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Abstract: Sixty-four fractured commercially pure titanium (cp-Ti) narrow dental implants (NDIs)
with similar macrogeometry and connection designs were studied after different implantation times in
humans in order to determine their reliability and to evaluate the causes of the fracture. These NDIs
were compared with other similar implants, made with alloyed titanium with 15% Zr and with 12%
strained titanium. Original implants were tested under static and fatigue conditions, simulating the
tri-axial loads in the mouth by means of a Bionix hydraulic test machine. Fractography was studied
using field-emission scanning electron microscopy (FSEM). The results showed that cp-Ti NDI exhibits
low strength for mechanical cycling, and the alloyed Ti and strained titanium increase the mechanical
strength, guaranteeing long term mechanical behavior. NDIs fractured due to fatigue, and, in some
cases, the presence of cracks in the original NDIs quickly led to fracture. These cracks were attributed
to plastic deformation during machining were found to be exacerbated due to acid etching in the
passivation process. All cases of fracture were cp-Ti dental implants due to the low fatigue limit.
The results show that, when titanium is alloyed or cold-worked, the fatigue limit is higher than cp-Ti.
This in vitro research will help clinicians to select a better NDI system for safer treatment.
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1. Introduction

Sometimes, the available bone tissue is insufficient to place regular-diameter dental implants,
and new surgical techniques are necessary for increasing and regenerating the hard tissue. The use of
narrow dental implants (NDIs) is an alternative treatment, because these allow dental restorations in
areas with limited prosthetic space and they can be inserted in places that would otherwise require
grafting techniques [1–4]. In recent studies, the fatigue failure of narrow implants with different
implant–abutment connection designs was analyzed. From the results of this study, it can be observed
that differences occur between external and internal connections, with external connections having the
lowest reliability. The fatigue results with different internal connections were not significantly different
between groups [5]. Hirata et al. [6] evaluated the survival probability of four narrow-diameter implant
systems when subjected to fatigue loading. All implants were made with commercially pure titanium
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(cp-Ti) grade 4 with similar designs and diameters from 3.3 to 3.5 mm, with different geometries of
internal connections and abutments. The survival probability was not significantly different among
the implant systems.

The mechanical strength of cp-Ti is limited and its use in NDIs increases the risk of fracture
of the Ti dental implant [7–9]. In Figure 1, the fracture of an osseointegrated NDI after 17 months
of implantation in a patient can be observed. The small diameter and reduced wall thickness, and
the lower material bulk hamper the long-term survival. Furthermore, the bending of the prosthetic
components increases, thereby decreasing the restoration reliability.
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Figure 1. SEM micrographs of a narrow dental implant (NDI) fractured 17 months after implantation
in a patient. The fracture is located in the connection zone where the cross-sectional surface is lower.

It is well known that external hexagon connections are not adequate due to loads with different
angles drastically reducing the strength. Internal conical or hexagonal connections offer an improvement;
however, abutment neck fractures can even be observed in screwed internal connections, with some
involving implant fractures [3,7,10–16].

The objective of this research was firstly to study the cause of such premature fractures of NDIs
made from cp-Ti grade 4. Secondly, an evaluation of the mechanical properties, with suggestions for
their improvement, was carried out following two strategies: (1) alloying the titanium with 15% Zr,
and (2) straining the cp-Ti at 12%. Both strategies were employed to increase the mechanical strength,
hardness, and the fatigue life, so as to obtain a stress value at which the sample supported a total of 107

cycles, which was considered the fatigue limit.

2. Experimental Results and Discussion

The roughness (Ra) was very similar for the different dental implants studied: ~1.6 µm for cp-Ti
implants, ~1.7 µm for alloyed implants, and ~1.9 µm for cold-worked implants. The mechanical
properties of the tested implants are shown in Table 1. The yield strength for the grade 4 cp-Ti was
lowest, and it increased for the other implants. A similar trend was observed for the maximum
strength (σmax). On the other hand, the strain to fracture was lower for the Ti alloy and cold-worked
Ti. Ti-15%Zr presented a significantly higher value of strain compared to the cold-worked Ti [13–20].
Consequently, the cold-worked Ti presented a lower value of toughness, without any effects on other
properties such as the biocompatibility or corrosion resistance of cp-Ti. The hardness was shown to be
significantly higher for the cold-worked Ti than the other implants, due to the increase in the number of
linear defects in the hexagonal microstructure of α-titanium. The density of slip dislocations produced
an increase in the hardness and the mechanical properties. Ti-15%Zr also presented significantly higher
hardness values than cp-Ti grade 4 [21–24].
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Table 1. Mechanical properties of the dental implants studied, being σmax: Maximum strength (MPa),
σ0.2: Yield stress (MPa), ε: Strain to fracture (%), HVN: Hardness Vickers number.

Implant σmax (MPa) σ0.2 (MPa) ε (%) HVN

cp-Ti (grade4) JDE 460 (37) 357 (23) 17 (4) 104 (12)
Ti-15%Zr Roxolid 877 (24) 678 (20) 22 (4) 199 (15)

Ti strained 12% Vega 1100 (35) 740 (23) 8 (2) 380 (23)

In fatigue tests, material behavior is commonly characterized by an S–N curve, which describes
the magnitude of a cyclic force or stress (S) as a function of the number of cycles to failure (N). A value
under the curve suggests that a dental implant will not fracture. Figure 2 shows the S–N curve for the
different NDIs studied. The results show that the implants alloyed with Zr and those with Ti grade
4 submitted to 12% cold working presented more fatigue life than the Ti dental implants (grade 4)
without hardening treatment. The cold-worked or alloyed implants presented an asymptotic curve
around 200 N. However, the cp-Ti grade 4 presented a curve around 100 N. These values demonstrate
the importance of the static mechanical properties on the cyclic behavior. This aspect is very important
in clinical applications, whereby cp-Ti for NDIs would produce premature fractures when chewing
loads exceed 100 N.
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Figure 2. S–N curves (stress vs. number of cycles) of the different NDIs studied.

For NDIs which fractured after being inserted in patients, it can be observed that the fracture
mechanism was fatigue in all cases. The fractography can be observed in Figure 3, with different SEM
micrographs showing a detailed description of both crack nucleation points and crack propagation
paths. Figure 3 shows the presence of many longitudinal cracks along practically all vertices between
the walls of the inner hexagonal connection [25–27].
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Figure 3. SEM fractography of explanted cp-Ti grade 4 NDIs: (a) SEM micrograph of an explanted
implant, top view; (b) SEM micrograph of hexagonal inner connection (side view) showing longitudinal
fracture cracks; the white arrows mark the places of crack nucleation; (c,d) SEM micrographs showing
crack propagation at different magnifications.

The crack nucleation was generated inside the implant body, specifically in the inner hexagonal
connection walls just inside the bottom horizontal ground plane. After crack nucleation, progressive
crack growth produced under cyclic masticatory multiaxial loading was responsible for the propagation
path along the vertices of hexagonal connections, as well as through the walls, as can be seen in
Figure 3b [28–30].

Further fractography analysis performed on fatigue-tested NDIs showed the same fracture
patterns, as well as the same crack nucleation points and fracture paths.

From Figure 4a, the site of crack nucleation can be observed, as well as a site where crushing
occurred, due to the friction between the fracture surfaces in the crack propagation. This was the least
effective surface to which the load was applied and, consequently, this was the point of maximum
stress which provoked crack nucleation in the load cycle. The subsequent crack propagation was fast
due to the cyclic loads, leading to fracture. In Figure 4b, the typical striation or fatigue marks indicating
the direction of crack propagation can be observed [15–18,29].

One cause of premature fracture in the cp-Ti NDIs was the poor mechanical properties, especially
in the connection zone, in relation to the other implants, which had higher strength and fatigue limits.
On the other hand, in the manufacturing process, the conformation of hexagonal connections results
from plastic strain. This plastic strain produces small defects, as shown in Figure 5. These defects
present a higher residual energy and are the points of crack nucleation. Furthermore, the implants are
treated with acids in order to increase their roughness, so as to improve osseointegration and passivate
the dental implant. Sometimes, acid etching is used to color the connection, thereby helping the
surgeon identify the pieces for prosthesis. These acids, therefore, etch the defects and produce cracks
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before the insertion of the implant into the patient. When the implant is inserted, crack propagation
starts due to chewing cyclic loads until fracture occurs [19–21,30–32].
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Figure 5. SEM micrographs of inner cp-Ti grade 4 implant connection, showing some plastic deformation
and crack formation on the connection surface due to “broaching”. (a). Defects in the internal surface.
(b). Defects with more detail from 5a. These defects are the place of the crack nucleation. (c). Defects in
the internal surface with more plastic deformation. (d). These defects are cracks.

3. Materials and Methods

Sixty-four cp-Ti grade 4 fractured NDIs were studied. All subjects gave their informed consent
for inclusion before they participated in the study. The study was conducted in accordance with
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the Declaration of Helsinki, and the protocol was approved by the Ethics Committee with the code
CUO-R-2019-2310. The dental implants had screwed internal connections. The surface was treated
by sandblasting, using Al2O3 particles as an abrasive material, as well as by acid-etching, in order to
achieve roughness (Ra). In Figure 6, the original NDI during fabrication can be observed. Roughness
was evaluated for the test surfaces using white-light interferometer microscopy (Wyko NT1100, Veeco,
Tucson, AZ, USA). The analyzed surface area was 459.9 × 604.4 µm2 for all microrough surfaces.
Data analysis was performed with Wyko Vision 232TM software (version 4.0, Veeco, Tucson, AZ,
USA). A Gaussian filter was used to separate waviness from the roughness of the surface. Cut-off

values, λc = 0.8 mm, for microrough surfaces were applied. The measurements were made on three
different surfaces for each type of surface treatment to characterize the Ra (the average roughness),
which was calculated as the arithmetic average of the absolute values of the distance of all points of the
profile to the mean line.

For comparison with other NDIs which were submited to a hardening processes, such as alloying
with 15% Zr or cold-working at 12%, Roxolid® by Straumann (Switzerland) and Vega® by Klockner
(Spain) were used, respectively. The designs and main characteristics are presented in Figure 7 and
Table 2. As can be observed, the macrodesign and roughness were very similar.

Initially, static uniaxial compression tension tests were conducted in order to determine the yield
strength of the material, the ultimate strength, and the strain to fracture. The hardness of the specimens
was measured on polished cross-sections using a Vickers microhardness tester (Akashi, Matsusawa,
Japan) with a Vickers diamond indenter under a load of 0.98 N (100 gf) and 15 s of indentation. Fifteen
data points were collected and averaged for each hardness value. Ten implants were analyzed for
static tension, and the same number was used for hardness testing (n = 10).

Samples used in hardness testing were firstly embedded in methyl-methacrylate resin (Technovit
7200; Kulzer-Heraus GmbH, Wehrheim, Germany), and subsequently photo-polymerized in a light
control unit (Histolux; Kulzer GmbH, Wehrheim, Germany) in order to obtain solid transparent blocks
to allow sample cutting and polishing, thereby avoiding any kind of deformation and/or fracture during
these procedures. Resin blocks were cut along their cross-section using a diamond saw EXAKT 310 CL
(EXAKT Advanced Technologies GmbH, Norderstedt, Germany) with continuous water irrigation
at a maximum rotation speed with minimum load. Finally, cross-section samples were polished
by means of an automatic grinding machine Exakt-400CS (EXAKT Advanced Technologies GmbH,
Norderstedt, Germany), with parallelism, load, and speed controls, firstly using SiC papers increasing
in abrasiveness (600, 800, and 1200 grit), and subsequently polishing using a 1 µm Al2O3 abrasive
suspension, following the recommendations of the ASTM-E3 standard [22].

Implants used for mechanical testing were embedded into a polymeric resin to mimic oral
conditions before performing any mechanical assay in order to provide a stable support. NDIs were
placed perpendicularly at 3.0 mm ± 0.1 mm above the nominal bone level described by the different
manufacturers in a cold auto-curing polymeric resin (Mecaprex MA2+, Presi, France), as shown in
Figure 8.

All NDI systems used for mechanical testing were assembled according to different surgical
protocols, using the correct original components (abutments, screws, and implants), as well as using
proper torques defined by each manufacturer with self-adjustable precision surgical tools.

Following the static compression-to-fracture tests, fatigue tests at various percentages of the
obtained yield strength were performed following the recommendations of the ISO 14801:2016
standard [23], which allowed determining the number of cycles before fracture. The assays were
performed with a servo-hydraulic testing machine (MTS Bionix 858, Minneapolis, MN, USA) equipped
with the software TestStar II (MTS, Minneapolis, MN, USA). This machine was equipped with a load
cell (MTS) of 25 kN. The implants were loaded with a sinusoidal function of fatigue at a frequency of
15 Hz and 10% stress variation.
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Table 2. Implants used in the experiment.

Group Group 1
Cp-Ti Grade 4

Group 2
Ti Alloyed with 15%Zr

Group 3 Cp-Ti Grade 4 Hardened
by 12% Cold-Working

Implant type JDE (Ø 3.2 mm, h 8 mm)
(JDental, Modena, Italy)

Bone level Roxolid (Ø 3.3 mm,
h 8 mm) (Straumann AGR,

Basel, Switzerland)

Bone level Vega (Ø 3.5 mm, h 8mm)
(Klockner, Spain)

Connection type Conical internal Cross-fit internal Hexagon internal
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The dynamic cyclic fatigue assay was carried out in a triaxial compression–flexion–torsion mode,
placing the NDI implants fixed with an inclination of 30◦ ± 2◦ of the compression stress application axis
with the z-axis with respect to the tensile compression machine (Figure 9), under sinusoidal load at 30◦

and 15 Hz at room temperature under dry conditions [33]. The data were represented as the number
of cycles reached at fracture for different applied forces. The deformed and fractured specimens were
observed by means of field-emission scanning electron microcopy (JSM 7100, Jeol, Tokyo, Japan).
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Figure 9. Detail of the fatigue testing grips used by servo-hydraulic testing machine: (a) lower clamping
grip; (b) upper articulated grip.

Statistically significant differences among test groups for mechanical evaluation were assessed
using statistical software (MinitabTM 13.1, Minitab Inc., New York, NY USA). ANOVA tables with
a multiple comparison Fisher test were calculated. The level of significance was established at a
p-value <0.05.

All 64 fractured implants remained in position for a period of time ranging from six weeks to 20
months, after which the dental implants were fractured in all cases in the connection. The patients
were between 35 and 74 years old (58% women and 42% men). All patients were treated with calcium
phosphate granules in order to regenerate the bone. Once bone formation was obtained, a new dental
implant was implanted.

4. Conclusions

All cases of fractured narrow dental implants were manufactured with cp-Ti, and the failure
mechanism was fatigue in all cases. The mechanical properties of cp-Ti NDIs should be improved in
order to guarantee long-term success of the treatment. Different premature fractures were observed by
fatigue due to the poor mechanical properties and the defects in the surfaces produced during the
conformation process. The hardening methods studied (cp-Ti with 12% cold-work straining or alloying
with 15% Zr) showed higher fatigue limits than cp-Ti, thereby ensuring good mechanical reliability.
Cp-Ti should be used with caution by clinicians, and this study will help clinicians to select a better
NDI system for a more predictable treatment.
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Abbreviations

FSEM Field-emission scanning electron microscope
HVN Hardness Vickers number
NDI Narrow dental implants
Ra Average surface roughness (µm)
SEM Scanning electron microscope
cp-Ti Commercially pure titanium
σ0.2 Yield stress (MPa)
σmax Maximum strength (MPa)
ε Strain to fracture (%)
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