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Abstract: The oxide film resistance (RP) and capacitance (CCPE) diagrams of implantable metals
(commercially pure Ti, four types of Ti alloys, Co–28Cr–6Mo alloy, and stainless steel) were investigated
by electrochemical impedance spectroscopy (EIS). The thin oxide film formed on each implantable
metal surface was observed in situ by field-emission transmission electron microscopy (FE-TEM).
The Ti–15Zr–4Nb–1Ta and Ti–15Zr–4Nb–4Ta alloys had higher oxygen concentrations in the oxide
films than the Ti–6Al–4V alloy. The thickness (d) of the TiO2 oxide films increased from approximately
3.5 to 7 nm with increasing anodic polarization potential from the open-circuit potential to a maximum
of 0.5 V vs. a saturated calomel electrode (SCE) in 0.9% NaCl and Eagle’s minimum essential medium.
RP for the Ti–15Zr–4Nb–1Ta and Ti–15Zr–4Nb–4Ta alloys was proportional to d obtained by FE-TEM.
CCPE was proportional to 1/d. RP tended to decrease with increasing CCPE. RP was large (maximum:
13 MΩ·cm2) and CCPE was small (minimum: 12 µF·cm−2

·sn−1, n = 0.94) for the Ti–15Zr–4Nb–(0 to
4)Ta alloys. The relative dielectric constant (εr) and resistivity (kOX) of the oxide films formed on
these alloys were 136 and 2.4 × 106–1.8 × 107 (MΩ·cm), respectively. The Ta-free Ti–15Zr–4Nb alloy is
expected to be employed as an implantable material for long-term use.

Keywords: Ti–15Zr–4Nb alloy; implantable metals; oxide film resistance; capacitance; electrochemical
impedance spectroscopy

1. Introduction

Stainless steels, Co–Cr–Mo alloys, commercially pure Ti (C.P.-Ti), and Ti alloys have been widely
used for orthopedic implants. The mechanical strength of stainless steel is increased by adding nitrogen
(N) and 20% cold working [1]. C.P.-Ti is classified into grade (G)-1, G-2, G-3, and G-4. In particular,
the mechanical strength of C.P. G-4 Ti is also increased by 20% cold working [2,3]. Among the Ti
alloys, Ti–6Al–4V alloy (hereafter, alloy compositions are expressed in mass%) is widely used. Recently,
low-cost manufacturing processes for highly biocompatible Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and
Ta-free Ti–15Zr–4Nb alloys have been developed [4].

The static immersion and anode polarization tests of metallic biomaterials are standardized in JIS
T 0304 and JIS T 0302, respectively [5,6]. As the static immersion test, a seven-day (7-d) immersion test
is recommended. NaCl (0.9%) and Ringer’s solution are the recommended solutions for the corrosion
test in ISO 16428 [7] and ISO 16429 [8]. NaCl (0.9%) solution adjusted to pH 2 by adding HCl also
meets the requirements in ISO 16428 for use as a solution for severe testing.

Owing to the recent rapid progress of transmission electron microscopy, the chemical composition
and thickness of oxide films can be analyzed in situ by field-emission transmission electron microscopy
(FE-TEM) [9]. We focused on the analysis by FE-TEM of the oxide film thickness (d) and the change in
the chemical composition of oxide films formed on Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, Ti–6Al–4V,
and Co–28Cr–6Mo alloys and high-N stainless steel.
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Electrochemical impedance spectroscopy (EIS) is a useful technique to determine electrochemical
reactions at a metal/oxide film interface [10–20]. In a surface oxide film, the capacitance (C, µF in this
work) is inversely proportional to the oxide film thickness (d) in nanometers (1 nm = 10−7 cm) and
proportional to the electrode area (A) exposed to a solution in square centimeters (1 cm2 in this work):

C = εo·εr·A/d, (1)

where εo is the vacuum permittivity (8.854 × 10−8 µF/cm) [9] and εr is the relative dielectric constant of
the oxide film [11,18–20]. C is proportional to the reciprocal of the thickness (1/d). Also, the oxide film
resistance (RP, MΩ in this work) is expressed by:

RP = kOX·d/A, (2)

where kOX is the resistivity (MΩ·cm) of the oxide film [21,22]. RP is proportional to d and inversely
proportional to A. As it is difficult to directly measure the thickness (d) of an oxide film in solution, we
estimated εr and kOX for the oxide films of metal surfaces using d measured by FE-TEM.

From Equations (1) and (2), Equation (3) is obtained.

RP = εo·εr·kOX /C (3)

Thus, RP and C are inversely proportional. There have been no reports on the systematic
investigation of RP and C diagrams for implantable metals. In this study, we focused on εr, kOX, and
RP and C diagrams to estimate the electrochemical stability of passive oxide films formed on various
implantable metals by anodic polarization using Equation (3). The effects of biological solutions on the
RP and C diagrams were also examined.

The purpose of this study was to establish RP and C diagrams of implantable metals and, in
particular, to estimate the wide ranges of RP and C values for Ti materials, stainless steel, and
Co–Cr–Mo alloy. Another aim was to obtain the electrochemical data of typical implantable metals
under the same conditions. To estimate εr and kox and obtain RP and C diagrams for implantable
metals, we investigated—by FE-TEM and EIS–the electrochemical stability of oxide films formed on
Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, Ti–15Zr–4Nb, and Ti–6Al–4V alloys, C.P.-Ti G-4, high-N stainless
steel, and Co–28Cr–6Mo alloy. The oxide films on these metals were mainly formed in an anodic
polarization or 7-d immersion test in 0.9% NaCl and Eagle’s minimum essential medium (MEM) at
37 ◦C. The chemical composition and thickness of oxide films formed on the above materials after
anodic polarization were analyzed in situ by FE-TEM. RP and C for each oxide film were measured by
EIS and were compared among the various implantable metals using a single-oxide-layer model to fit
the EIS data. We estimated εr and kox using d obtained by FE-TEM.

Moreover, we examined the relationship between RP and C, as well as the effects of materials
on RP and C obtained in 0.9% NaCl solution at 37 ◦C. Moreover, the effects of biological solutions
on these values were examined using 0.9% NaCl; Eagle’s MEM (Nissui) without fetal bovine serum
(FBS; FBS-free Eagle’s MEM); Eagle’s MEM containing 10 vol% FBS and 7.5 vol% NaHCO3; Ringer’s
solution, 0.9% NaCl containing 25 vol% calf serum; and 0.9% NaCl containing HCl (0.9% NaCl + HCl,
pH = 1) [23]. The RP and C diagrams obtained in this study are useful for the development of new
metallic materials with excellent corrosion resistance.

2. Materials and Methods

2.1. Materials

Vacuum arc melting was performed on biocompatible Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and
Ta-free Ti–15Zr–4Nb alloys [4]. After β-forging, α-β forging was conducted to obtain the α- and
β-structures. Rods of 25 mm diameter were manufactured by α–β forging, after which the rods
were annealed at 700 ◦C for 2 h [2,4]. For comparison, four types of alloy (Ti–6Al–4V, C.P.-Ti G-4,
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Co–28Cr–6Mo, and high-N stainless steel) were prepared. The Ti–6Al–4V rods were annealed at 700 ◦C
for 2 h [4]. The Co–28Cr–6Mo rods were annealed at 1200 ◦C for 1 h [24]. The high-N stainless steel
rods were solution-treated at 1150 ◦C for 1 h and then quenched in water (solution-treated). Part of the
C.P.-Ti G-4 rods were 20% cold-worked (20% CW) after annealing [3], and the high-N stainless steel
billets were 20% cold-worked after solution treatment [25]. Table 1 shows the chemical compositions
(in mass%) of the four Ti alloys and the other metals used for comparison.

Table 1. Chemical compositions (mass%) of the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ta-free
Ti–15Zr–4Nb alloys, C.P.-Ti Grade 4, Ti–6Al–4V, high-N stainless steel, and Co–28Cr–6Mo alloy used.

Alloy Zr Nb Ta Al V Pd Fe O N H C Ti

Ti-15-4-4 16.55 4.0 3.9 − − < 0.01 0.04 0.28 0.09 0.0012 0.007 Bal.
Ti-15-4-1 17.24 3.97 1.67 − − 0.02 0.036 0.29 0.096 0.0027 0.011 Bal.
Ti-15-4 17.1 4.2 − − − < 0.01 0.026 0.28 < 0.01 < 0.001 < 0.01 Bal.

C.P. Ti G-4 − − − − − − 0.197 0.275 0.003 0.0069 0.011 Bal.
Ti-6-4 − − − 6.4 4.4 − 0.10 0.07 0.02 0.0027 0.025 Bal.

Cr Mo Ni Cu C N Mn Si P Be Fe Co

Stainless steel 18.33 3.48 14.56 < 0.01 0.021 0.157 1.77 0.79 0.016. 0.0014 Bal. −

Co-Cr-Mo 27.82 6.23 0.51 − 0.26 − 0.6 0.6 − − 0.68 Bal.

2.2. FE-TEM Observation of Oxide Film

Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ti–6Al–4V alloys, annealed C.P.-Ti G-4, solution-treated
high-N stainless steel, and annealed Co–28Cr–6Mo alloy specimens were polished with 1000, 1200,
2400, and 4000 grit waterproof emery papers, and then mirror-like-finished by buff cleaning with OP-S
or Al2O3 (for stainless steel) suspension. After mirror-like finishing, an oxide film was formed on
the alloy surface by anodic polarization from the open-circuit potential to a maximum of 0.5 V vs.
a saturated calomel electrode (SCE) at a sweep rate of 40 mV/min in 0.9% NaCl and Eagle’s MEM
containing FBS, or in a 7-d static immersion test in 0.9% NaCl at 37 ◦C [9]. The temperature of the test
solutions was controlled within the range of 37 ± 1 ◦C. Anodic polarization and 7-d static immersion
tests were conducted in accordance with JIS T 0302 [6] and JIS T 0304 [5]. In this study, because the
potential at which the passive film fully formed on metal surfaces was stable, we selected a maximum
of 0.5 V vs. SCE for FE-TEM measurement.

To prepare FE-TEM samples, we used FB-2000A focused ion beam (FIB) processing (Hitachi, Ltd.)
and microsampling systems. Each alloy sample (10 × 15 × 3 µm) was observed using an JEM–2010F
system (JEOL, Ltd. Akishima, Tokyo, Japan) at an acceleration voltage of 200 kV and magnifications of
10,000 × to 1,000,000 ×. Sigma energy-dispersive X-ray spectrometry (EDX, Vantage, Akishima, Tokyo,
Japan) was carried out to analyze the composition of the oxide film. The concentration of each element
in the oxide film was measured by EDX. The inside of the thin oxide film was measured obliquely so
that the EDX spots did not overlap. In this study, we assumed that the oxide film formed on the metal
surface in the solution had a constant thickness in vacuum in FE-TEM measurement.

2.3. Electrochemical Model of Oxide Film

The electrochemical model used to analyze the EIS data is shown in Figure 1a [9,10,12]. Figure 1b
shows the equivalent circuit model used to analyze the EIS data [9,10,12,14,15,17–21,26]. Figure 1c
shows a schematic illustration of the Nyquist plot for the equivalent circuit. The following equation
holds for this circuit: (

x−
2RS + RP

2

)2
+ y2 =

(RP

2

)2
(4)

where y and x respectively represent the imaginary and real components of the complex impedance
(Ω·cm2) [9]; RS and RP are the solution and film resistances, respectively; and CCPE is the constant-phase
element, which includes the capacitance behavior of the surface film. The impedance representation of
the constant-phase element was given by ZCPE = 1/[(jω)n

·Q], since the actual measurement produces an
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incomplete circle on a Nyquist diagram [9,11,13,15,18–21,27]. Q (unit, µF/cm2
·sn−1) is a capacitance-like

element, j is the imaginary unit, ω (rad/s) = 2πf (f: frequency) is the angular frequency, and n is
an exponent between 0 and 1 (when n = 1, a system behaves as an ideal capacitor, and when n = 0,
it behaves as an ideal resistor). That is, when n is close to 1, Q is close to the ideal capacitance
C [9,11,13,15,17,20,27]. Q was estimated using HZ-5000ANAEIS-Analysis analytical software (Ver.
1.0.0, Hokuto Denkou, Meguro-ku, Tokyo, Japan) after the impedance test. Q is represented by CCPE in
this work [11]. RP and RS are calculated by fitting the measurement data with analytical software, and
CCPE is determined from the equationωtop = 1/(CCPE·RP).
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2.4. EIS Measurements

Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, Ti–15Zr–4Nb, Ti–6Al–4V, C.P.-Ti G-4 (annealed and 20%
CW), Co–28Cr–6Mo, and high-N stainless steel (solution-treated and 20% CW) were used for EIS
measurements. Specimens of 1 cm2 surface area (for normalization) were soldered with lead for
electrical connection. Thereafter, the samples were coated with epoxy resin. Then, their surfaces
were finished using mainly 1000-grit waterproof emery paper (1000-grit-polished) and ultrasonically
cleaned in ethanol for 5 min in accordance with JIS T 0302 [6]. To examine the effect of mirror-like
finishing of the specimens used for FE-TEM analysis on EIS properties, some of the specimens
were buff-cleaned using OP-S (for Ti materials and Co–28Cr–6Mo alloy) or Al2O3 (for stainless steel)
suspension. Electrochemical impedance was measured independently in 0.9% NaCl (pH = 6.0), FBS-free
Eagle’s MEM (pH = 6.4), 10 vol% FBS-containing Eagle’s MEM (pH = 8.3), 0.9% NaCl containing
25 vol% calf serum (pH = 6.8), Ringer’s solution (pH = 7.2, NaCl 8.36 g/L, CaCl2 0.15 g/L, KCl 0.3 g/L),
and 0.9% NaCl containing HCl (pH = 1).

An HZ-5000 electrochemical measurement system (Hokuto Denkou, Meguro-ku, Tokyo, Japan)
with a potentiostat and a frequency response analyzer (FRA) was used for the EIS measurement, as
shown in Figure 2. Nyquist and Bode plots and n values were measured using HZ-5000ANAEIS-
Analysis analytical software (Ver. 1.0.0, Hokuto Denkou, Meguro-ku, Tokyo, Japan). The experimental
cell shown in Figure 2 was used [9]. The reference electrode (R.E.) was electrically connected to a Luggin
capillary via an agar salt bridge. The distance between the sample surface and the tip of the Luggin



Materials 2019, 12, 3466 5 of 16

capillary was set to 5 mm. The temperature of the test solution was held at 37 ± 1 ◦C. The alternating
current was measured at a constant alternating potential of 10 mV, while the frequency was changed
from 100 kHz to 10 mHz to calculate the real and imaginary components, the absolute value, and the
phase difference of the impedance. The measurements were repeated three times. To investigate the
effects of the oxide film thickness on the impedance properties, an anodic polarization or 7-d static
immersion test was conducted before the impedance test. The anodic polarization test was performed
at a sweep rate of 40 mV/min starting from the open-circuit potential to a maximum of 1 V vs. SCE.
The 7-d static immersion test of the Ti–15Zr–4Nb–1Ta and Ti–6Al–4V alloys was performed in 0.9%
NaCl, in which a beaker containing test samples was placed inside an incubator at 37 ± 1 ◦C for 7 days.
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Figure 2. Experimental apparatus used for electrochemical impedance measurement.

3. Results and Discussion

3.1. FE-TEM Analysis of Oxide Films

We observed the thin oxide films formed on the implantable metals in situ. Figure 3 shows
FE-TEM images of the oxide films formed on the Ti–15Zr–4Nb–1Ta, Ti–6Al–4V, Co–28Cr–6Mo, and
solution-treated high-N stainless steel surfaces by anodic polarization up to 0 V vs. SCE in 0.9% NaCl at
37 ◦C. To compare the distribution of each metallic element in the oxide films formed on metal surfaces,
we selected 0 V vs. SCE as the potential in the passive region. As can be seen from the FE-TEM images,
the surface of each oxide film is protected by carbon, and a passive oxide film can be observed on the
metal surface. According to the electron diffraction patterns for the Ti–15Zr–4Nb–1Ta and Ti–6Al–4V
alloys, the metals had an hcp (hexagonal–close–packed) structure, whereas the oxide films had an
amorphous structure. Thin oxide films of 4.2 ± 0.2, 3.2 ± 0.2, 1.7 ± 0.2, and 2.3 ± 0.1 nm thicknesses
(mean ± standard deviation) were observed on the Ti–15Zr–4Nb–1Ta, Ti–6Al–4V, Co–28Cr–6Mo, and
high-N stainless steel surfaces after anodic polarization up to 0 V vs. SCE, respectively. Figure 4 shows
EDX spectra of the oxide films at the positions shown in Figure 3. The small Cu, Ga, and Mo peaks
originate from the microsampling holder. Peaks of oxygen and each metal element constituting the
oxide film were observed. The oxide film that formed on Ti–15Zr–4Nb–1Ta alloy consisted of TiO2

containing Zr and small amounts of Nb and Ta, as shown in Figure 4a. The oxide film on Ti–6Al–4V
alloy consisted of TiO2 containing Al and a small amount of V. The oxide film on Co–28Cr–6Mo alloy
consisted of Cr2O3 containing Co and a small amount of Mo. The oxide film on high-N stainless steel
consisted of Cr2O3 containing Fe and a small amount of Ni, as shown in Figure 4d.
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Figure 4. EDX spectra of oxide films formed on (a) Ti–15Zr–4Nb–1Ta, (b) Ti–6Al–4V, (c) Co–28Cr–6Mo
alloy, and (d) high-N stainless steel at the positions shown in Figure 3.

Figure 5 shows the changes in the concentration (at%) of each element in the oxide films from the
oxide/metal interface to the oxide film surface obtained by the EDX analysis of the oxide films. At the
oxide/metal interface, the metal concentration was relatively high, and with increasing distance from
the oxide/metal interface, the metal concentration decreased and the oxygen concentration increased.
It was found that the Ti–15Zr–4Nb–1Ta alloy had a higher oxygen concentration in the oxide film than
the Ti–6Al–4V alloy. In the oxide films formed on the Co–28Cr–6Mo alloy and high-N stainless steel
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surfaces, the concentrations of Co and Fe at the oxide/metal interface were high and decreased as the
distance from the oxide/metal interface increased. The changes in oxygen concentration in the oxide
films obtained by EDX analysis among the Ti alloys (Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, Ti–6Al–4V,
and C.P.-Ti G-4) are shown in Figure 6. The results of the 7-d immersion tests of Ti–15Zr–4Nb–4Ta and
Ti–15Zr–4Nb–1Ta alloys are also shown for comparison with those of the anodic polarization tests up
to 0 V vs. SCE. The oxygen concentration (at%) in the TiO2 oxide films increased in the order of C.P.-Ti
G-4 (annealed) < Ti–6Al–4V < Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys. Also, the change in
oxygen concentration in the oxide films formed on the Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys
by anodic polarization up to 0 V vs. SCE was similar to that obtained in the 7-d immersion test. It is
considered that this high oxygen concentration in the oxide films was due to the formation of ZrO2,
Nb2O5, and Ta2O5 from Zr, Nb, and Ta, respectively.
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Figure 6. Changes in oxygen (O) concentration (at%) in oxide films formed on Ti–15Zr–4Nb–4Ta,
Ti–15Zr–4Nb–1Ta, Ti–6Al–4V, and C.P.-Ti grade 4 surfaces by anodic polarization up to 0 mV vs. SCE
or in 7-d immersion test for Ti–15Zr–4Nb–1Ta and Ti–15Zr–4Nb–4Ta alloys in 0.9% NaCl at 37 ◦C.
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The effect of the anodic polarization potential on the thicknesses of the oxide films formed on
the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, Ti–6Al–4V, and C.P.-Ti G-4 surfaces is shown in Figure 7.
The thicknesses of the TiO2 oxide films after mirror-like finishing by buff cleaning with OP-S suspension
were 3.8 ± 0.2 nm, as shown in Figure 7. For the Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys, the
thickness of each TiO2 oxide film increased from approximately 3.5 to 7 nm with increasing anodic
polarization potential from the open-circuit potential to a maximum of 0.5 V vs. SCE in 0.9% NaCl and
Eagle’s MEM. The thickness of the oxide film formed on the Ti–6Al–4V alloy surface in 0.9% NaCl
tended to be slightly lower than those of the oxide films formed on the surfaces of the Ti–15Zr–4Nb–4Ta
and Ti–15Zr–4Nb–1Ta alloys. The thickness of the oxide film formed on the C.P.-Ti G-4 surface after
anodic polarization at 0 V vs. SCE in 0.9% NaCl at 37 ◦C was 4.7 ± 0.1 nm. Note that d = do +

α (Ef − Eo), where do is the thickness of the spontaneously grown oxide film, the slope α is the
anodization coefficient (2.3 nm/V for the Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys, coefficient of
determination, R2 = 0.76), Eo is the open-circuit potential, and Ef is the potential at the end of anodic
polarization. The α value was obtained by linear regression analysis. The anodization rates under the
relevant TiO2 growth conditions have been reported to lie in the range of 2.5–3.25 nm/V [28].
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Figure 7. Effect of anodic polarization on thickness of oxide films formed by anodic polarization on
surfaces of Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ti–6Al–4V alloys and C.P.-Ti G-4 in 0.9% NaCl or
Eagle’s MEM solution at 37 ◦C.

3.2. EIS Analysis of Oxide Films

Figure 8 shows Nyquist and Bode plots of oxide films on the Ti–15Zr–4Nb–1Ta, Ti–6Al–4V,
Co–28Cr–6Mo, and solution-treated high-N stainless steel surfaces after anodic polarization up to 0 V
vs. SCE in 0.9% NaCl at 37 ◦C. It can be seen that the typical implantable alloy/solution interface systems
exhibit capacitive behavior. In the Bode plots shown in Figure 8b, |Z| tends to become constant at high
frequencies, with the phase shift decreasing towards zero with increasing frequency. Highly capacitive
behavior at low-to-medium frequencies is indicated by the phase shift approaching −90◦, suggesting
that a highly stable oxide film was formed on all the Ti–15Zr–4Nb–1Ta, Ti–6Al–4V, Co–28Cr–6Mo, and
solution-treated high-N stainless steel surfaces. In this broad low-to-medium frequency range, the
spectra had a constant slope of about −1. This is the characteristic response of an oxide film exhibiting
capacitive behavior [29].
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solution at 37 ◦C.

Figure 9a shows a plot of the oxide film resistance (RP) of the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta,
and Ti–6Al–4V alloys and C.P.-Ti G-4 versus the oxide film thickness (d) obtained by FE-TEM analysis
after the anodic polarization tests from the open-circuit potential to a maximum of 0.5 V vs. SCE in 0.9%
NaCl and Eagle’s MEM at 37 ◦C. For comparison, the results of the 7-d immersion test using the same
Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys in 0.9% NaCl at 37 ◦C are also shown in Figure 9a,b.
The same marks in Figure 9a,b indicate the results for the same specimen. RP was approximately
proportional to d, as indicated by Equation (2). The obtained slope of the line for the Ti–15Zr–4Nb–4Ta
and Ti–15Zr–4Nb–1Ta alloys was calculated to be 2.4 × 107 MΩ·cm. The slope was determined by
linear regression and R2 was 0.65. The kOX values for the oxide films formed on the Ti–15Zr–4Nb–4Ta
and Ti–15Zr–4Nb–1Ta alloys by anodic polarization up to 0 V or 0.5 V vs. SCE in 0.9% NaCl or Eagle’s
MEM at 37 ◦C were calculated to be in the range of 2.4 × 106–1.8 × 107 MΩ·cm using Equation (2).
kOX for a rutile TiO2 single crystal was approximately 106 MΩ·cm [30]. kOX for the oxide film formed
on C.P.-Ti G-4 by anodic polarization up to 0 V vs. SCE in 0.9% NaCl at 37 ◦C was calculated to
be 2.48 × 106 MΩ·cm. The resistivity of the oxide film formed on C.P.-Ti G-4 in phosphate-buffered
saline (PBS) solution was 2.5 × 106 MΩ·cm [22]. Both kOX values for C.P.-Ti G-4 were nearly the same.
As clearly shown in Figure 9a, RP did not lie on a straight line passing through the origin, which is
different from the result indicated in Equation (2), and R2 (0.65) of the slope was lower. This may have
been caused by the effect of the thin film that initially formed on the metal surface during mirror-like
polishing. We would like to investigate the cause of this difference in the future and improve the
electrochemical model of the oxide film.
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The unit of CCPE was µF/cm2
·sn−1. The n values obtained in this work were 0.86–1.0. In particular,

the values of 0.91–0.96 were close to 1, indicating that the system behaved similarly to a capacitor.
The CCPE values obtained in this study were compared with those reported in the literature. Figure 9b
shows a plot of CCPE in the above unit for each oxide film versus the inverse of the oxide film thickness
(1/d) measured by FE-TEM. CCPE was proportional to 1/d, as indicated by Equation (1). The slope of the
line represents εo·εr for the thin TiO2 film. Expressing d in nanometers, CCPE in microfarads, and A in
square centimeters, εo·εr for the Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys was 1.20 × 10−5 µF/cm
and εr was 136. The slope was determined by linear regression assuming a line through the origin, and
R2 was 0.83. εr for the rutile TiO2 single crystal ranges from 89 to 173 in the literature [31]. The value of
εr obtained in this study was within this range. From these results, we considered that the thickness of
the oxide film formed on each metal surface in the solution was close to the value measured by FE-TEM.

RP and CCPE for the passive oxide films formed on the Co–28Cr–6Mo and solution-treated
high-N stainless steel surfaces after anodic polarization up to 0 V vs. SCE in 0.9% NaCl at 37 ◦C
were 0.42 ± 0.01 MΩ·cm2 and 33.0 ± 1.36 µF·cm−2

·sn−1 (n = 0.92 ± 0.01) for Co–28Cr–6Mo, and
0.12 ± 0.01 MΩ·cm2 and 62.44 ± 1.19 µF·cm−2

·sn−1 (n = 0.90 ± 0.002) for the solution-treated high-N
stainless steel, respectively. To compare kOX and εr for the Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta
alloys, kOX and εr for the oxide films formed on Co–28Cr–6Mo and high-N stainless steel by anodic
polarization up to 0 V vs. SCE were calculated from the film thickness. The values for Co–28Cr–6Mo
were 2.45 × 106 MΩ·cm and 63, and the values for the solution-treated high-N stainless steel were
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5.4 × 105 MΩ·cm and 162, respectively. εr for the Co–28Cr–6Mo alloy was much higher than those
(9.2 to 13.3) for Cr2O3 reported in the literature [26].

Comparing the results obtained after mirror-like polishing and 1000-grit polishing, RP obtained
for the mirror-like-finished specimens tended to be slightly higher than that for the 1000-grit-polished
specimens. However, since the difference between them was small, we mainly measured the
1000-grit-polished specimens for convenience. Figure 10 shows the changes in RP and CCPE for the
oxide films formed on the Ti–15Zr–4Nb–1Ta and Ti–6Al–4V alloys as a function of immersion time. RP

increased markedly up to an immersion time of 1 day and then saturated. Considering the results
of RP in the 7-d immersion test, we chose 0 V vs. SCE as the typical anodic oxidation potential.
Figure 11 shows the changes in (a) RP and (b) CCPE for various implantable materials measured
after anodic polarization at various potentials up to a maximum of 1 V vs. SCE in 0.9% NaCl at
37 ◦C as a function of anodic potential. The RP values for the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta,
and Ti–15Zr–4Nb alloys, Ti–6Al–4V, and annealed Ti G-4 markedly increased with increasing anodic
potential. The slope of the curve also changed near 0.5 V vs. SCE. On the other hand, the changes in the
values for Co–28Cr–6Mo and solution-treated high-N stainless steel were extremely small compared
with those for the Ti-based alloys. CCPE was highest for the high-N stainless steel and lowest for
the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ti–15Zr–4Nb alloys among the seven materials. CCPE

increased with the degradation of the oxide film (0.8 V vs. SCE for Co–28Cr–6Mo), as shown in
Figure 11b. From these results, we selected 0.5 vs. SCE as the typical anodic oxidation potential in the
passive region.
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Figure 10. (a) Resistance of oxide film (RP) and (b) constant-phase element (capacitance) of oxide film
(CCPE) formed on surfaces of Ti–15Zr–4Nb–1Ta and Ti–6Al–4V alloys after different immersion times in
0.9% NaCl solution at 37 ◦C.
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Figure 12 shows the relationship between RP and CCPE (RP and CCPE diagram) obtained from the
anodic polarization test using various metals (1000-grit-polished) up to a maximum of 1 V vs. SCE in
0.9% NaCl at 37 ◦C. To examine in detail the RP and CCPE diagrams in a wide range, anodic polarization
was performed from the open-circuit potential up to a maximum of 1 V vs. SCE using nine metals.
It was found that RP and CCPE were in inverse proportion, as indicated by Equation (3). For the high-N
stainless steel and Co–28Cr–6Mo alloy, these values were concentrated on the side with large CCPE

(maximum: 80 µF·cm−2
·sn−1, n = 0.90) and small RP (minimum: 0.1 Ω·cm2) values. In contrast, for the

Ti materials, they were concentrated on the side with small CCPE and large RP values. In particular, RP

and CCPE for the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ta-free Ti–15Zr–4Nb alloys had large RP

(maximum: 13 MΩ·cm2) and small CCPE (minimum: 12 µF·cm−2
·sn−1, n = 0.94) values. The effect of

the 20% cold working of the high-N stainless steel and C.P.-Ti G-4 on RP and CCPE was also small.
The effects of biological solutions and pH on RP and CCPE for oxide films formed on

Ti–15Zr–4Nb–4Ta alloy are shown in Figure 13. RP and CCPE were in inverse proportion in various
solutions. Since the results obtained with various solutions approximately lie on a single curve, the
effects of the biological solutions and pH on RP and CCPE were small. The effects of mirror-like finishing
and 1000-grit polishing of the Ti–15Zr–4Nb–4Ta alloy immersed in Eagle’s MEM are also shown in
Figure 13. It can be seen that the effects are small.
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It is clear that the implantable metals had a highly capacitive property, namely, a highly stable
oxide film was formed on their surfaces. For a metallic material with higher RP, the quantity of ions
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that pass through the surface oxide film is reduced, and such a material exhibits higher corrosion
resistance. The RP and CCPE diagrams obtained in this study are useful for the development of new
metallic materials with excellent corrosion resistance. The Ta-free Ti–15Zr–4Nb alloy is expected to be
employed as an implantable material for long-term use in the human body.

4. Conclusions

We examined the electrochemical stability of oxide films formed on highly biocompatible
Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ta-free Ti–15Zr–4Nb alloys and other implantable metals by
FE-TEM and EIS. Thin oxide films of approximately 4.2 ± 0.2, 3.2 ± 0.2, 1.7 ± 0.2, and 2.3 ± 0.1 nm
thicknesses were observed on Ti–15Zr–4Nb–1Ta, Ti–6Al–4V, Co–28Cr–6Mo, and high-N stainless steel
surfaces after anodic polarization up to 0 V vs. SCE, respectively. By the EDX analysis of the thin
oxide films, we found the metal concentration to be relatively high at the oxide/metal interface, and
as the distance from the oxide/metal interface increased, the metal concentration decreased and the
oxygen concentration increased. It was found that Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys had
a higher oxygen concentration in the oxide film than Ti–6Al–4V alloy. The oxide film formed on the
Ti–15Zr–4Nb–1Ta alloy consisted of TiO2 with Zr and small amounts of Nb and Ta. The thickness
of the TiO2 oxide film increased from 3.5 to 7 nm with increasing anodic polarization potential from
the open-circuit potential to 0.5 V vs. SCE in 0.9% NaCl and Eagle’s MEM. The resistance (RP) of the
oxide film on the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ti–6Al–4V alloys was proportional to the
oxide film thickness (d) obtained by FE-TEM. The capacitance (CCPE) of the oxide films was inversely
proportional to d. RP for the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ta-free Ti–15Zr–4Nb alloys,
Ti–6Al–4V, and C.P.-Ti G-4 markedly increased with increasing anodic potential in 0.9% NaCl at 37 ◦C.
On the other hand, the changes in these values for Co–28Cr–6Mo and high-N stainless steel were
extremely small compared with those for the Ti materials. RP and CCPE for the oxide films formed
on various implantable metals showed an inversely proportional relationship, and RP and CCPE for
the Ti–15Zr–4Nb–4Ta, Ti–15Zr–4Nb–1Ta, and Ta-free Ti–15Zr–4Nb alloys had a maximum value of
13 MΩ·cm2 and a minimum value of 12 µF·cm−2

·sn−1 (n = 0.94). The relative dielectric constant and
resistivity of oxide films formed on Ti–15Zr–4Nb–4Ta and Ti–15Zr–4Nb–1Ta alloys were 136 and 2.4 ×
106–1.8 × 107 (MΩ·cm), respectively. The Ta-free Ti–15Zr–4Nb alloy is expected to be employed as an
implantable material for long-term use in the human body.
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