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Abstract: Lanthanide-doped hexagonal β-NaYF4 crystals have received much attention in recent
years due to their excellent photoluminescence properties. However, lanthanide-doped β-NaYF4

crystals with micron and submicron scales as well as uniform morphology have received less
attention. In this study, Eu3+-doped β-NaYF4 (β-NaYF4:Eu3+) crystals of micron and submicron
size scales were synthesized using the solvothermal method with ethylene glycol as the solvent.
The β-NaYF4:Eu3+ crystals were highly crystallized. A comparison of the characteristics of the
β-NaYF4:Eu3+ crystals synthesized with and without the use of oleic acid as a surfactant was
conducted. It was found that the utilization of oleic acid as a surfactant during their synthesis greatly
decreased their particle size from micron to submicron scale, while adding a small amount of ethanol
further reduced their particle size. In addition, they exhibited much smoother surfaces and more
uniform morphologies, which were hexagonal prism bipyramids. The microstructural characteristics
and photoluminescence properties of the β-NaYF4:Eu3+ crystals were studied in detail. Results
showed that β-NaYF4:Eu3+ crystals prepared with the aid of oleic acid as a surfactant during their
synthesis exhibited stronger photoluminescence.

Keywords: lanthanide-doped fluoride; Eu3+-doped β-NaYF4; photoluminescence; solvothermal
method

1. Introduction

NaYF4 has two polymorphic forms: α- (cubic) and β-phase (hexagonal) structures. In recent
years, NaYF4—especially the β phase—has been considered one of the most effective host materials
for performing multicolor down-conversion (DC) and up-conversion (UC) photoluminescence of
lanthanide ions (Ln3+) due to its unique properties [1], including low phonon energy (<400 cm−1) [2],
high thermal and optical stability, good transparency, low non-radiative decay rate, and high radiative
emission efficiency [3]. Ln3+-doped NaYF4 phosphors have been extensively studied [4–10] in both
micro- and nano-sized scales because of their potential applications in light-emitting diodes (LEDs) [11],
lasers [12], display devices [9], biological labels [13–15], solar cells [16,17], and many others.

The space groups of α- and β-NaYF4 are Fm3m (Z = 4) and P6 (Z = 1), respectively. The α-NaYF4

is isomorphic with CaF2 in which the sites of Ca2+ ions are substituted randomly by 1/2 Na+ ions and
1/2 Y3+ ions and the Oh symmetry of the cationic site has been retained [18]. Three types of cation
sites exist in β-NaYF4: 1a sites are occupied by Y3+, 1f sites are occupied by 1/2Y3+ and 1/2Na+ ions
randomly, while 2h sites are usually occupied by Na+ ions only [19,20]. The symmetry of the two
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Y3+ sites is C3h. Thus, the phase transition from α-NaYF4 to β-NaYF4 must overcome energy barriers
of cation rearrangement, and it, is therefore a disorder-to-order arrangement process. It has been
found that β-NaYF4 has a more stable crystal structure and better photoluminescence properties than
α-NaYF4 [1–3], which has resulted in β-NaYF4 receiving more attention from researchers. However,
Ln3+ ions (e.g., Eu3+, Tb3+, Dy3+, etc.) have a relatively small optical absorption cross section and a
narrow absorption spectrum because of the forbidden nature of the f–f transition. Thus the intrinsic
photoluminescence of Ln3+ ions in Ln3+-doped β-NaYF4 phosphors is limited [21]. So far, numerous
methods have been studied to enhance the absorption and photoluminescence intensity of Ln3+-doped
β-NaYF4 phosphors [22–24], including multiple types of Ln3+-doping and sensitization with organic
ligands [8,25,26]. In this study, a surfactant was employed to control the morphology of the Ln3+-doped
β-NaYF4 phosphors, and their photoluminescence properties were enhanced.

Ln3+-doped β-NaYF4 phosphors, in both micro-sized and nano-sized scales, have been previously
synthesized using different methods, such as the molten salt method [27], thermal decomposition
of organic precursors [28], sol–gel [17,29], and the hydrothermal/solvothermal method [30]. Some
researchers [2,12,30,31] prepared NaYF4 crystals using the hydrothermal/solvothermal method in a
water/alcohol/oleic acid system, while others [32] prepared two kinds of NaYF4 particles with different
phase composition using an adjustable solvothermal method and by changing reaction temperature
and molar ratio (Y3+/F−) with a different phase composition. NaYF4 nanorods, nanotubes, and
nanodisks were prepared using oleic acid as hydrothermal synthesis-mediated agent [33], and UC
β-NaYF4:Yb3+/Er3+ microcrystals were synthesized using the hydrothermal method at 220 ◦C [34].
However, it is still difficult to obtain Ln3+-doped β-NaYF4 particles with uniform and regular
shape, high crystallinity, and strong photoluminescence performance. Moreover, these reported
hydrothermal/solvothermal processes need either a high temperature or a long reaction time, which is
neither economical nor environmentally friendly.

In this study, a simple and convenient solvothermal method was employed to synthesize
highly dispersed Eu3+-doped β-NaYF4 crystals of micron and submicron size, with controlled
morphology and strong photoluminescence. The preparation method was based on our previous work
of α-NaYF4:Eu3+, which had used ethylene glycol/ethanol as a solvent [8]. Oleic acid (OA) was used as
a surfactant to control the shape and morphology of the β-NaYF4:Eu3+ microcrystals with enhanced
photoluminescence properties. Hexagonal prism bipyramidal β-NaYF4:Eu3+ crystals with uniform
particle size of micron and submicron scale were successfully synthesized. The different characteristics
of the phase structures, microstructural characteristics, and photoluminescence properties between
the as-synthesized β-NaYF4:Eu3+ particles and those modified by OA were compared in detail.
The mechanisms for their shape control, morphology optimization, and photoluminescence
enhancement are discussed.

2. Method

2.1. Materials

Yttrium nitrate (Y(NO3)3·6H2O, 99.99%), europium nitrate (Eu(NO3)3·6H2O, 99.99%), sodium
nitrate (NaNO3) (analytical grade, A.R.), and ammonium fluoride (NH4F) (A.R.) were used as the
raw materials. OA (A.R.) was used as a surfactant, and ethylene glycol (EG, C2H6O2, A.R.) and
absolute ethanol (C2H5OH, A.R.) were used as the solvents. All chemicals were used as received,
without further purification. Deionized water was used throughout this work.

2.2. Synthesis of β-NaYF4:Eu3+ Crystals without Surfactant

The β-NaYF4:Eu3+ crystals were synthesized using a solvothermal method as previously
described [8]. The doping concentration was 5 atm% with the formula β-NaY0.95Eu0.05F4. In a
typical procedure, Y(NO3)3·6H2O (0.7277 g, or 1.9 mmol), Eu(NO3)3·6H2O (0.0446 g, or 0.1 mmol),
and NaNO3 (0.1700 g, or 2 mmol) were mixed and thoroughly dissolved in 15 mL EG to form a clear
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solution A at room temperature. NH4F (1.7779 g, or 48 mmol) was added to a 15 mL EG solution to
form solution B at room temperature. It was found that the phase structure of the synthesized NaYF4

strongly depended on the Y3+:F− molar ratio in the reaction system. To obtain β-NaYF4:Eu3+ crystals,
the molar ratio of Ln3+ ions (Y3+ + Eu3+) in solution A to F− ions in solution B was set as Ln3+:F−

= 1:24. Solutions A and B were mixed under vigorous stirring for 2 h to form a mixture solution,
which was poured into a 50 mL Teflon-lined stainless steel autoclave and heated at 180 ◦C for 6 h to
synthesize β-NaYF4:Eu3+ crystals. After they were cooled down, the resultant β-NaYF4:Eu3+ crystals
were collected in a similar manner as described previously [8]. The undoped β-NaYF4 crystals were
synthesized as the standard sample, following the above procedure, except that no Eu3+ was used.

2.3. Synthesis of β-NaYF4:Eu3+ Crystals with the Aid of an OA Surfactant

OA was introduced into the synthesis as a surfactant to control the morphology and improve the
photoluminescence of the β-NaYF4:Eu3+ crystals. The synthesis procedure was the same as the above
procedure for non-surfactant synthesis (Section 2.2), with the following two modifications. First, 5 mL
of OA was added to solution A. Second, the 15 mL of EG of solution A had two sets of OA additions:
(1) 15 mL of EG, or (2) 2.5 mL of absolute ethanol and 12.5 mL of EG. Thus, two β-NaYF4:Eu3+ samples
modified by an OA surfactant were synthesized with the two sets of OA additions.

2.4. Characterization

X-ray diffraction (XRD, PANalytical, Empyrean) and field emission scanning electron microscopy
(FESEM, FEI-Quanta200F, Thermo Fisher, Waltham, MA, USA) were used to study the phase structures
and observe the microstructural characteristics of the β-NaYF4:Eu3+ crystals. The X-ray diffractometer,
equipped with graphite-monochromatized Cu Kα radiation (λ = 1.5406 Å) was operated at the scanning
step of 0.0131303◦ in the 2θ range from 10◦ to 90◦. The photoluminescence excitation and emission
spectra were recorded with a Hitachi F-4600 fluorescence spectrophotometer (Hitachi, Tokyo, Japan)
equipped with a xenon lamp source. All of the measurements in this work were conducted at
room temperature.

3. Results and Discussion

3.1. Phase Structures and Microstructural Characteristics

Figure 1 shows the XRD patterns of the as-synthesized NaYF4 crystals prepared using different
Y3+:F− molar ratios. The Joint Committee on Powder Diffraction Standards (JCPDS) data for the
cubic (α-NaYF4, PDF#77-2042) and hexagonal (β-NaYF4, PDF#16-0334) crystal structure of NaYF4 are
included in Figure 1 for reference. As shown in Figure 1, only the α-NaYF4 phase could be obtained
when Y3+:F− = 1:12, while mixed phases of α-NaYF4 and β-NaYF4 were present when Y3+:F− = 1:16
and 1:20. When Y3+:F− ≥ 1:24, only the β-NaYF4 phase was obtained. This suggests that the crystal
structure of NaYF4 strongly depends on the Y3+:F− molar ratios in the reaction solution. For this
reason, the Y3+:F− ratio was set at 1:24 to synthesize β-NaYF4:Eu3+ in this study.

Figure 2 shows the XRD patterns of the as-synthesized β-NaYF4:Eu3+ crystals prepared without
OA, with 5 mL OA and with 5 mL OA + 2.5 mL C2H5OH. All of the diffraction peaks (Figure 2) can
be readily indexed to the pure hexagonal NaYF4 phase, and no secondary phase was observed in all
samples. The sharp diffraction peaks in Figure 2 imply that all of the β-NaYF4:Eu3+ particles were
well crystallized. As seen in Figure 2, all of the XRD patterns were relatively similar, which suggests
that the utilization of an OA surfactant did not have a noticeable impact on the crystal structures
of the β-NaYF4:Eu3+ crystals. Furthermore, the use of C2H5OH also had little influence on their
crystal structures.
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Figure 2. XRD patterns of β-NaYF4:Eu3+, prepared without oleic acid (OA), with 5 mL OA, and with
5 mL OA + 2.5 mL C2H5OH.

The SEM images in Figure 3 show the microstructural characteristics of the as-prepared
β-NaYF4:Eu3+ particles. All of the β-NaYF4:Eu3+ particles were highly dispersible. The β-NaYF4:Eu3+

particles prepared without an OA surfactant were the largest (Figure 3a), which was about 1.5 µm.
As shown in Figure 3b,c, the utilization of an OA surfactant in the reaction solution greatly reduced the
size of the β-NaYF4:Eu3+ particles. The average NaYF4:Eu3+ particle size, prepared with 5 mL of OA
and 5 mL of OA + 2.5 mL of C2H5OH was about 650 nm and 500 nm (Figure 3b,c), respectively. Thus,
adding C2H5OH further reduced the size of the β-NaYF4:Eu3+ particles.
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OA + 2.5 mL C2H5OH (c).

As seen in Figure 3a, the β-NaYF4:Eu3+ particles, prepared without using an OA surfactant had
irregular shapes with rough surfaces. However, the β-NaYF4:Eu3+ particles prepared with an OA
surfactant were regular and uniform hexagonal prism bipyramids [34] with smooth surfaces (insets
of Figure 3b,c). Thus, the OA surfactant not only reduced the particle size of β-NaYF4:Eu3+ from
the micrometer range to submicron scale, it also greatly improved their morphologies. Note that the
hexagonal prism bipyramid shape is derived from top and bottom halves, where each half is a six-sided
prism. The hexagonal prism bipyramid structure of β-NaYF4:Eu3+ found in this experiment is similar
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to the β-NaYF4:Yb,Er micro-bipyramids shown by Ding et al. [34]. Their research [34] also proposed a
possible morphology evolution mechanism for the β-NaYF4:Yb,Er micro-bipyramids, as illustrated in
Figure 4. As pointed out by Liang et al. [2], the OA molecules are coated onto the outer face of the
generated NaYF4 particles during the early reaction process through the interaction between Ln3+

(Y3+, Eu3+) and the carboxyl of the OA, with the hydrophobic alkyl chains left outside. This interaction
can be weakened under high temperature and pressure during the solvothermal process to allow for
the Ln3+ ions to be released gradually. The cubic α-NaYF4 is grown first, and these particles usually
have an isotropic shape. Because α-NaYF4 is unstable, a more stable β-NaYF4 is formed through an
α→β phase transformation during the ongoing reaction process [34]. Eventually, hexagonal prisms
are formed [34].
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Figure 4. Illustration of the formation and evolution process of the β-NaYF4:Eu3+ hexagonal prism
bipyramids (redrawn under the written permission of Prof. Chunhua Lu [34]).

The main reason for the reduced particle size of β-NaYF4:Eu3+ when using a surfactant is that OA
covers the surface of the particles through the interaction between carboxyl and Eu3+ ions (Figure 3).
Adding a small amount of C2H5OH into the reaction solution can further reduce the particle size
because C2H5OH has a low boiling point, which boosts the internal pressure and consequentially
improves the activity of ions. As a result, a large number of crystal nuclei form rapidly in a short time.
Furthermore, the crystal nuclei will collide with each other violently, resulting in aggregation and
uneven particle growth, which can be gradually uniformed to become microcrystals with increasing
reaction time.

3.2. Photoluminescence Properties

Figure 5 shows the photoluminescence excitation and emission spectra of the three β-NaYF4:Eu3+

samples prepared without OA, with 5 mL OA, and with 5 mL OA + 2.5 mL C2H5OH. All of the
excitation peaks ranging from 200 to 500 nm are attributed to the characteristic excitation of Eu3+ ions at
320 nm (7F0→

5H0), 364 nm (7F0→
5D4), 379 nm (7F0→

5G2), 397 nm (7F0→
5L6), 418 nm (7F0→

5D3), and
468 nm (7F0→

5D2) [8]. The strongest excitation peak originates from the 7F0→
5L6 transition. Similarly,

the emission peaks excited by an exciting light at 397 nm are the characteristic emissions of Eu3+ ions,
and they are assigned to the high-energy transition 5D2→

7F3 at 515 nm and 5D1→
7FJ (J = 0–2) at

530 nm, 541 nm, and 561 nm; low-energy transition 5D0→
7FJ (J = 1–4) at 598 nm, 622 nm, 657 nm,

and 702 nm, respectively [8,35]. The weaker emission peak at 598 nm corresponding to 5D0→
7F1 is

allowed by the magnetic dipole transitions due to Eu3+ ions, located at a site with inversion symmetry,
while the stronger emission peak at 622 nm, corresponding to 5D0→

7F2, is allowed by the electric
dipole transitions that are a result of absence of inversion symmetry at the Eu3+ lattice site [36–39].

As seen in Figure 5, the utilization of OA during the synthesis enhanced the photoluminescence
intensity of the β-NaYF4:Eu3+ crystals by about 20%. The β-NaYF4:Eu3+ crystals prepared with
either 5 mL OA or with 5 mL OA + 2.5 mL C2H5OH had comparable photoluminescence intensity
(Figure 5), with the latter being slightly higher than the former. The reason why OA can improve the
photoluminescence of the β-NaYF4:Eu3+ crystals could be explained as follows. The β-NaYF4:Eu3+

crystals prepared with OA had a smoother surface and more integrated uniform shape than the
ones prepared without using OA (Figure 3). Thus, the former should have a lower density of
non-radiative traps on the surface than the latter, and therefore the former is expected to have
stronger photoluminescence.
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OA as a surfactant during their synthesis exhibited about 20% stronger photoluminescence than those
synthesized without using an OA surfactant.
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