…) 
can be employed to convert a non-stationary series to a stationary one. This process would be 
performed over the transformed series, and a final reverse transformation would be required to 
recover the original variable. 
2. Model Identification 

We need to estimate the values of p and q and the order of the AR and MA polynomials, 
respectively. The ACF and PACF must be compared to the corresponding theoretical ACF and PACF 
for several ARMA models. 

The PACF evaluates the correlation between two variables separated by k periods in the series 
if the dependency due to the intermediate lags is eliminated. That is, 

π(k) = Cor �𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 ,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡�𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 ,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−2 , … ,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘+1�
=  Cor�𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 − R�LRSt−k , RLRSt − 𝑅𝑅�LRSt� 

(A6) 
 

where 𝑅𝑅�LRSt  is the estimated value by the linear regression model of 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡  on the lagged variables 
𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 ,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−2 , … , RLRSt−k+1. π(k) can be held by making the following regression 

𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡  =  𝜑𝜑𝑘𝑘1𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 + 𝜑𝜑𝑘𝑘2𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−2 + ⋯+ 𝜑𝜑𝑘𝑘,𝑘𝑘−1𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘+1+ 𝜑𝜑𝑘𝑘𝑘𝑘𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑘𝑘 . 

In this context, π(k)  =  𝜑𝜑𝑘𝑘𝑘𝑘. Thus, the PACF is an essential tool for detecting the order p of the 
AR (p) models. If the PACF is zero after lag p, then the data structure is well modeled using the p 
previous observed values. Consequently, an AR model is sufficient. The regression term number (p) 
is linked to the last significant value with respect to the threshold bounds in the PACF.  

If the ACF is zero after lag q, a MA model is used. The order is given by the last significant term 
in the ACF function. If both functions, the sample ACF and PACF, tail off to zero, then the model 
needs autoregressive and moving average terms. 

The sample partial autocorrelation π�(k) at a certain lag k is considered to be zero if they do not 
exceed the significance bound (threshold) given by, 

±
1.96
√n

 (A7) 
 

 

where n is the number of observed data (number of cycles in the RS series in our case) [2].  
The autocorrelation ρ�(k) at a certain lag k is considered to be zero if it does not exceed the 

significance bound (threshold) given by [2], 

±
1.96
√n

�1 + 2ρ2�(1) + ⋯+ 2 ρ2�(k − 1). (A8) 
 

 

If there is not correlation structure, this formula is equivalent to Equation (A7). 
3. Parameter Estimation 

Once an ARMA model is selected, the non-linear least square method is used for the calculation 
of the parameters. This technique also allows us to determine the residuals, 𝜀𝜀𝑡𝑡, for all t. 
4. Validation 

We must check that the different residuals are not correlated. The residuals (εj) ACF and PACF 
are obtained and plotted, the data have to be within the threshold bounds (Equations (A7) and (A8)). 
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5. Prediction 
Once the best model is achieved, the predictions of future values within the time series 

calculation scheme can be made.  
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