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Abstract: This paper presents a new four-variable refined plate theory for free vibration analysis
of laminated piezoelectric functionally graded carbon nanotube-reinforced composite plates
(PFG-CNTRC). The present theory includes a parabolic distribution of transverse shear strain
through the thickness and satisfies zero traction boundary conditions at both free surfaces of the
plates. Thus, no shear correction factor is required. The distribution of carbon nanotubes across the
thickness of each FG-CNT layer can be functionally graded or uniformly distributed. Additionally, the
electric potential in piezoelectric layers is assumed to be quadratically distributed across the thickness.
Equations of motion for PFG-CNTRC rectangular plates are derived using both Maxwell’s equation
and Hamilton’s principle. Using the Navier technique, natural frequencies of the simply supported
hybrid plate with closed circuit and open circuit of electrical boundary conditions are calculated. New
parametric studies regarding the effect of the volume fraction, the CNTs distribution, the number of
layers, CNT fiber orientation and thickness of the piezoelectric layer on the free vibration response of
hybrid plates are performed.

Keywords: free vibration; four-variable refined plate theory; piezoelectric material; FG-CNTRC;
laminated composite

1. Introduction

A novel class of functionally graded materials (FGM) titled functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) plates was first introduced by Shen [1]. Shen’s study
revealed that the distribution of CNT had a remarkable influence on the mechanical behaviors of the
FG-CNTR plates. Since then, static, dynamic, and buckling behaviors of FG-CNTRC structures have
been studied and reported in the literature. Alibeigloo and Liew [2] studied the bending response
of simply supported FG-CNTRC rectangular plate under thermo–mechanical loads by using the 3D
theory of elasticity. Zhu et al. [3] presented a finite element model to study bending and free vibration
responses of thin-to-moderately thick FG-CNTRC plates using the first shear deformation plate theory
(FSDT). Lei et al. [4] gave the solution for static analysis of laminated FG-CNTRC plates using the
element-free kp-Ritz method. Huang et al. [5] analyzed the bending and free vibration characteristics of
antisymmetrically laminated FG-CNTRC plates using the FSDT and simple four-variable theory. The
static, vibration and buckling responses of FG-CNTRC resting on elastic foundation were investigated
by Wattanasakulpong [6] and Nguyen et al. [7]. Additionally, Shen et al. [8] analyzed the buckling
and post-buckling behaviors of symmetrically distributed CNT-reinforced composite plate, including
thermal effects. Next, Shen et al. [9] examined the buckling loads and post-buckling equilibrium paths
of the CNTRC plates assuming properties of CNTs were temperature-dependent. Using a higher-order
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shear deformation plate theory (HSDT), the nonlinear free vibration behaviors of the FG-CNTRC plates
with an elastic foundation in the thermal environment was investigated by Wang and Shen [10]. That
study used the perturbation technique to solve the nonlinear equations of motion. Mehar et al. [11]
investigated the static response of the FG-CNTRC doubly curved shell panel, in which the geometric
nonlinear and thermal dependent properties of the individual constituents were considered. Using
FSDT and piston theory in determining the aerodynamic pressure, Asadi et al. [12] analyzed aeroelastic
flutter of FG-CNTRC beams under axial compression and supersonic airflow. These authors continue
to study the aero-thermoelastic behaviors of supersonic FG-CNTRC plates taking to account thermal
effects in [13].

There have been a limited number of studies related to electromechanical coupling analysis
of laminated FG-CNTRC plates with surface-embedded or bonded piezoelectric layers. Using the
3D-theory, Alibeigloo investigated the bending behaviors of the piezoelectric FG-CNTRC (PFG-CNTRC)
plates under the mechanical uniform load [14], thermal load, and electric field [2]. Rafiee et al. [15]
investigated initial geometrical imperfections in the large amplitude dynamic stability of PFG-CNTRC
plates under the simultaneous effect of thermal and electrical loadings. Setoodeh et al. [16] studied
the free vibration characteristic of PFG-CNTRC spherical panels by differential quadrature method
based on the HSDT. Using the Ritz method with Chebyshev polynomials, Kiani [17] analyzed the free
vibration of the PFG-CNTRC plates with opened and closed circuits electrical boundary conditions.
In Kiani’s research, the electric potential in the piezoelectric layers was assumed to be linearly
distributed through the thickness of the plate. Wu et al. [18] presented a buckling analysis of an
arbitrarily thick PFG-CNTRC plate subjected to in-plane compressive loads using unified formulation.
Nguyen et al. [19] used the extended isogeometric method with non-uniform rational B-spline and the
HSDT to investigate the dynamic response of PFG-CNTRC plates. In the study of Selim et al. [20], an
element-free IMLS-Ritz model based on Reddy’s HSDT for the active vibration control of PFG-CNTRC
plates was presented. Song et al. [21] used velocity feedback and linear quadratic regulator LQR
methods to study active vibration control of PFG-CNTRC cylindrical shells with bonded piezoelectric
patches. Zhang et al. [22] used a genetic algorithm to study shape control of FG-CNTRC rectangular
plates bonded with piezoelectric patches acting as actuators and sensors.

HSDT [23–28] is often desirable for the design of composite structures since it yields more accurate
results than the CPT (classical plate theory) and the FSDT. However, these HSDTs have computational
costs because the equations of motions based on these HSDT are more. Therefore, simple HSDT
must be developed. Recently, based on HSDT, Shimpi [29] developed a new plate theory that has
only two unknown displacements, in which the transverse shear stress variation across the thickness
is parabolic and equals zero on free surfaces. After that, several researchers introduced a class of
four-variable refined plate theory by adding two in-plane displacements and separating the transverse
displacements into the bending component and shear component. Meiche et al. [30] presented a new
four-variable refined plate theory with hyperbolic shape function for buckling and vibration analysis
of FGM sandwich plates. Thai and Vo [31] developed a new sinusoidal shear deformation theory to
analyze static and dynamic behaviors of FG plates. Then, another sinusoidal shear deformation theory
was also presented by Thai and Kim [32] to investigate the bending and free vibration response of FG
plates. Daouadji et al. [33] presented the static analysis of FG plates using a new higher-order shear
deformation model.

In present work, a new plate theory with four unknown displacements is presented for free
vibration analysis of FG-CNTR plates with two piezoelectric layers bonded at the free surfaces. The
electric potential in piezoelectric layers is assumed to be quadratic through the thickness. Navier
solution is applied to solve the governing equation of simply supported rectangular plates to obtain
the frequencies of the smart FG-CNTRC plates with closed and open circuit electrical conditions. The
accuracy of the proposed plate theory is indicated by comparing the obtained natural frequencies
with existing results in the literature. Several examples are carried out to show the effects of volume
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fraction and distribution type of CNTs, the number of layers, CNT fiber orientation, and thickness of
piezoelectric layers on the natural frequencies of hybrid plates.

2. Laminated PFG-CNTRC Plates

A hybrid laminated FG-CNTRC plate with integrated piezoelectric lamina at top and bottom
surfaces is depicted in Figure 1. Width, length, core thickness, and thickness of each piezoelectric layer
of the plate are denoted by a and b, h and hp. Four types of CNT distribution across the thickness of
each FG-CNT layer namely UD, FG-V, FG-O, and FG-X are also indicated in Figure 1.

Figure 1. Configuration of the laminated piezoelectric functionally graded carbon nanotube-reinforced
composite plates (PFG-CNTRC).

The CNT volume fractions for each FG-CNTRC lamina are assumed as follows [3]:

VCNT = V∗CNT (UD)

VCNT(z) =
(
1− 2|z|

h

)
V∗CNT (FG−O)

VCNT(z) = 4|z|
h V∗CNT (FG−X)

VCNT(z) =
(
1 + 2z

h

)
V∗CNT (FG−V)

(1)

where:
V∗CNT =

wCNT

wCNT + (ρCNT/ρm) − (ρCNT/ρm)wCNT
(2)

The effective elastic properties of each FG-CNTRC lamina can be written as follows [3]:

E11 = η1VCNTECNT
11 + VmEm ;

η2

E22
=

VCNT

ECNT
22

+
Vm

Em ;

η3
G12

=
VCNT
GCNT

12
+ Vm

Gm ; v12 = V∗CNTvCNT
12 + Vmvm ; ρ = VCNTρ

CNT + Vmρm
(3)

where ECNT
11 , ECNT

22 , GCNT
12 and Em, Gm are Young’s moduli and shear modulus of CNT and isotropic

matrix, respectively; η1, η2, and η3 are called efficiency parameters. VCNT and Vm are the volume
fractions of CNT and of matrix, respectively; the Poisson ratio and mass density of CNT/matrix are
denoted as vCNT

12 ,ρCNT and vm,ρm, respectively.
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The linear constitutive relations for the FG-CNTRC core can be expressed as



σk
x
σk

y
τk

xy
τk

yz
τk

xz


=



Q
k
11 Q

k
12 0 0 0

Q
k
12 Q

k
22 0 0 0

0 0 Q
k
66 0 0

0 0 0 Q
k
44 0

0 0 0 0 Q
k
55





εx

εy

γxy

γyz

γxz


(4)

where Q
k
ij are the transformed elastic coefficients related to elastic coefficients in material coordinates

Qij [34]:

Q
k
11 = Qk

11 cos4 θk + 2
(
Qk

12 + 2Qk
66

)
sin2 θk cos2 θk + Qk

22 sin4 θk

Q
k
12 =

(
Qk

11 + Qk
22 − 4Qk

66

)
sin2 θk cos2 θk + Qk

12

(
sin4 θk + cos4 θk

)
Q

k
22 = Qk

11 sin4 θk + 2
(
Qk

12 + 2Qk
66

)
sin2 θk cos2 θk + Qk

22 cos4 θk

Q
k
66 =

[
Qk

11 + Qk
22 − 2

(
Qk

12 + Qk
66

)]
sin2 θk cos2 θk + Qk

66

(
sin4 θk + cos4 θk

)
Q

k
44 = Qk

44 cos2 θk + Qk
55 sin2 θk

Q
k
55 = Qk

44 sin2 θk + Qk
55 cos2 θk

(5)

For each the CNT layer:

Qk
11 = E11

1−ν12ν21
; Qk

12 = ν12E22
1−ν12ν21

; Qk
22 = E22

1−ν12ν21
;

Qk
44 = Gk

23; Qk
55 = Gk

13; Qk
66 = Gk

12

(6)

The constitutive relations for a piezoelectric material can be expressed as [35]



σ
pk
x

σ
pk
y

τ
pk
xy

τ
pk
yz

τ
pk
xz


=



C
k
11 C

k
12 0 0 0

C
k
12 C

k
11 0 0 0

0 0 1
2

(
C

k
11 −C

k
12

)
0 0

0 0 0 C
k
55 0

0 0 0 0 C
k
55





εx

εy

γxy

γyz

γxz


−



0 0 ek
31

0 0 ek
31

0 0 0
−ek

15 0 0
0 −ek

15 0




Ek
x

Ek
y

Ek
z

 (7)


Dk

x
Dk

y
Dk

z

 =


0 0 0 ek

15 0
0 0 0 0 ek

15
ek

31 ek
31 0 0 0




εx

εy

γxy

γxz

γyz


+


pk

11 0 0
0 pk

11 0
0 0 pk

33




Ek
x

Ek
y

Ek
z

 (8)

The elastic constants for the piezoelectric layer:

C
k
11 = Ck

11 −
(Ck

13)
2

Ck
33

; C
k
12 = Ck

12 −
(Ck

13)
2

Ck
33

; C
k
55 = Ck

55;

ek
31 = ek

31 −
Ck

13
Ck

33
ek

33; pk
33 = pk

33 +
e2k
33

Ck
33

(9)

where
[
Ck

ij

]
is the elastic constants matrix of the piezoelectric lamina,

[
pk

ij

]
is the dielectric permittivity

matrix,
[
ek

ij

]
is the electromechanical coupling matrix,

{
Dk

}
is the electrical displacement, and

{
Ek

}
is the

electric field in the piezoelectric lamina.
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3. Kinematic Equations

According to the four-variable refined plate theory [30–33], the displacement components at an
arbitrary point in the hybrid panel can be expressed as follows:

u(x, y, z, t) = u(x, y, t) − z∂wb
∂x − f (z) ∂ws

∂x ;
v(x, y, z, t) = v(x, y, t) − z∂wb

∂y − f (z) ∂ws
∂y ;

w(x, y, z, t) = wb(x, y, t) + ws(x, y, t)

(10)

where u, v are the displacements of the corresponding point on the reference surface of the plate
along x and y axis, respectively; wb and ws are the bending and shear components of the transverse
displacement, respectively; the shape function f (z) represents the distribution of the transverse shear
stresses and strains along the thickness.

By supposing the shape function f (z) satisfies the free transverse shear stress conditions on the
free surfaces of the plates, a class of refined plate theory was developed by various researchers as
shown in Table 1:

Table 1. Shape functions of several four-variable refined plate theories.

Researcher Shape Function

Shimpi [29] f (z) = z
[
−

1
4 + 5

3

(
z
h

)2
]

N. E Meiche et al. [30] f (z) =
(h/π) sinh( πh z)−z
[cosh(π/2)−1]

Huu-Tai Thai and Thuc P. Vo [31] f (z) = z− h
π sin πz

h
Huu-Tai Thai and Seung-Eock Kim [32] f (z) = 4z3

3h2

Daouadji et al. [33] f (z) = z−
(
z sec h

(
πz2

h2

)
− z sec h

(
π
4

)(
1− π

2 tanh
(
π
4

)))
In this study, a new shape function f (z) is supposed as follows:

f (z) = z
[
−

1
8
+

3
2

( z
h

)2
]

(11)

The linear strain-displacement relations are written as:

εx = ∂u
∂x − z∂

2wb
∂x2 − f (z) ∂

2ws
∂x2 ;

εy = ∂v
∂y − z∂

2wb
∂y2 − f (z) ∂

2ws
∂y2 ;

εxy = ∂u
∂y + ∂v

∂x − 2z∂
2wb
∂x∂y − 2 f (z) ∂

2ws
∂x∂y ;

γyz = (1− f ′ (z)) ∂ws
∂y ;

γxz = (1− f ′ (z)) ∂ws
∂x

(12)

The variation of electric potential through the thickness of the piezoelectric lamina was proposed
by Wu et al. [36]:

Φt(x, y, z, t) = φt(x, y, t)
[
1−

(
z−h/2−hp/2

hp/2

)2
]
+ f 1(x, y, t)z + f 2(x, y, t) h/2 ≤ z ≤ h/2 + hp

Φb(x, y, z, t) = φb(x, y, t)
[
1−

(
−z−h/2−hp/2

hp/2

)2
]
+ f 3(x, y, t)z + f 4(x, y, t) −h/2− hp ≤ z ≤ −h/2

(13)

where the unknowns f 1, f 2, f 3 and f 4 can be obtained by satisfying the specific electrical boundary
condition. In this study, two cases of electrical boundary conditions are considered. For the closed
circuit condition, both major surfaces of the piezoelectric lamina are circuited:



Materials 2019, 12, 3675 6 of 20

Φ(z = ±
h
2
) = 0; Φ(z = ±(

h
2
+ hp)) = 0 (14)

On the other hand, when one surface is kept at zero voltage and the other is electrically insulated,
for the open circuit condition, the electrical boundary conditions are

Φ(z = ±
h
2
) = 0; Dz(z = ±(

h
2
+ hp)) = 0 (15)

In addition, from electric potential function, the electric field can be derived as

→

E = −
→

∇Φ (16)

Substituting the expressions in Equations (13) and (8) into Equations (14) and (15) yields the
electrical potential distribution for the closed circuit (C-circuit) as

Φt(x, y, z, t) = φt(x, y, t)
[
1−

(
z−h/2−hp/2

hp/2

)2
]

h/2 ≤ z ≤ h/2 + hp

Φb(x, y, z, t) = φb(x, y, t)
[
1−

(
−z−h/2−hp/2

hp/2

)2
]
−h/2− hp ≤ z ≤ −h/2

(17)

and for open circuit (O-circuit) as

Φt(x, y, z, t) = φt(x, y, t)
[
1−

(
z−h/2−hp/2

hp/2

)2
+

4(z−h/2)
hp

]
+

e31
p33

[
u,x + v,y+(

h/2 + hp
)(

wb,xx + wb,yy
)
+ f (z)

(
ws,xx + ws,yy

)]
(z− h/2) h/2 ≤ z ≤ h/2 + hp

Φb(x, y, z, t) = φb(x, y, t)
[
1−

(
−z−h/2−hp/2

hp/2

)2
+
−4(z+h/2)

hp

]
+

e31
p33

[
u,x + v,y−(

h/2 + hp
)(

wb,xx + wb,yy
)
+ f (z)

(
ws,xx + ws,yy

)]
(z + h/2) − h/2− hp ≤ z ≤ −h/2

(18)

4. Equations of Motion

Hamilton’s principle is used herein to derive the governing differential equations of motion for
the free vibration problem. Without external forces, the principle can be stated as [37]∫ t2

t1

(δU − δK)dt = 0 (19)

in which δU is the variation of the strain energy of the plate and may be expressed as

δU =
∫

A

∫ h/2
−h/2

(
σxδεx + σyδεy + τxyδγxy + τxzδγxz + τyzδγyz

)
dzdA

=
∫

A

{
Nx

∂δu
∂x −Mb

x
∂2δwb
∂x2 −Ms

x
∂2δws
∂x2 + Ny

∂δv
∂y −Mb

y
∂2δwb
∂y2 −Ms

y
∂2δws
∂y2

+Nxy

(
∂δu
∂y + ∂δv

∂x

)
− 2Mb

xy
∂2δwb
∂x∂y − 2Ms

xy
∂2δws
∂x∂y + Qxz

∂δws
∂x + Qyz

∂δws
∂y

}
dA

(20)

where N, M, and Q are stress resultants and defined by
Nx, Ny, Nxy

Mb
x, Mb

y, Mb
xy

Ms
x, Ms

y, Ms
xy,

 =
N∑

k = 1

hk+1∫
hk

(
σk

x, σk
y, τk

xy

)
1
z
f (z)

dz; (21)

(
Qs

xz, Qs
yz

)
=

N∑
k = 1

hk+1∫
hk

(
τk

xz, τk
yz

)
g(z)dz (22)
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and δK is the variation of the kinetic energy of the plate and can be written as follows:

δK =
∫

V

( .
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w
)
ρdAdz

=
∫

A

{
I0
( .
uδ

.
u +

.
vδ

.
v +

( .
wb +

.
ws

)
δ
( .
wb +

.
ws

))
−I1

(
.
u∂δ

.
wb
∂x +

∂
.

wb
∂x δ

.
u +

.
v∂δ

.
wb
∂y + ∂

∂yδ
.
v
)

−I3

(
.
u∂δ

.
ws
∂x + ∂

.
ws
∂x δ

.
u +

.
v∂δ

.
ws
∂y + ∂

.
ws
∂y δ

.
v
)

+I2

(
∂

.
wb
∂x

∂δ
.

wb
∂x +

∂
.

wb
∂y

∂δ
.

wb
∂y

)
+I5

(
∂

.
ws
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂y

∂δ
.

ws
∂y

)
+I4

(
∂

.
wb
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂x

∂δ
.

wb
∂x +

∂
.

wb
∂y

∂δ
.

ws
∂y + ∂

.
ws
∂y

∂δ
.

wb
∂y

)}
dA

(23)

where mass moments (I0, I1, I2, I3, I4, I5) are defined by

(I0, I1, I2, I3, I4, I5) =
n∑

k = 1

hk+1∫
hk

(
1, z, z2, f (z), z f (z), f 2(z)

)
ρ(k)dz (24)

Substituting Equation (12) into Equation (7), then the obtained results into Equation (21), and
combine with the relations in Equation (16), the stress resultants are obtained as follows:

N
Mb

Ms

 =


A B Bs

B D Ds

Bs Ds Hs



ε
κb

κs

+


Np

Mbp

Msp

; Q = Asγ+ Qp (25)

where

N =


Nx

Ny

Nxy

; Mb =


Mb

x
Mb

y
Mb

xy

; Ms =


Ms

x
Ms

y
Ms

xy

; Q =

{
Qyz

Qxz

}
(26)

Np =


Np

x
Np

y
Np

xy

; Mbp =


Mbp

x

Mbp
y

Mbp
xy

; Msp =


Msp

x
Msp

y
Msp

xy

; Qp =

{
Qp

yz
Qp

xz

}
(27)

ε =
{
∂u
∂x , ∂v

∂y , ∂u
∂y + ∂v

∂x

}T
; κb =

{
−
∂2wb
∂x2 ;−∂

2wb
∂y2 ;−2∂

2wb
∂x∂y

}T
;

κs =
{
−
∂2ws
∂x2 ;−∂

2ws
∂y2 ;−2 ∂

2ws
∂x∂y

}T
; γ =

{
∂ws
∂x , ∂ws

∂y

}T (28)

A =


A11 A12 A16

A12 A22 A26

A16 A26 A66

; B =


B11 B12 B16

B12 B22 B26

B16 B26 B66

; D =


D11 D12 D16

D12 D22 D26

D16 D26 D66

 (29)

Bs =


Bs

11 Bs
12 Bs

16
Bs

12 Bs
22 Bs

26
Bs

16 Bs
26 Bs

66

; Ds =


Ds

11 Ds
12 Ds

16
Ds

12 Ds
22 Ds

26
Ds

16 Ds
26 Ds

66

; Hs =


Hs

11 Hs
12 Hs

16
Hs

12 Hs
22 Hs

26
Hs

16 Hs
26 Hs

66

;
As =

[
As

44 As
45

As
54 As

55

] (30)
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in which

(Ai j, Bi j, Di j, Bs
i j, Ds

i j, Hs
i j) =

N∑
k = 1

∫ hk+1
hk

(1, z, z2, f (z), z f (z), ( f (z))2)(Qi j)k
dz (i, j = 1, 2, 6)

As
i j =

N∑
k = 1

∫ hk+1
hk

[1− f ′(z)]2(Qi j)k
dz (i, j = 4, 5)

(31)

and 


Np
x

Np
y

Np
xy

,


Mpb

x

Mpb
y

Mpb
xy

,


Mps

x
Mps

y
Mps

xy


 =

n∑
k = 1

hk+1∫
hk


σ

p
x
σ

p
y
τ

p
xy


(k)

(1, z, f (z))dz

{
Qp

yz
Qp

xz

}
=

n∑
k = 1

hk+1∫
hk

{
τ

p
yz
τ

p
xz

}(k)

[1− f ′(z)]dz;

(32)

Substituting the expressions of δU and δK from Equations (21)–(26) into Equation (20) and after
some mathematical manipulations, we obtain the equations of motion of the plate as follow:

δu : ∂Nx
∂x +

∂Nxy
∂y = I0

..
u− I1

∂
..
wb
∂x − I3

∂
..
ws
∂x

δv :
∂Ny
∂y +

∂Nxy
∂x = I0

..
v− I1

∂
..
wb
∂y − I3

∂
..
ws
∂y

δwb : ∂
2Mb

x
∂x2 + 2

∂2Mb
xy

∂x∂y +
∂2Mb

y

∂y2 = I0
( ..
wb +

..
ws

)
+ I1

(
∂

..
u
∂x + ∂

..
u
∂y

)
−I2∇

2 ..
wb − I4∇

2 ..
ws

δws : ∂
2Ms

x
∂x2 + 2

∂2Ms
xy

∂x∂y +
∂2Ms

y

∂y2 +
∂Qs

xz
∂x +

∂Qs
yz

∂y = I0
( ..
wb +

..
ws

)
+I3

(
∂

..
u
∂x + ∂

..
v
∂y

)
− I4∇

2 ..
wb − I5∇

2 −ws

(33)

In addition, the electric potential in piezoelectric lamina must satisfy Maxwell’s equation:

∫ h+hp

h

→

∇.
→

Ddz +
∫
−h

−h−hp

→

∇.
→

Ddz =

npie∑
k = 1

∫ hk+1

hk

∂Dk
x

∂x
+
∂Dk

y

∂y
+
∂Dk

z
∂z

dz = 0 (34)

5. Solution Procedures

In this study, two sets of simply supported boundary conditions (SSSS) are used to develop the
Navier solutions for rectangular laminated plates and are shown in Table 2.

Table 2. Two cases of simply supported boundary condition.

Edges Boundary Conditions

Cross-Ply Laminates (SS-1) Angle-Ply Laminates (SS-2)

x = 0 and x = a v = wb = ws = 0; Nx = Mb
x = Ms

x = 0 u = wb = ws = 0; Nx = Mb
x = Ms

x = 0

y = 0 and y = b u = wb = ws = 0; Ny = Mb
y = Ms

y = 0 v = wb = ws = 0; Ny = Mb
y = Ms

y = 0

To satisfy the above boundary conditions, the following expansion displacements (u, v, wb, ws)

are chosen as in Table 3:
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Table 3. The expansion displacements (u, v, wb, ws).

Displacements Boundary Conditions

SS-1 SS-2

u(x, y, t)
∞∑

m = 1

∞∑
n = 1

umnc(αx)s(βy);
∞∑

m = 1

∞∑
n = 1

umns(αx)c(βy);

v(x, y, t)
∞∑

m = 1

∞∑
n = 1

vmns(αx)c(βy);
∞∑

m = 1

∞∑
n = 1

vmnc(αx)s(βy);

wb(x, y, t)
∞∑

m = 1

∞∑
n = 1

wb
mns(αx)s(βy);

∞∑
m = 1

∞∑
n = 1

wb
mns(αx)s(βy);

ws(x, y, t)
∞∑

m = 1

∞∑
n = 1

ws
mns(αx)s(βy);

∞∑
m = 1

∞∑
n = 1

ws
mns(αx)s(βy);

where umn, vmn, wbmn, wsmn are unknown coefficients to be determined, c = cos, s = sin, α= mπ/a,
β = nπ/b.

In addition, the electrostatic potential can be expanded as follows:

φ(x, y, t) =
∞∑

n = 1

∞∑
m = 1

φmneiωts(αx)s(βy) (35)

Substituting Equation (35) and the displacements in Table 3 into the equations of motion
Equations (33) and (34), one obtains the analytical solution in the following matrix form:


χ11 χ12 χ13 χ14 χ15

χ12 χ22 χ23 χ24 χ25

χ13 χ23 χ33 χ34 χ35

χ14 χ24 χ34 χ44 χ45

χ15 χ25 χ35 χ45 χ55


−ω2


ψ11 ψ12 ψ13 ψ14 ψ15

ψ12 ψ22 ψ23 ψ24 ψ25

ψ13 ψ23 ψ33 ψ34 ψ35

ψ14 ψ24 ψ34 ψ44 ψ45

ψ15 ψ25 ψ35 ψ45 ψ55







umn

vmn

wb
mn

ws
mn

φmn


=



0
0
0

0
0


(36)

where the matrix elements of Equation (36) are given in the Appendix A.

6. Results and Discussions

In this section, several numerical results are carried out and discussed to verify the accuracy and
efficiency of the proposed theory in free vibration analysis of simply supported laminated piezoelectric
rectangular plates. Furthermore, the influence of volume fraction of CNTs, distribution of CNTs,
number of the lamina, CNT fiber orientation, and thickness of piezoelectric lamina on the natural
frequencies of laminated plates are also investigated in detail.

6.1. Comparison Studies

6.1.1. Example 1

The non-dimensional natural frequencies ω = ωmnh
√
ρ/G of simply supported isotropic square

plate were performed and compared with the existing results in Table 4:
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Table 4. Non-dimensional natural frequencies ω of simply supported boundary conditions (SSSS)
isotropic square plate: a/h = 10; b = a.

Mode ¯
ω

m n EXACT [38] FSDT [38] CPT [38] Shimpi [29] Present

1 1 0.0932 0.0930 0.0955 0.0930 0.0932
1 2 0.2226 0.2219 0.2360 0.2219 0.2232
2 2 0.3421 0.3406 0.3732 0.3406 0.3435
1 3 0.4171 0.4149 0.4629 0.4149 0.4192
2 3 0.5239 0.5206 0.5951 0.5206 0.5271
1 4 - 0.6520 0.7668 0.6520 0.6618
3 3 0.6889 0.6834 0.8090 0.6834 0.6941
2 4 0.7511 0.7446 0.8926 0.7447 0.7572
3 4 - 0.8896 1.0965 0.8897 0.9069
1 5 0.9268 0.9174 1.1365 0.9174 0.9356

It is worth noting that the results obtained by Srinivas et al. [38] used CPT, FSDT, and exact
solutions, whereas the work of Shimpi et al. [29] was implemented using a new FSDT. It is seen that all
obtained frequencies are in good agreement with available results.

6.1.2. Example 2

The second comparison study as follows:
The fundamental frequency of a square laminated PFG-CNTRC with piezoelectric lamina was

calculated and compared with the results of K. Nguyen-Quang et al. [19] using an isogeometric
approach. The plate had length a = b = 0.4 m, thickness h = 0.05a. Two continuous piezoelectric
(PZT-5A) lamina of thickness hp = 0.1h were bonded to the top and bottom surfaces of the host. The
material elastic properties for the matrix, CNT, and piezoelectric are listed in Table 5.

Table 5. Values of material parameters.

Core Plate Piezoelectric Layer

CNT Matrix PZT-5A

E11
CNT = 5.64 TPa Em = (3.52−0.0034T) (GPa) E = 63 GPa; G = 23.3 GPa; ν = 0.35

E22
CNT = 7.0800 TPa νm = 0.34 ρ = 7750 kg/m3

G12
CNT = 1.9455 TPa ρm = 1150 kg/m3 e31 = −7.209 C/m2

, e32 = e31
ν12

CNT = 0.175 e33 = 15.118 C/m2

ρCNT = 1400 kg/m3 e15 = e24 = 12.322 C/m2

G23
CNT = 1.2 G12

CNT p11 = p22 = 1.53 × 10−8 F/m
p33 = 1.5 × 10−8 F/m

The CNT efficiency parameters are shown in Table 6.

Table 6. Carbon nanotube (CNT) efficiency parameters with respect to various volume fractions.

V*
CNT η1 η2 η3

0.12 0.137 1.022 0.7η2
0.17 0.142 1.626 0.7η2
0.28 0.141 1.585 0.7η2

The comparision results are listed in Table 7.
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Table 7. The fundamental natural frequency (Hz) of the SSSS square piezoelectric laminated piezoelectric
functionally graded carbon nanotube-reinforced composite plates (PFG-CNTRC) (a= b = 0.4 m; hp = 0.1h;
a/h = 20).

V*
CNT Type Electrical

Condition

Laminate Configurations

([p/0/p]) [p/0/90/0/p] [p/(−45/45/−45)as/p]

Present Ref. [19] Present Ref. [19] Present Ref. [19]

0.12

UD C-circuit 587.099 583.199 587.099 583.510 662.579 656.538
- O-circuit 621.839 627.416 621.839 627.716 692.687 695.085

FG-X C-circuit 626.536 622.009 592.695 588.372 666.224 658.696
- O-circuit 658.751 662.982 627.080 632.184 696.144 697.103

FG-V C-circuit 563.624 560.042 585.314 581.714 661.328 655.606
- O-circuit 600.128 606.518 620.273 626.205 691.506 694.272

FG-O C-circuit 544.131 540.558 581.557 578.737 659.024 654.510
- O-circuit 581.965 588.764 616.659 623.343 689.323 693.196

0.17

UD C-circuit 628.449 623.946 628.449 624.543 727.603 720.800
- O-circuit 660.700 665.032 660.700 665.615 754.615 755.388

FG-X C-circuit 681.622 675.814 636.195 631.317 732.516 723.781
- O-circuit 710.906 713.079 668.022 671.913 759.323 758.217

FG-V C-circuit 595.013 591.216 625.837 621.914 726.077 719.594
- O-circuit 629.510 635.182 658.370 663.359 753.169 754.324

FG-O C-circuit 569.202 565.533 620.976 618.126 723.043 718.247
- O-circuit 605.304 611.599 653.664 659.687 750.267 752.995

0.28

UD C-circuit 692.023 685.587 692.023 686.852 828.991 821.713
- O-circuit 720.549 721.919 720.549 723.150 851.606 850.524

FG-X C-circuit 767.318 757.950 703.736 697.260 836.338 826.415
- O-circuit 792.364 789.814 731.760 732.991 858.755 855.093

FG-V C-circuit 642.030 637.353 688.175 682.974 827.574 820.463
- O-circuit 673.463 677.399 717.082 719.788 850.294 849.465

FG-O C-circuit 605.283 601.032 681.606 677.986 823.309 818.750
- O-circuit 638.738 643.745 710.669 714.904 846.167 847.767

It can be seen that the present results agree well with those acquired by the isogeometric
approach [19] for different volume fractions of CNTs, distribution of CNTs, number of layers, CNT
fiber orientation, and electrical condition, which indicates the accuracy and correctness of the present
formulation and solution method.

6.2. Parametric Studies

After showing the accuracy of the present model, the following new results for free vibration
of laminated FG-CNTRC plates integrated with piezoelectric layers were investigated. The material
elastic properties for the matrix, CNT, and piezoelectric material are shown in Tables 5 and 6.

6.2.1. Effect of FG-CNT Parameters

Natural frequencies of anti-symmetric cross-ply and angle-ply laminated PFG-CNTRC (a= b = 0.4m;
a/h = 20) are shown in Tables 8 and 9, Tables 10 and 11, respectively. It is observed from these tables
that the FG-X plates had the highest value of frequency, whereas the FG-O plates had the lowest one.
Therefore, it can be concluded that the type of CNT distribution has a remarkable influence on the
stiffness of the plate. In detail, the CNTs distributed close to the upper and lower surfaces of each
FG-CNTRC layer were more efficient than those distributed near the mid-plane of each FG-CNTRC
layer in increasing the stiffness of the laminated PFG-CNTRC. Table 8 reveals that with the increase in
the CNT volume fraction, the natural frequencies of the plates increased accordingly; these results
are presented in more detail in Figure 2. Table 8 also shows that at the fixed value of the thickness
ratio, the stiffness of the plate increased as the number layer of CNT increased. The effects of the
width-to-thickness ratio on the natural frequencies of angle-ply laminated PFG-CNTRC plates are
also presented in Table 9. As expected, the frequencies decrease with the increment of a/h. This is
because the plates become thinner with the increment of a/h, and as the results, the stiffness of the
plate decreased.
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Table 8. The fundamental natural frequencyω(Hz) of anti-symmetric cross-ply [p/(0/90)n/p] laminated
PFG-CNTRC plate (a = b = 0.4 m; a/h = 20; hp = 0.1h).

V*
cnt Type Electrical

Condition
Configuration

[p/(0/90)1/p] [p/(0/90)2/p] [p/(0/90)3/p] [p/(0/90)5/p]

0.12

UD C-circuit 535.019 574.472 581.514 585.093
- O-circuit 573.531 610.057 616.623 619.965

FG-X C-circuit 546.627 577.979 583.618 586.488
- O-circuit 584.256 613.333 618.591 621.270

FG-V C-circuit 530.609 573.512 581.131 584.998
- O-circuit 569.735 609.228 616.295 619.888

FG-O C-circuit 523.307 571.070 579.521 583.809
- O-circuit 562.746 606.888 614.765 618.768

0.17

UD C-circuit 554.285 610.732 620.631 625.644
- O-circuit 591.418 644.038 653.340 658.059

FG-X C-circuit 570.880 615.687 623.633 627.665
- O-circuit 606.848 648.707 656.177 659.972

FG-V C-circuit 547.378 609.367 620.155 625.610
- O-circuit 585.362 642.842 652.935 658.048

FG-O C-circuit 537.761 606.167 618.011 623.996
- O-circuit 576.130 639.756 650.882 656.515

0.28

UD C-circuit 575.055 664.853 680.081 687.747
- O-circuit 610.417 694.753 709.197 716.482

FG-X C-circuit 601.487 672.685 684.983 691.192
- O-circuit 635.165 702.232 713.903 719.805

FG-V C-circuit 563.213 663.041 679.760 688.157
- O-circuit 599.863 693.172 708.977 716.931

FG-O C-circuit 549.709 658.607 676.710 685.794
- O-circuit 586.877 688.865 706.029 714.662

Table 9. The fundamental natural frequencies ω(Hz) of anti-symmetric angle-ply [p/(−θ/θ)3/p]
laminated PFG-CNTRC plate (a = b = 0.4 m; hp = 0.1h; V*

CNT = 0.12).

Layers Type Electrical
Condition

a/h

10 20 50 100

[p/(−5/5)3/p]

UD C-circuit 1083.983 589.563 242.289 121.632
- O-circuit 1141.716 624.136 256.978 129.043

FG-X C-circuit 1087.691 591.770 243.224 122.104
- O-circuit 1145.139 626.204 257.859 129.488

FG-V C-circuit 1082.852 588.833 241.972 121.472
- O-circuit 1140.697 623.457 256.680 128.892

FG-O C-circuit 1080.548 587.458 241.389 121.177
- O-circuit 1138.576 622.171 256.131 128.615

[p/(−30/30)3/p]

UD C-circuit 1166.673 644.809 266.550 133.932
- O-circuit 1217.212 675.925 279.922 140.691

FG-X C-circuit 1172.045 648.119 267.971 134.651
- O-circuit 1222.218 679.056 281.274 141.375

FG-V C-circuit 1164.971 643.678 266.053 133.680
- O-circuit 1215.655 674.862 279.450 140.452

FG-O C-circuit 1161.583 641.592 265.157 133.227
- O-circuit 1212.503 672.890 278.598 140.021

[p/(−45/45)3/p]

UD C-circuit 1192.400 662.579 274.449 137.944
- O-circuit 1240.859 692.687 287.437 144.514

FG-X C-circuit 1198.251 666.224 276.021 138.740
- O-circuit 1246.327 696.144 288.937 145.273

FG-V C-circuit 1190.536 661.328 273.896 137.664
- O-circuit 1239.148 691.506 286.911 144.246

FG-O C-circuit 1186.834 659.024 272.903 137.162
- O-circuit 1235.694 689.323 285.965 143.767
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Table 10. The fundamental natural frequencies ω(Hz) of anti-symmetric angle-ply [p/(−θ/θ)3/p]
laminated PFG-CNTRC plate (a = b = 0.4 m; hp = 0.1h; V*

CNT = 0.17).

Layers Type Electrical
Condition

a/h

10 20 50 100

[p/(−5/5)3/p]

UD C-circuit 1155.117 631.748 260.141 130.634
O-circuit 1208.292 663.803 273.800 137.529

FG-X C-circuit 1160.475 634.869 261.455 131.296
O-circuit 1213.327 666.758 275.047 138.157

FG-V C-circuit 1153.930 630.866 259.743 130.431
O-circuit 1207.254 662.982 273.423 137.336

FG-O C-circuit 1150.769 628.983 258.944 130.028
O-circuit 1204.308 661.204 272.665 136.954

[p/(−30/30)3/p]

UD C-circuit 1261.941 704.587 292.376 146.997
O-circuit 1306.976 732.703 304.536 153.149

FG-X C-circuit 1269.356 709.089 294.304 147.971
O-circuit 1314.002 737.008 306.385 154.084

FG-V C-circuit 1260.134 703.205 291.744 146.674
O-circuit 1305.348 731.399 303.931 152.840

FG-O C-circuit 1255.663 700.434 290.549 146.070
O-circuit 1301.138 728.756 302.786 152.261

[p/(−45/45)3/p]

UD C-circuit 1294.290 727.603 302.726 152.263
O-circuit 1337.071 754.615 314.466 158.209

FG-X C-circuit 1302.277 732.516 304.840 153.332
O-circuit 1344.658 759.323 316.500 159.237

FG-V C-circuit 1292.321 726.077 302.022 151.904
O-circuit 1335.288 753.169 313.791 157.863

FG-O C-circuit 1287.487 723.043 300.707 151.238
O-circuit 1330.721 750.267 312.527 157.223

Table 11. The fundamental natural frequencies ω(Hz) of anti-symmetric angle-ply [p/(−θ/θ)3/p]
laminated PFG-CNTRC plate (a = b = 0.4 m; hp = 0.1h; V*

CNT = 0.28).

Configuration Type Electrical
Condition

a/h

10 20 50 100

[p/(−5/5)3/p]

UD C-circuit 1252.438 696.727 288.711 145.122
O-circuit 1298.062 725.018 300.910 151.292

FG-X C-circuit 1261.724 701.745 290.768 146.154
O-circuit 1307.040 729.846 302.884 152.282

FG-V C-circuit 1252.602 695.985 288.272 144.891
O-circuit 1298.480 724.357 300.493 151.071

FG-O C-circuit 1247.846 693.164 287.074 144.287
O-circuit 1293.968 721.661 299.345 150.492

[p/(−30/30)3/p]

UD C-circuit 1391.451 797.939 334.643 168.530
O-circuit 1428.003 821.744 345.144 173.861

FG-X C-circuit 1403.564 804.759 337.484 169.959
O-circuit 1439.786 828.365 347.899 175.247

FG-V C-circuit 1391.475 796.657 333.881 168.128
O-circuit 1428.307 820.563 344.410 173.472

FG-O C-circuit 1385.151 792.713 332.170 167.262
O-circuit 1422.249 816.756 342.754 172.633

[p/(−45/45)3/p]

UD C-circuit 1431.534 828.991 349.087 175.920
O-circuit 1465.742 851.606 359.140 181.030

FG-X C-circuit 1444.428 836.338 352.162 177.468
O-circuit 1478.305 858.755 362.130 182.535

FG-V C-circuit 1431.592 827.574 348.231 175.467
O-circuit 1466.081 850.294 358.314 180.591

FG-O C-circuit 1424.854 823.309 346.367 174.523
O-circuit 1459.610 846.167 356.505 179.673
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Figure 2. Effect of lamination angle on the natural frequency of laminated functionally graded carbon
nanotube-reinforced composite plates (FG-CNTRC) plate coupled with O-circuit piezoelectric layer:
(a) for different carbon nanotube (CNT) distribution types; (b) for different CNT volume fractions.

Figure 2 shows the fundamental frequencies of anti-symmetric angle-ply [p/(θ/−θ)3/p] laminated
PFG-CNTRC plates versus the lamination angle (a = b = 0.4m; a/h = 20). It can be seen that the
fundamental frequency increased with the increase in lamination angle θ from 0 to 45, and decreased
with θ values from 45 to 90 for all four CNT distribution types and three CNT volume fractions. This is
compatible with conclusions in previous studies in the literature. The previous conclusions regarding
the CNT distribution type are confirmed. Noted that the plate with FG-X distribution type had the
highest frequency, while with FG-O type had the lowest one.

6.2.2. Effect of Electrical Condition

The natural frequency of laminated cross-ply FG-CNTRC plates (a = b = 0.4 m; a/h = 20;
V*

CNT = 0.28) coupled with closed and open piezoelectric layers are shown in Tables 8–11 with different
inlet parameters: CNT volume fraction, CNT distribution type, number of layers, lamination angle,
and width-to-thickness ratio. It is seen from these tables that the frequencies of the plates increased as
the electrical boundary conditions changed from the closed circuit to the open circuit. Figure 3, once
again, indicates that the FG-CNTRC plates coupled with the open circuit of piezoelectric layers had a
greater stiffness than the FG-CNTRC plates coupled with the closed circuit of the piezoelectric layers.
This may be because the open circuit converts electric potential to mechanical energy while the closed
circuit does not.

6.2.3. Effect of Piezoelectric Layer Thickness

The effect of piezoelectric layer thickness on the natural frequency of hybrid plates (a = b = 0.4 m;
FG-X; [p/(−45/45)3/p]) for different CNT volume fraction and width-to-thickness was examined. For
this purpose, the natural frequency increment δ between O-circuit and C-circuit electrical conditions is
defined as:

δ =
ωO−circuit −ωC−circuit

ωC−circuit
100% (37)

In Figure 4a,b, the effects of piezoelectric layer thickness on the natural frequency increment δ for
different CNT volume fractions and different a/h ratio are depicted, respectively. It is found that the
natural frequency increment δ had a higher value with a lower volume fraction of CNT and a larger a/h
ratio. Furthermore, it can be seen when the hp/h ratio increased, the natural frequency increment δ
increased. Accordingly, piezoelectric layer thickness had a greater effect on the natural frequency of an
O-circuit piezoelectric coupled plate than that of a C-circuit.
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Figure 3. Effect of lamination angle on natural frequency of laminated FG-CNTRC plates [p/(−θ/θ)3/p]
with electrical condition (a = b = 0.4m; a/h = 20; V*

CNT = 0.28): (a) UD; (b) FG-X; (c) FG-V; (d) FG-O.

Figure 4. Variation of the natural frequency increment δ between O-circuit and C-circuit electrical
conditions versus the hp/h ratio for a square piezoelectric functionally graded carbon nanotube-reinforced
composite plates (PFG-CNTRC) plate (a = b = 0.4 m; FG-X; [p/(−45/45)3/p]): (a) for different CNT
volume fractions; (b) for different a/h ratio.
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Furthermore, the variations of the frequency parameter ω(Hz) are plotted in Figure 5a,b for
the open circuit condition with different CNT volume fractions and different width-to-thickness
ratios, respectively. These figures indicate that the natural frequency of the hybrid plate decreased
by increasing the thickness of the piezoelectric layer from zeros to a specific value. After this value,
the natural frequencies were increased by the incrementing of the piezoelectric layer in the cases of
moderately thick plates but seem to be unchanged in cases of thin plates. It can be concluded that the
piezoelectric effect is more effective in the case of thick plates rather than thin ones.

Figure 5. Effect of hp/h ratio on frequency parameter ω (Hz) of a square FG-CNTRC plate coupled
with open circuit piezoelectric layer and different width-to-thickness ratio (a = b = 0.4m; V*

CNT = 0.28;
[p/(−45/45)3/p]): (a) for different CNT volume fractions; (b) for different a/h ratio.

7. Conclusions

In summary, this paper shows our contribution to the development of a new four-variable refined
plate theory for free vibration analysis of laminated PFG-CNTRC plates. The comparison studies show
that the present theory is not only accurate but also efficient in predicting the free vibration responses
of the plates.

Our insight indicates that the natural frequency of the hybrid plates is strongly affected by the
volume fraction of CNT and the distribution type of CNT in the matrix. FG-X CNTRC plate had
the highest frequency, while the FG-O CNTRC plate had the smallest frequency regarding all inlet
studied parameters. In addition, the lamination angles of CNT fiber and number of CNT lamina
have a significant effect on the stiffness of the hybrid plate. Numerical results also revealed that the
piezoelectric effect was more prominent in plates bonded with O-circuit piezoelectric lamina because,
during vibration, the O-circuit converts electric potential to mechanical energy.

The present theory is accurate and efficient in solving free vibration behaviors of laminated
FG-CNT reinforced composite plates with the piezoelectric layer and may be useful in the study of
similar composite structures.
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Appendix A

In case of closed circuit:

χ11 = −2C11hpα2
−

(
C11 −C12

)
hpβ2

−A11α2
−A66β2;χ12 = −

(
C11 + C12

)
αβhp − (A12 + A66)αβ;

χ15= 0; [χ22 = −
(
C11 −C12

)
α2hp − 2C11β2hp −A66α2

−A22β2;χ25 = 0;

χ33 = −D11α4
−D22β4

− (2D12 + 4D66)α2β2
−

(
2/3

(
hp

)3
+ hc

(
hp

)2
+ 1/2(hc)

2hp

)
C11α4

−

(
2/3

(
hp

)3
− 1/2(hc)

2hp − hc
(
hp

)2
)
C11β4

−

(
4/3

(
hp

)3
+ 2hc

(
hp

)2
+ (hc)

2hp

)
C11α2β2;

χ34 = −Ds
11α

4
−

(
2Ds

12 + 4Ds
66

)
α2β2

−Ds
22β

4;χ35 = 4/3e31hpα2 + 4/3e31hpβ2;

χ44 = −2C11α4( f (z))2hp − 4C11α2β2( f (z))2hp − 2C11β4( f (z))2hp − 2C55α2g(z)hp − 2C55β2g(z)hp

−Hs
11α

4
− 2Hs

12α
2β2
−Hs

22β
4
− 4Hs

66α
2β2
−As

44β
2
−As

55α
2;

χ45 = 0;χ21 = χ12; χ31 = χ13; χ32 = χ23; χ41 = χ14; χ42 = χ24; χ43 = χ34;χ51 = χ15;χ52 = χ25;χ53 = χ35;χ54 = χ45;

χ55 = 4/3hpp11α2 + 4/3hpp22β2 + 16 p33
hp

;

ψ11 = ψ22 = I0; ψ31 = ψ13; ψ32 = ψ23; ψ33 = I0 + I2(α2 + β2);
ψ34 = I0 + I4(α2 + β2); ψ41 = ψ14; ψ42 = ψ24; ψ43 = ψ34; ψ44 = I0 + I5(α2 + β2); ψ12 = ψ21 = ψ15 = ψ51 = 0;
ψ25 = ψ52 = ψ35 = ψ53 = ψ45 = ψ54 = 0

For cross-ply laminates:

χ13 = B11α
3 + (B12 + 2B66)αβ

2;χ14 = 2C11α
3 f (z)hp + 2C11αβ

2 f (z)hp + Bs
11α

3 +
(
Bs

12 + 2Bs
66

)
αβ2;

χ23 = B22β
3 + (B12 + 2B66)α

2β;χ24 = 2C11α
2β f (z)hp + 2C11β

3 f (z)hp + Bs
22β

3 +
(
Bs

12 + 2Bs
66

)
α2β;

ψ13 = −I1α;ψ14 = −I3α;ψ23 = −I1β;ψ24 = −I3β;

For angle-ply laminates:

χ13 = 3Bs
16α

2β+ B26β3;χ14 = 3Bs
16α

2β+ Bs
26β

3;χ23 = B16α3 + 3B26αβ2;χ24 = Bs
16α

3 + 3Bs
26αβ

2;

ψ13 = ψ14 = ψ23 = ψ24 = 0;

In case of Open circuit:

χ11 = hp
(
C12 −C11

)
β2
− 2hp

C11 +
(e31)

2

p33

α2
−A66β

2
−A11α

2;

χ12 = −(A12 + A66)αβ−

C11 + C12 − 2
(e31)

2

p33

αβhp;

χ22 =
(
C12 −C11

)
α2hp −

C11 +
β2(e31)

2

p33

2hpβ
2
−A66α

2
−A22β

2;

χ33 = −D11α4
− 2(D12 + 2D66)α2β2

−D22β4
−

(
2/3C11

(
hp

)3
+

(e31)
2(hp)

3

p33
+ C11hc

(
hp

)2
+ 1/2C11(hc)

2hp

+3/2
(e31)

2hc(hp)
2

p33
+ 1/2

(e31)
2(hc)

2hp
p33

)
α4
−

(
4/3C11

(
hp

)3
+ 2

(e31)
2(hp)

3

p33
+ 2C11hc

(
hp

)2

+C11(hc)
2hp + 3

(e31)
2hc(hp)

2

p33
+

(e31)
2(hc)

2hp
p33

)
α2β2

−

(
2/3C11

(
hp

)3
+

(e31)
2(hp)

3

p33
+ C11hc

(
hp

)2
+ 1/2C11(hc)

2hp

+3/2
(e31)

2hc(hp)
2

p33
+ 1/2

(e31)
2(hc)

2hp
p33

)
β4;
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χ35 = −
(
e31hc + 4/3e31hp

)
4α2
−

(
e31hc + 4/3e31hp

)
4β2;

χ44 = −Hs
11α

4
−Hs

22β
4
−

(
Hs

12 + 2Hs
66

)
2α2β2

−As
55α

2 + As
44β

2
−

(
C11 +

(e31)
2

p33

)
2( f (z))2hpα4

−

(
C11 +

(e31)
2

p33

)
2( f (z))2hpβ4

−

(
C11 +

(e31)
2

p33

)
4hp( f (z))2α2β2

− 2C55g(z)hpα2
− 2C55g(z)hpβ2;

χ55 = 16/3hpp11α
2 + 16/3hpp22β

2 + 16
p33

hp
;

For cross-ply laminates:
χ13 = B11α

3 + (B12 + 2B66)αβ
2;

χ14 = Bs
11α

3 + Bs
12αβ

2 + 2Bs
66αβ

2 + 2C11α3 f (z)hp + 2
α3(e31)

2 f (z)hp
p33

+ 2C11αβ2 f (z)hp + 2
αβ2(e31)

2 f (z)hp
p33

;

χ23 = B22β
3 + (B12 + 2B66)α

2β;

χ24 = Bs
22β

3 +
(
Bs

12 + 2Bs
66

)
α2β+ 2

C11 + 2
(e31)

2

p33

β3 f (z)hp + 2

C11 +
(e31)

2

p33

α2β f (z)hp;

For angle-ply laminates:

χ13 = 3Bs
16α

2β+ B26β
3;χ14 = 3Bs

16α
2β+ Bs

26β
3;χ23 = B16α

3 + 3B26αβ
2;χ24 = Bs

16α
3 + 3Bs

26αβ
2;

ψ13 = ψ14 = ψ23 = ψ24 = 0;
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