

Article **Properties of Arsenic–Doped ZnTe Thin Films as a Back Contact for CdTe Solar Cells**

Ochai Oklobia *, Giray Kartopu and Stuart J. C. Irvine

Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC Centre, St. Asaph Business Park LL17 0JD, UK; giray.kartopu@swansea.ac.uk (G.K.); s.j.c.irvine@swansea.ac.uk (S.J.C.I.)

* Correspondence: ochai.oklobia@swansea.ac.uk

Figure S1. Transmittance spectra of ZnTe thin films (~500 nm) with different amounts of As.

Figure S2. Comparison between XRD patterns of ZnTe thin films on boro-aluminosilicate glass substrate; undoped (0 sccm) and doped with As (10 sccm). Unidentified peaks are denoted by $\mathbf{\nabla}$.

Figure S3. XRD patterns of ZnTe:As reference film, ZnTe:As back contacted CdTe cells annealed at 420 °C and 450 °C.

Figure S4. SEM of surface images of ZnTe:As BCL after different heat treatments.

Figure S5. Transmittance spectra of reference thin films of as deposited ZnTe:As before and after standard CHT (with and without CdS sacrificial layer) and ZnTe:As after mild CHT with CdS sacrificial layer.

Cl-free H ₂ annealing time (mins)	R sн (Ω.cm²)	J ₀ (mA/cm ²)
0	2486.3	3.95×10^{-5}
10	695.0	1.54×10^{-5}
20	1239.2	1.53×10^{-5}
30	1379.9	6.11×10^{-5}

Table S1. Light shunt resistance (R_{SH}) and dark reverse saturation current density (J₀) as a function annealing time.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).