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Abstract: The most popular methods of characterizing a composite’s fatigue properties and
predicting its life are phenomenological, meaning the micro-mechanisms of composite structures
under cyclic loading are not treated. In addition, in order to characterize the fatigue properties,
only macro-parameters, namely strength and/or stiffness, are adopted. Residual strength models are
mostly used in practice, given their strong relationship with safety and reliability. Indeed, since failure
occurs when the strength degrades to the peak stress of fatigue loading, the remaining strength is used
as a failure index. In this paper, based on a wide set of literature data, we summarize the capabilities
of four models, namely Caprino’s, D’Amore’s, Sendekyj’s, and Kassapoglou’s models. The models
are briefly described and then applied to the same data set, which is re-elaborated. The selected
experimental data are recovered from a large experimental campaign carried out by the Federal
Aviation Administration (FAA). Specimens of the same material were subjected to different loading
in terms of peak stress, σmax, and stress ratio, R = σmin/σmax, ranging from pure tension (0 < R < 1)
to prevalent tension (−1 < R < 0) to tension-compression (R = −1) to pure compression (1 < R <∞).
The data represent a formidable test bed to comparatively evaluate the models’ capabilities and
their predictive prerogatives. The models are also tested with respect to their ability to replicate the
principal responses’ feature of composite materials subjected to constant amplitude (CA) loadings.
It is shown that Caprino’s and D’Amore’s models are equally capable of adequately fitting the
experimental fatigue life data under given loading conditions and predicting the fatigue behavior at
different loading ratios, R, with two fixed parameters. Sendekyj’s model required different parameters’
sets for each loading condition, and Kassapoglou’s model was unable to fit the majority of fatigue
life data. When compared on the basis of the residual strength data, only the recently developed
D’Amore’s model revealed its reliability.

Keywords: fatigue life; residual strength; static strength; constant amplitude loading

1. Introduction

The phenomenological models for fatigue of composite materials do not provide information
about their damage development. They involve macro-stress components, the cycle-by-cycle change in
stiffness, and/or strength being predicted on the basis of empirical criteria. The use of phenomenological
approaches constitutes a suitable solution in a structural design reality where predictive models are
required for safety and reliability purposes [1,2]. One strong limit of phenomenological models is their
one-dimensional character reducing the strength from a tensor to a scalar quantity. This oversimplified
approach is a signature of the complexity of the phenomena underpinning fatigue where adjunctive
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parameters, including the tensorial nature of the strength, result in a complexity that is hardly compatible
with the costs of a comprehensive experimental campaign (not to mention that the loading frequency,
the test temperature, and the effect of water or other solvents are relevant parameters that would
require an even larger amount of experimental efforts to secure their consistent inclusion in a model).
On the other hand, the progressive damage models are based on specific failure criteria depending on
the length scales and the sequence/interaction of the damage mechanisms, in principle, they may result
in the development of more efficient design tools due to providing a deeper understanding of fatigue
damage mechanisms. However, given the complexity of the phenomenon and the diversity of material
combinations, the progressive models do not seem sufficiently robust to describe the mechanical
degradation arising from damage accumulation kinetics, despite the effort spent on this task up to
date [3,4]. The first residual strength degradation fatigue theory for composites was proposed by
Halpin et al. and Wolff [5–7], who used life prediction methods for metals for guidance. However
the approach was rapidly recast by a series of models that were subsequently developed taking into
account that the accumulation of damage and the reduction of strength are due to the development of
a multiplicity of degradation mechanisms operating at different length scales and not to a single crack
propagation. The majority of these models, at least those that are mostly accredited, were reviewed
comprehensively by Philippidis and Passipoularidis [8,9] to check their reliability for a series of
carbon/epoxy and glass/epoxy laminates subjected to fatigue. They concluded that some models
were only occasionally able to predict the residual strength under particular loading conditions of
different laminates, an outcome that prevented the widespread use of such models. In all cases, the
statistical predictions at different stress levels and fractions of fatigue life were highly unreliable. They
concluded that simple models, namely those with a limited number of parameters and as such requiring
limited experimental efforts, are preferable compared to complicated multiparametric ones where
vast experimental campaigns are often needed to optimize the models’ parameters. Furthermore, the
majority of the models they reviewed did not account for the loading ratio R = σmin/σmax, or that when
R is considered, several additional parameters are required. This in most cases prevented the predictive
use of such models out of the experimentally visited loading conditions and, more importantly, the
adoption of such models under variable amplitude (VA) loadings. However, in general the basic
equations of residual strength models correlate the strength with the number of cycles, n, the maximum
stress, σmax, the loading ratio, R = σmin/σmax, and the static strength, σ0, resulting in the following
implicit expression:

dσr

dn
= f ′(n, σmax, R, σ0). (1)

Through integration of Equation (1), the residual strength explicit equation is recovered and the
equation for the fatigue life, namely the S-N behavior, can be derived from as a limiting case, namely
when the residual strength degrades to the maximum applied stress σr = σmax and n = N, with N
being the number of cycles until failure occurs. Accordingly, by integrating Equation (1), the equation
for fatigue life can be written as follows:

σe = σ0 = f (N, σmax, R) (2)

Generally, the explicit function f describes the “nominal” or “mean” fatigue life behavior, with the
statistical nature of the fatigue response being almost completely affected by the statistical distribution
of static strength. Equation (2) also defines the “equivalent strength” models where σe is the
model-generated nominal strength. In fact, one criterion to evaluate the robustness of a model [10–19]
is to verify that the equivalent strength, σe, replicates the statistics of the static strength, σ0, that follows
a Weibull probability distribution function:

Pσ = P(X ≤ σ) = 1− exp

−(σγ
)δ (3)
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where γ and δ are the scale and shape parameters of the distribution function, respectively.
In that case, Equation (2) self-consistently fulfills the requirements based on a strength-life

equal rank assumption (SLERA), a concept stating that not only do stronger samples have a longer
life expectation but also that samples of a given rank in the distribution function of static strength
should have the same rank in the distribution function of fatigue life, under given loading conditions.
The concept, first assumed by Han and Kim [20] and then recast by Chou and Croman [21], remains
hardly demonstrable (in fact, the original static strength of samples failed under fatigue remains
unknown) and represents the substantial physics behind any reliable model.

Under the above conditions, the statistics of fatigue life distribution function can be recovered by
using Equations (2) and (3) as follows:

FN(n) = Pσ = P(X ≤ σ, N < N∗) = 1− exp

−( f (N, σmax, R)
γ

)δ (4)

where FN(n) is the probability function used to find a case where N < N*. The explicit function f
and the shape and scale parameters, γ and δ, are the basis for calculations. The Weibull distribution
function of number of cycles to failure, under given loading conditions, can be written as follows:

FN(n) = Pσ = P(N < N∗) = 1− exp
[
−

(
N∗

η

)µ]
(4’)

where η and µ are the scale and the shape factors. Equations (4) and (4’) show that the scale and the
shape factors of static strength and fatigue life distribution functions are strongly correlated for a given
material. Equation (4) states that the distribution function of the fatigue life, namely Equation (4’),
is “scaled” by the fatigue life function, f. However, it was shown that while the shape factor of the
static strength distribution may attain values between 15 and 60 [22], the shape factor for fatigue life
varies between 0.8 and 2.

In general, the fatigue life curves are expressed by deterministic equations with at least two
fitting parameters. Residual strength models also comply with experimental evidence showing that a
fatigue limit seems unlikely in composite materials or irrelevant in the range of cycles encountered
in practical applications, meaning the slope of S–N curves should remain always negative. Starting
from the rate Equation (1), the above general approach was followed progressively by several authors.
Many refinements and models’ predictions have appeared so far [9]. In a comprehensive review
by Philippidis and Passipoularidis [9], it was reported that most of phenomenological models were
occasionally suitable for safety and reliability purposes. Based on experimental data available
in literature, in the following section we compare four phenomenological models that were not
considered before in relation to each other, namely Sendekyj’s [11], Kassapogoulos’ [23], Caprino’s [14],
and D’Amore’s [16] models. The selection of such models was driven by the following different
considerations: (1) Sendekyj’s model is widely used for safety and reliability purposes in industrial
environments, especially in aerospace (2) Kassapogoluos’ model claims to predict the fatigue life of
any materials starting from the determination of scale and shape parameters of the static strength
distribution function, (3) Caprino’s model incorporates the loading ratio, R, and was applied with
success to predict the fatigue life of a number of different composites categories [24–30], (4) D’Amore’s
model is an extension of Caprino’s model. In its modified version, D’Amore’s model was proven to be
able to predict the cycle-by-cycle fatigue damage accumulation and the residual strength of composites
subjected to variable amplitude loading. The four models are described in the following section and
their capability is illustrated on the basis of the same data set.
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2. Residual Strength Models

2.1. Sendeckyj’s Model

The basic Sendeckyj’s model [11] is presented in the deterministic equation given by

σe = σmax

( σr

σmax

) 1
S
+ (n− 1)C

S

(5)

where σe is the equivalent static strength, σmax is the maximum applied cyclic stress, σr is the residual
strength, n is the number of fatigue cycles, and S and C are fitting parameters. From Equation (5),
the residual strength can be calculated as follows:

σmax

( σe

σmax

) 1
S
+ (n− 1)C

S

= σr. (5’)

Sendeckyj’s equivalent static-strength model assumes that the strongest specimen has the longest
fatigue life or the highest residual strength at run-out. From Equation (5) assuming that failure
occurs when the residual strength degrades to the maximum cyclic stress, the following deterministic
expression for fatigue life can be obtained:

σmax(1−C + Cn f )
S = σu (5”)

where σu is the static strength and n f is the number of cycles before failure. Using Equation (5”) requires
the optimization of different parameters’ sets for each loading ratio, R. Once calculated, the model’s
parameters allow us to convert the fatigue life and residual strength data into an equivalent static
strength data set, namely σe, to be fitted into a Weibull distribution function [6]. In order to account
for a different loading ratio, R, several versions of Equation (6) were developed and summarized in
Table 1.

Table 1. Sendeckyj’s additional models for fatigue life predictions.

Parameters

- s f
W1 S0 1
W2 S0 C
W3 S0 C(1 − R)G

W3A S0(1 − R)G C(1 − R)G

W4 S0 + D(1 − R)G C(1 − R)G

W4A S0(1 − R)G C(1 − R)G

2.2. Kassapogoulos’ Model

Starting from basic statistics and the strong assumption that the probability of failure is constant
with the number of cycles, Kassapogolou [23] derived a very simple and attractive model for fatigue life.
Based on the knowledge of the Weibull’s shape and scale parameters of the static strength, the stress σ
that will lead to failure at N cycles was described by the following Equation:

σ =
γ

N
1
δ

(6)

with δ and γ as the shape and the scale parameters of the two-parameter Weibull distribution describing
the static strength, respectively. Equation (6) is essentially an expression for the S-N curve of the
structure and was derived for the cases when 0 ≤ R <1 or R > 1. When R < 0, the S–N expression takes
the following form:
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N =
1(

σmax
γT

)δT
+

(
σmin
γC

)δC
. (7)

with γT, δT and γC, δC as the Weibull parameters of the static strength in tension and compression,
respectively. For the particular case of R = σmin

σmax
= −1 :

N =
1(

σ
γT

)δT
+

(
σ
γC

)δC
. (8)

Thus, Equation (7) requires iterative methods to be solved. The substantial claim of the model is
that it only requires the knowledge of static strength data to fully predict the fatigue behavior (a case
that appears unrealistic at first glance).

2.3. Caprino’s Model

In this section we summarize the principal features of the wear-out model already proposed in
reference [14]. The model is expressed by the following equations for residual strength and fatigue life,
respectively:

σn = σo − ασmax(1−R)(nβ − 1) (9)

σ0N = σ0 = σmax
[
α(1−R)(Nβ

− 1) + 1
]

(9’)

where n is the current cycle, σmax(1−R) = ∆σ = (σmax − σmin) is the amplitude of cyclic loading,
R = σmin

σmax
is the loading ratio, N is the number of cycles to failure, and α and β are the model

parameters. σ0N represents the “virgin strength” of samples fatigued until failure and coincides with
the experimentally determined static strength statistics, σ0, represented by a two-parameter Weibull
distribution as follows:

Fσ0(x) = P(σ0 ≤ x) = 1− exp
[
−(x/γ)δ

]
(10)

By means of Equation (9’), the virgin strength, σ0N, of samples subjected to fatigue can be recovered,
under fixed σmax and R. Therefore, from a series of fatigue life data, the statistics of static strength can
be obtained. Accordingly, Equations (9’) and (10) can be triggered to determine the Weibull statistics of
the number of cycles to failure as follows:

FN(n) = P(N ≤ n) = 1− exp

−
σmax

[
1 + α(nβ

− 1)(1−R)
]

γ


δ (11)

where FN(n) is the cumulative distribution function. We recall that model parameters α and β, as well
as Weibull parameters γ and δ, remain fixed along the calculations. Moreover, when n = 1 the Weibull
statistics for the static strength is recovered, namely Equation (10). In summary, the model accounts for
the loading ratio, R, a prerogative that implies a predictive capability of fatigue life from experimental
conditions needed to fix the model’s parameters, α and β. On the other side, the Caprino’s model
revealed its unreliability in predicting the strength degradation during fatigue [13,14].

2.4. D’Amore’s Model

D’Amore’s model differs conceptually from Caprino’s model as it is assumed that any sample
preserves the same rank within the statistics of static strength, fatigue life, and residual strength [15–17].
In other words, while Caprino’s model fulfils the strength-life equal rank assumption (SLERA) [6],
the extension of the concept to residual strength statistics can be recovered in the framework of
D’Amore’s approach as follows:
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PREL,σmax(X ≥ σin) = 1− P(N ≤ n) = exp

−
σmax

[
1 + α

(
nβ − 1

)
(1−R)

]
γ


δ (12)

where PREL,σmax(X ≥ σn) is the reliability function, which accounts for the probability of finding
a specimen with strength (X ≥ σin), under fixed loading conditions, namely R and σmax. Thus
Equation (12) can readily converted to the description of the strength evolution of a single specimen
with the current number of cycles, n. The approach is straightforward: during fatigue the generic
specimen of a given rank within the static strength distribution function degrades its strength from
the original strength, σi0N , at n = 1, towards the maximum applied stress, namely, when n = Ni,
σin(Ni) = σmax. Therefore, the strength degradation function assumes the following form:

σin − σmax

σi0N − σmax
= exp

−
σmax

[
1 + α(nβ − 1)(1−R)

]
γi(σi0N )


δ (13)

where
γi(σi0N ) =

σi0N

σ(γ)
γ (14)

is the scaling factor for the i-th sample with a “virgin” strength of σi0N . For convenience, Equation (13)
expresses the need to consider that weaker and stronger samples cannot exhibit the same characteristic
decay strength, which is γi(σi0N ). Furthermore, it is assumed that the static strength distribution can be
realistically confined between the extreme ranks F = 0.95 and F = 0.05, namely the arbitrarily defined
upper and lower tails of the distribution function (however any other limits can be defined). Thus,
during fatigue we assume that the strength of stronger sample with F = 0.95 should degrade down to
the maximum applied stress, σmax, with a characteristic decay strength, γ namely the Weibull shape
factor of the static strength distribution function.

Indeed, Equation (13) states that ratio of the samples with different ranks equals the ratio of their
characteristic decay strength and, while this assumption works very well, a refinement of it is under
study. From above, it can be appreciated that stronger sample may degrades towards a strength,
σ j(n) = σi0N , with σi0N being the virgin strength of a weaker sample. This is a sign that the strength
itself is not a sensitive measure of the state of damage, as the accumulation of damage is different with
samples of a different static strength. The degradation curves departing from strengths of rank F = 0.95
and 0.05 actually represent the upper and lower bounds of strength domain when the remaining
strength is measured under the same loading condition at a given number of cycles. Finally, from
Equation (13), the formal expression for the strength degradation kinetics is:

dσin

dn
= −(σi0N − σmax)

exp
[
−

(
A

γi(σi0N
)

)δ]
nβ−1(1−R)αβδσmax

(
A

γi(σi0N
)

)δ−1

γi(σi0N)
(15)

where
A =

[
1 + (nβ − 1)(1−R)α

]
σmax (16)

Meaning the equation’s parameters are already defined.
From Equation (13) it can be seen that when n � N, namely σin ≈ σmax, Equation (9’) of the

Caprino’s model is obtained as follows:

[
− ln

σn − σmax

σON − σmax

] 1
δ

=
σmax

[
1 + α(Nβ

− 1)(1−R)
]

γ
� 1 (17)
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Thus, Equation (17) for fatigue life is a limiting case of Equation (13), namely the residual strength
equation. In a form suitable to fitting the experimental S-N data, Equation (17) can be written as
follows:

σmax = σ0
[
α(Nβ

− 1)(1−R) + 1
]−1

(18)

where N is the number of cycles to failure at a given σmax and σ0 = γ.
Equation (18) is identical to Equation (9’), thus the substantial difference between Caprino’s and

D’Amore’s model lies in Equations (9) and (13), respectively. It is worth noting that the parameters of
Caprino’s and D’Amore’s models are also identical, a case that allows recovering the large amount of
fatigue life predictions previously obtained with no modifications [14–19,22,24–30].

3. Experimental Data

The experimental data are recovered from a technical report from FAA. [31]. We selected a series
of fatigue and residual strength data performed under various loading condition on AS4 carbon/epoxy
3k/E7K8 Plain Weave Fabric with [45/−45/90/45/−45/45/−45/0/45/−45]S layup. The experimental
campaign consisted of fatigue tests performed at three levels of stresses, six static and three residual
strength tests, following international standards (ASTM D5766). In this paper we report the predictions
of Caprino’s, D’Amore’s, Sendeckyj’s, and Kassapogoulos’ models towards the data obtained on “open
hole” (OH) specimens subjected to prevailing tension or compression tests at different loading ratios of
R. Deeper details on materials and specimen geometry can be found in reference [31]. The contract
notation 10/80/10 will be used in what follows representing a laminate with 10% laminae orientated at
0 and 90 degrees, respectively, with the resting 80% being oriented at ±45 degrees.

The capability of the different models is illustrated first in Figure 1 towards fatigue life data where
given the loading conditions, namely R = 0 and R = −0.2, tension stresses are prevailing. The black
lines refer to the equivalent models by Caprino and D’Amore. The broken curves represent the best
fitting curves to the data of the Sendeckyj’s model from one side, and the predictions based on the
Kassapogoulos’ model (let us recall that the Kassapogoulos’ model only requires the static strength
data for predictions), as indicated. The predictions based on Caprino’s and D’Amore’s models are
obtained with fixed parameters while Sendekyj’s and Kassapogolous’s models require a different set
of parameters for each loading condition. The same general considerations can be done for Figure 2,
reporting the fatigue data obtained under prevailing compressive stress, namely when R = −1 and
R = 5. To this end it must be recognized that despite the symmetry of the loading condition at R = −1,
namely the same absolute peak stresses are applied in tension and compression, the final collapse
occurs in compression. This is not surprising given that the static strength in compression is lower than
that in tension. This experimental evidence can be appreciated when comparing the static strength
data (namely, those data at n = 1) in Figures 1 and 2.

From the above data, Sendekyj’s, Caprino’s, and D’Amore’s models seem equivalent (also because
at longer cycles the model are almost superimposed). This is not true substantially because the analytic
Sendekjy’s model required different sets of parameters for each loading condition, namely R, while the
parameters of Caprino’s and D’Amore’s models remain fixed.



Materials 2019, 12, 3398 8 of 14

Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

 

different loading ratios of R. Deeper details on materials and specimen geometry can be found in 
reference [31]. The contract notation 10/80/10 will be used in what follows representing a laminate 
with 10% laminae orientated at 0 and 90 degrees, respectively, with the resting 80% being oriented at 
±45 degrees. 

180

200

220

240

260

280

300

320

1 10 100 1000 104 105 106

Sendekyj
Kassapoglou
Caprino and D'Amore

M
ax

im
um

 s
tre

ss
, M

Pa

Number of cycles

R=0

(a) 

160

180

200

220

240

260

280

300

320

1 10 100 1000 104 105 106

Sendekyj
Kassopoulos
Caprino and D'Amore

M
ax

im
um

 s
tre

ss
, M

Pa

Number of  cycles

R=-0.2

(b) 

Figure 1. The experimental fatigue life data for AS4/E7K8 PW—10/80/10, OH, at R = 0 (a) and R = −0.2 
(b) and the predictions of different models as indicated in the inset. 

The capability of the different models is illustrated first in Figure 1 towards fatigue life data 
where given the loading conditions, namely R = 0 and R = −0.2, tension stresses are prevailing. The 
black lines refer to the equivalent models by Caprino and D’Amore. The broken curves represent the 
best fitting curves to the data of the Sendeckyj’s model from one side, and the predictions based on 
the Kassapogoulos’ model (let us recall that the Kassapogoulos’ model only requires the static 
strength data for predictions), as indicated. The predictions based on Caprino’s and D’Amore’s 
models are obtained with fixed parameters while Sendekyj’s and Kassapogolous’s models require a 
different set of parameters for each loading condition. The same general considerations can be done 
for Figure 2, reporting the fatigue data obtained under prevailing compressive stress, namely when 
R = −1 and R = 5. To this end it must be recognized that despite the symmetry of the loading condition 
at R = −1, namely the same absolute peak stresses are applied in tension and compression, the final 
collapse occurs in compression. This is not surprising given that the static strength in compression is 
lower than that in tension. This experimental evidence can be appreciated when comparing the static 
strength data (namely, those data at n = 1) in Figures 1 and 2. 

100

150

200

250

300

1 10 100 1000 104 105 106

Sendecky
Kassapoglou
Caprino and D'Amore

M
ax

im
um

 s
tre

ss
, M

Pa

Number of cycles

R=-1

(a) 

100

150

200

250

300

1 10 100 1000 104 105 106

Sendekyj
Kassapoglou
Caprino and D'Amore

M
ax

im
um

 s
tre

ss
, M

Pa

Number of Cycles

R=5

(b) 

Figure 1. The experimental fatigue life data for AS4/E7K8 PW—10/80/10, OH, at R = 0 (a) and R = −0.2
(b) and the predictions of different models as indicated in the inset.

Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

 

different loading ratios of R. Deeper details on materials and specimen geometry can be found in 
reference [31]. The contract notation 10/80/10 will be used in what follows representing a laminate 
with 10% laminae orientated at 0 and 90 degrees, respectively, with the resting 80% being oriented at 
±45 degrees. 

180

200

220

240

260

280

300

320

1 10 100 1000 104 105 106

Sendekyj
Kassapoglou
Caprino and D'Amore

M
ax

im
um

 s
tre

ss
, M

Pa

Number of cycles

R=0

(a) 

160

180

200

220

240

260

280

300

320

1 10 100 1000 104 105 106

Sendekyj
Kassopoulos
Caprino and D'Amore

M
ax

im
um

 s
tre

ss
, M

Pa

Number of  cycles

R=-0.2

(b) 

Figure 1. The experimental fatigue life data for AS4/E7K8 PW—10/80/10, OH, at R = 0 (a) and R = −0.2 
(b) and the predictions of different models as indicated in the inset. 

The capability of the different models is illustrated first in Figure 1 towards fatigue life data 
where given the loading conditions, namely R = 0 and R = −0.2, tension stresses are prevailing. The 
black lines refer to the equivalent models by Caprino and D’Amore. The broken curves represent the 
best fitting curves to the data of the Sendeckyj’s model from one side, and the predictions based on 
the Kassapogoulos’ model (let us recall that the Kassapogoulos’ model only requires the static 
strength data for predictions), as indicated. The predictions based on Caprino’s and D’Amore’s 
models are obtained with fixed parameters while Sendekyj’s and Kassapogolous’s models require a 
different set of parameters for each loading condition. The same general considerations can be done 
for Figure 2, reporting the fatigue data obtained under prevailing compressive stress, namely when 
R = −1 and R = 5. To this end it must be recognized that despite the symmetry of the loading condition 
at R = −1, namely the same absolute peak stresses are applied in tension and compression, the final 
collapse occurs in compression. This is not surprising given that the static strength in compression is 
lower than that in tension. This experimental evidence can be appreciated when comparing the static 
strength data (namely, those data at n = 1) in Figures 1 and 2. 
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Figure 2. The experimental fatigue life data for AS4/E7K8 PW—10/80/10, OH, at R = −1 (a) and R = −5
(b) and the predictions of different models as indicated in the inset.

Concerning the Kassapogolous’ model, it is apparent that the fortuitous fitting of data at R = 5
does not guarantee an acceptable reliability. To illustrate the powerfulness of the Caprino’s and
D’Amore’s models, the complete set of data is reported in Figure 3. The best fit to the data obtained at
R = 0 and R = −1 allowed us to calculate the model’s parameters α and β that remained fixed to fully
predict the fatigue behavior under different loading condition, as indicated. It is worth mentioning that
the models parameters differ when prevailing compression or tension loadings are in play. The reason
for this is that the properties degradation in compression and tension may follow different paths given
the adjunctive damage mechanisms occurring during the compression loadings that may dictate a
different hierarchy of damage development. Thus, Equation (9’) is used two times pooling the static
strength and fatigue data at R = 0 and R = −1 separately, and using means of best fit procedures allows
recovering the model’s parameters in tension, namely αt and βt, and the prevailing compression
(R = −1), namely αc and βc. The two parameters’ set allow us to fully predict the fatigue behavior at
R = −0.2 and R = 5, where the tension and compression are prevailing loading modes, respectively.

Completely different considerations arise when predictions of the strength after a given number
of cycles are in order. For instance, Figures 4 and 5 report the fatigue life and the residual strength data
for open hole (OH) specimens tested at different loading ratios, namely R = −1 and R = −0.2, where
prevalent compression and tension loadings are in play, respectively (at R = −1, despite the symmetry
of loading, the rupture of samples occurs in compression since the compression strength is lower than
in tension given the stacking sequence of the OH specimens under study).
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Figure 4. The experimental fatigue life (empty circles) and residual strength data (filled circles) for open
hole AS4/E7K8 PW—10/80/10 under prevalent compression loadings (OHC) at R = −1. The continuous
curve is the best fit to the fatigue life data based on Caprino’s and D’Amore’s equivalent models.
The black broken curve is the predictions of residual strength from Caprino’s model, namely Equation (9).
The red broken curves are the predictions of upper and lower bound of residual strength from the
D’Amore’s model, namely Equation (12). The blue dotted line represents the Sendekyj’s model’s
residual strength predictions, namely Equation (5”).

In both figures the equivalent D’Amore’s and Caprino’s models for fatigue life (continuous curves)
are used to fix the models’ parameters. Then, based on Equations (13) and (14), the predictions of
D’Amore’s model are reported as dotted red curves. The data remain confined within the domain
bounded by upper and lower residual strength curves, namely the degradation curves departing from
static strengths of rank F = 0.95 and 0.05, respectively. The unreliability of the Caprino’s model was
already ascertained before [28–30]. However, for completeness, the predictions based on Equation (9)
are also reported in Figures 4 and 5 as black dotted curves. Concerning the Sendekyj’s model, based
on Equation (5”) the predictions are represented as dotted blue curves. However, we must emphasize
that this model was rarely used for residual strength predictions. The reason is that, differently
from Caprino’s and D’Amore’s models, the Sendekyj’s model does not inherently fulfill the failure
condition, namely σr = σmax at n = N, as can be readily seen in Figures 4 and 5. On the other side,
the Kassapoglous’s model is unreliable even for fatigue life predictions.

The capabilities of the D’Amore’s model under constant amplitude (CA) loadings were already
reported [15–19,22] for very different composites categories. With two fixed parameters, the model
is capable of treating the statistical nature of fatigue response and recovers the static strength from
fatigue life data in a way where it consistently obeys the strength-life equal-rank assumption (SLERA).
This means it allows for predicting the fatigue life under different loading conditions incorporating
the loading ratio, R, and, ultimately it is able to predict the residual strength with no parameter
adjustments [18]. Moreover, the model was recently applied with success to the case of very complex
spectrum loadings [19]. For clarity, the different model’s capabilities discussed above are summarized
in Table 2. In this Table, we highlight that Caprino’s and D’Amore’s models require the optimization of
only two parameters to predict the fatigue life of composite materials under different loading scenarios
and, while Caprino’s, Kassapoglous’s and Sendekyj models are unreliable in predicting the residual
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strength, D’Amore’s approach allows predicting the evolving strength with fixed parameters set with
no adjustments. In particular, D’Amore’s model captures the “sudden drop” behavior of strength
evolution during fatigue. Thus, fulfilling the principal features of fatigue responses with a limited
parameters set allows an easy use of D’Amore’s model for the optimization of test campaign and the
development of generalized softwares that can be adopted for predictions under variable amplitude
(VA) loadings on sound basis. Moreover, the analytical differences between Caprino’s and D’Amore’s
models are shown in Table 3. As already mentioned, the two models coincide when fatigue life
predictions are a concern, whereas the residual strength degradation equations greatly differ and so do
the rate equations.

Materials 2019, 12, x FOR PEER REVIEW 10 of 14 

 

differently from Caprino’s and D’Amore’s models, the Sendekyj’s model does not inherently fulfill 
the failure condition, namely σr = σmax at n = N, as can be readily seen in Figures 4 and 5. On the other 
side, the Kassapoglous’s model is unreliable even for fatigue life predictions.  

The capabilities of the D’Amore’s model under constant amplitude (CA) loadings were already 
reported [15–19,22] for very different composites categories. With two fixed parameters, the model is 
capable of treating the statistical nature of fatigue response and recovers the static strength from 
fatigue life data in a way where it consistently obeys the strength-life equal-rank assumption 
(SLERA). This means it allows for predicting the fatigue life under different loading conditions 
incorporating the loading ratio, R, and, ultimately it is able to predict the residual strength with no 
parameter adjustments [18]. Moreover, the model was recently applied with success to the case of 
very complex spectrum loadings [19]. For clarity, the different model’s capabilities discussed above 
are summarized in Table 2. In this Table, we highlight that Caprino’s and D’Amore’s models require 
the optimization of only two parameters to predict the fatigue life of composite materials under 
different loading scenarios and, while Caprino’s, Kassapoglous’s and Sendekyj models are unreliable 
in predicting the residual strength, D’Amore’s approach allows predicting the evolving strength with 
fixed parameters set with no adjustments. In particular, D’Amore’s model captures the “sudden 
drop” behavior of strength evolution during fatigue. Thus, fulfilling the principal features of fatigue 
responses with a limited parameters set allows an easy use of D’Amore’s model for the optimization 
of test campaign and the development of generalized softwares that can be adopted for predictions 
under variable amplitude (VA) loadings on sound basis. Moreover, the analytical differences 
between Caprino’s and D’Amore’s models are shown in Table 3. As already mentioned, the two 
models coincide when fatigue life predictions are a concern, whereas the residual strength 
degradation equations greatly differ and so do the rate equations.  

 

Figure 5. The experimental fatigue life (circles) and residual strength (filled circles) data for open hole 
AS4/E7K8 PW—10/80/10, under prevalent tension (OHT) at R = −0.2. The continuous curve is the best 
fit to the fatigue life data based on Caprino’s and D’Amore’s equivalent models. The broken black 
curve is the predictions of residual strength from Caprino’s model, namely Equation (9). The broken 
red curves are the predictions of upper and lower bound of residual strength from the D’Amore’s 
model, namely Equation (13). The blue dotted line represents the Sendekyj’s model’s residual strength 
predictions, namely Equation (5’’).

Figure 5. The experimental fatigue life (circles) and residual strength (filled circles) data for open hole
AS4/E7K8 PW—10/80/10, under prevalent tension (OHT) at R = −0.2. The continuous curve is the best
fit to the fatigue life data based on Caprino’s and D’Amore’s equivalent models. The broken black
curve is the predictions of residual strength from Caprino’s model, namely Equation (9). The broken
red curves are the predictions of upper and lower bound of residual strength from the D’Amore’s
model, namely Equation (13). The blue dotted line represents the Sendekyj’s model’s residual strength
predictions, namely Equation (5”).
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Table 2. Comparative capabilities of the relevant models.

- Number of Parameters

Recovery of The Static
Strength Distribution

from Fatigue Data
(The Concept of
Equivalent Static

Strength)

Predictions of
Fatigue Life under
Different Loading

Conditions

Prediction of “Sudden
Drop” of Strength with

Fixed Parameters
Optimized on The Basis

of Fatigue Life and
Static Strength Data

Easy Use for
Reliability Analysis
(Based on Few, Fixed

Parameters)

Easy Use for The
Optimization Of Test

Campaign. The Development
of Generalized Softwares and

Predictions under Variable
Amplitude Loadings

D’Amore (2015) 2 Excellent Excellent
Excellent (no adjustments
allowed). The parameters
are fixed once and for all.

Excellent Excellent

Caprino (1996) 2 Excellent Excellent poor poor poor

Sendekyj (1980) >2 each loading condition Excellent

Poor: Only fit to the
data (no predictions).

Different set of
parameters each

loading condition

poor poor poor

Kassapouglos
(2011)

No parameters needed.
Only the two parameters of

the Weibull distribution
function are claimed to be

sufficient to predict the
fatigue life (No fatigue life

data are required)

Not shown

Prediction are
un-conservative.

Fatigue curves are
shifted some 2 or
more decades of

cycles in respect to
the experimental data

Not shown Not shown Not shown

Table 3. Comparison of Caprino’s and D’Amore’s models.

- Equation for The Rate of Strength Degradation Residual Strength Evolution Equation Fatigue Life Equation

D’Amore (2015) dσin
dn = −(σi0N − σmax)

exp

−( A
γi(σi0N

)

)δnβ−1(1−R)αβδσmax

(
A

γi(σi0N
)

)δ−1

γi(σi0N )

σin−σmax
σi0N−σmax

= exp
{
−

[
σmax [1+α(nβ−1)(1−R)]

γi(σi0N )

]δ}
σmax

[
1 + α(Nβ

− 1)(1−R)
]
� σoN

Caprino (1996) dσn
dn = −a0∆σn−b σn = σ0 − σmaxα(1−R)(nβ

− 1) σmax
[
1 + α(Nβ

− 1)(1−R)
]
� σoN
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4. Conclusions

A comparative study was performed to check the reliability of four phenomenological models
in predicting the fatigue life and residual strength of composite materials. A coherent set of
experimental data taken from literature was used for comparison. It is shown that Caprino’s, Sendekyj’s,
and D’Amore’s phenomenological models for fatigue life are almost equivalently reliable. However,
the Sendekyj’s model required different sets of model parameters when a different loading ratio, R,
was in play. This prevented any predictive capability of Sendeckyj’s model when different loading
scenarios were in play. Instead Caprino’s and D’Amore’s fatigue life models incorporated the loading
ratio, R, and simply required a set of experimental fatigue data to fix the two model’s parameters,
namely α and β. It is shown that the models fully predict the fatigue responses under different
loading conditions accounting for the stress ratio, R, without recurring to parameters adjustments.
Kassapoglou’s model revealed its inadequacy by only occasionally fitting the data. Furthermore,
it was evident that both the Caprino’s and Sendekyj’s models were unable to predict residual strength
data. Instead, the recently developed D’Amore’s model showed its full reliability. The potential of
D’Amore’s model is readily ascertained, recalling that the fatigue life model is, in fact, a particular case
of the residual strength model. Furthermore, D’Amore’s model can replicate the principal features of
composites subjected constant amplitude (CA) loadings, making it a strong candidate to be evaluated
when spectrum loadings are a concern.
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