
materials

Article

FEM Simulation and Verification of Brazing SiC
Ceramic with Novel Zr-Cu Filler Metal

Bofang Zhou 1,2, Zhichen Zeng 3, Yuchen Cai 1 and Keqin Feng 1,*
1 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; hs_zbf@163.com (B.Z.);

ntcaiyuchen@126.com (Y.C.)
2 School of Materials Science and Engineering, Hubei University of Automotive Technology,

Shiyan 442002, China
3 College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China;

zczeng@zju.edu.cn
* Correspondence: kqfeng@scu.edu.cn

Received: 26 September 2019; Accepted: 14 October 2019; Published: 16 October 2019
����������
�������

Abstract: Zr-Cu filler metal is proposed for SiC ceramic under special working conditions, as a
novel type of the active filler metal, the difference of physical and chemical properties between SiC
ceramic and Zr-Cu filler metal leads to greater residual stress in the joint, which affects the mechanical
properties of brazing SiC ceramic joint. Based on the finite element method (FEM) simulation,
the residual stress of the joint is simulated to guide the design of Zr-based filler metal and formulation
of brazing process. The residual stress distribution of SiC ceramic joints brazed at 1200 ◦C with
different thickness of the filler metal and cooling rate is simulated by ANSYS software. The simulation
results of the residual stress are verified by brazing experiments and XRD measurements. The results
show that the simulated residual stress of the joint is mainly axial compressive stress. The axial
compressive stresses are the lowest when the filler metal thickness is 0.1 mm and the cooling rate is
2 ◦C /min, and increase with the increase of the filler metal layer thickness and cooling rate. The shear
strength of the brazed SiC ceramic joint that achieves the highest with 2 ◦C /min is about 72 MPa,
and then decreases with the increase of cooling rate. The experimental test of residual stress in
different locations of the brazed SiC ceramic joint basically coincide with the FEM simulation.
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1. Introduction

Modern ceramic materials are more and more widely used in the manufacturing industry with the
rapid development of science and technology. Silicon carbide ceramic, as a kind of structural ceramics,
have a series of excellent properties and been widely used in high-temperature components, such as
rocket engines and space mirrors. In addition, it has potential applications in nuclear industry, space
optics, and high-temperature gas filters [1–3]. Based on the special working conditions of SiC ceramic
with the intrinsic brittleness and poor machinability, it is very difficult to fabricate parts with large
and complex shape. Combining various joining methods of SiC ceramic and operating under special
working conditions, our research group innovatively proposed to develop a new type of Zr-based filler
metal for brazing SiC ceramic [4]. The difference of physical and chemical properties between SiC
ceramic and filler metal, especially the thermal expansion coefficient and elastic modulus, leading
to the larger residual stress of the brazing SiC ceramic [5–7]. The residual stress distribution of the
SiC ceramic joint will affect its mechanical property and safety. At present, the experimental test and
numerical simulation method are used for evaluating residual stress of SiC ceramic joints [8,9]. The cost
of experimental test is higher, and the narrower weld seam can-not be tested. The numerical simulation
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method can overcome the shortcomings of the experimental test, and it is an effective method to analyze
the residual stress of the joint. The finite element method simulations (FEM simulation) software,
Comsol Multiphysics, is one of the lead FEM method software, includes ANSYS, MSC/NASTRAN,
ABAQUS, ADINA and MARC, and ANSYS is one of the most commonly used software for welding
simulation [10,11]. Therefore, this study is mainly discussed the residual stress of SiC ceramic joint
is analyzed by ANSYS simulation, and verified by experimental test. However, Zr-Cu filler metal,
as a novel type of filler metal, its properties are quite different from those of other filler metals or
SiC ceramic, the residual stress distribution of the joint has an important influence on the design
of Zr-based filler metal and formulation of joining process parameters for brazing SiC ceramic. In
the paper, the residual stresses distribution of the joint between SiC ceramic and Zr-Cu filler metal
under brazing conditions is investigated by ANSYS software and verified by experimental test, which
provides a foundation for the design and development of Zr-based filler metal and adjusting the
residual stress of joints to obtain ideal brazed joint.

2. FEM Simulation and Experiment Methods

2.1. FEM Simulation of Brazing SiC Ceramic Joint

Brazing is a transient heat transfer process which mainly involves the coupling of stress and
temperature field. In order to be closer to the FEM simulation of brazing process, thermo-elastic-plastic
model is adopted. A "sandwich" structure is formed for brazing SiC ceramic, which results in the
non-linearity of geometry and material properties. So incremental method and virtual work principle
are used to obtain the each unit stress, and then formation and distribution of the residual stress in the
whole brazed joint are obtained.

The accuracy of the materials’ physical properties will directly affect the simulation results in the
FEM simulation process. At the same time, 80Zr20Cu (wt.%), as a novel type of the active Zr-based filler
metal (Zr-Cu filler metal), is innovatively designed for SiC ceramic under special working conditions.
The main physical parameters used in FEM simulation are as follows: modulus of elasticity (E),
coefficient of thermal expansion (α), yield strength (σs), thermal conductivity (λ), heat capacity (c),
density (ρ) and Poisson’s ratio (ν). The related physical properties of the SiC ceramic and Zr–Cu filler
metal which were obtained by experimental measurement or calculation change with temperature
are shown in Table 1. It is assumed in the FEM simulation as follow: (1) SiC ceramic only occur
elastic deformation, while Zr-Cu filler metal undergo elastic and plastic deformation. (2) Convection
and heat conduction between workbench and SiC ceramic are not considered in the FEM simulation
process of brazing SiC ceramic, and radiation from SiC ceramic and workbench with furnace is only
considered. (3) The interface of brazed joint is well bonded without defects, the physical bonding
between SiC ceramic and Zr-Cu filler metal does not take into account their chemical reactions. (4) The
yield strength of SiC ceramic joint is based on von Mises yield criterion when plastic deformation
occurs, and equivalent plastic stress (von Mises stress) is expressed as Equation (1):

σ =
{1

2
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2] + 3(τxy
2 + τyz

2 + τzx
2+)
} 1

2
(1)

In the formula, σ is von Mises stress; σx, σy, and σz are expressed as the axial stresses in X, Y, and Z
directions in turn. τxy, τyz, and τzx are expressed as tangential stresses.

The FEM simulation is built on the basis of the brazing specimen’s actual size. ANSYS software
is used for FEM simulation, solid5 eight-node thermo-mechanical coupling element is selected as
the mesh element type, and the non-linear algorithm chooses FULL Newton-Raphson method with
fast convergence speed and automatic time step. The initial condition is room temperature at 20 ◦C.
The brazing temperature needs to be higher than the liquidus temperature of the Zr-Cu alloy (1056 ◦C),
so the residual stress distribution of the joints at 1200 ◦C is simulated [4]. The loading process of the
brazed SiC ceramic is simulated to be cooled from brazing temperature to room temperature with a
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certain cooling rate. Relevant studies have found that the joint residual stress mainly concentrates
in the nearby area of the brazing seam [5,12], and considering the accuracy of simulation calculation,
the meshing of the area near the brazing seam is shown in Figure 1. This is because the non-uniform
meshing can save time and reduce the computer load, while ensuring the accuracy of the FEM
simulation calculation.

Table 1. Physical properties of SiC ceramic and filler metal (80Zr20Cu (wt.%)).

Materials T (K) E (GPa) A
(10−6/K)

σs (MPa) Λ

(W/m/K) c (J/kgK) P
(kg/m3) ν

SiC

293 330 4.5 - 28.6 670 3120 0.19

473 326 4.8 - 32.8 813 3120 0.19

673 318 5.2 - 37.1 1088 3120 0.19

873 309 5.5 - 41.7 1173 3120 0.19

973 302 5.6 - 43.4 1202 3120 0.19

1073 291 5.9 - 45.2 1227 3120 0.19

Filler metal

293 117 7.4 398 329 280 6690 0.33

473 114 7.5 382 391 426 6690 0.33

673 105 7.7 363 45.8 542 6690 0.33

873 99 8.1 304 52.6 667 6690 0.33

973 92 8.7 236 58.7 734 6690 0.33

1073 76 12.9 128 65.4 792 6690 0.33

Figure 1. Finite element method (FEM) simulation meshing of SiC ceramic joint: (a) overall structure
of the model, (b) local enlargement of the brazing seam.

2.2. Brazing Experiment and Evaluation

Reactive sintered silicon carbide (RBSiC, Hua Mei fine technical ceramics, Wei fang, China) as the
ceramic material was used in the brazing experiment, the related properties of the SiC ceramic in which
20 wt.% free silicon are shown in Table 2. SiC ceramic was processed in the shape of 10 × 10 × 20 mm.
One side was polished with 2000# diamond grinding disc and cleaned with ultrasonic wave (BK-900D,
Shobakr, Jinan, China) in acetone for 30 min. Zr–Cu filler metal was processed into a certain shape,
polished and cleaned by ultrasonic wave. Then a "sandwich" structure of the SiC ceramic/Zr-Cu filler
metal/SiC ceramic was formed and placed in a vacuum brazing furnace (VQS-335, Darente vacuum,
Shenyang, China). Under certain brazing conditions, brazing experiments were carried out to obtain
brazing joints. The shear strength of brazed joints was tested by microcomputer electronic universal
material testing machine (REGER-300, Reger, Shenzhen, China), and the schematic of the shear strength
test is shown in Figure 2.
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Table 2. Properties of reactive sintered silicon carbide (RBSiC) ceramic.

Properties
Maximum

Temperature
of Application

Density Open
Porosity

Bending
Strength

Modulus of
Elasticity

Thermal
Conductivity

Coefficient of
Thermal

Expansion

RBSiC 1380 ◦C >3.02
g/cm3 <0.1% 280 MPa 300 GPa 74 W/mK 4.5 × 10−6 K−1

Figure 2. Schematic of the shear strength test.

Residual stress of the brazing SiC ceramic joints was measured by XRD (XRD, EMPYREAN,
Netherlands). The center of the brazed joint and the interface reaction layer near the SiC ceramic are
used as the experimental test locations. CuZr2{402} is chosen as the diffraction plane when measuring
residual stress in the center of the brazed joint, and its stress-free diffraction angle is 2θ0 ≈ 133.3◦,
while ZrC{222} is chosen as the diffraction plane when measuring the position of the interface reaction
layer, and its stress-free diffraction angle is 2θ0 ≈ 136.4◦, the inclination angles (Ψ) are 0◦, 10◦, 20◦, 30◦

and 40◦ respectively. In addition, the elastic modulus and Poisson’s ratio of the SiC ceramic and Zr-Cu
filler metal are shown in Table 1. The formula for calculating residual stress is as Equation (2).

σ∅ = −
E

2(1 + ν)
cosθ0

π

180◦
∂(2σ∅,Ψ)

∂
(
sin2 Ψ

) (2)

In the formula, σφ is the residual stress value of a part of the brazed joint (MPa), E is the elastic
modulus of the test location, ν is the Poisson’s ratio of the material, θ0 is the Bragg angle of the
diffraction peak in the non-stress state, Ψ is the given measuring angle for measurement, θφ,Ψ is the
Bragg angle of the diffraction peak under stress condition.

3. Results and Discussion

3.1. Von Mises Stress of the FEM Simulation Joint

Figure 3 shows that the von Mises stress in different internal regions of the FEM simulation joint
by slicing method at 1200 ◦C. As shown in Figure 3a, the slice diagram includes the SiC ceramic side of
the joint, the filler metal layer near the SiC ceramic, the filler metal layer A, the filler metal layer B and
the center of the filler metal layer, with a spacing about 20 µm. The von Mises stress in the central
region of SiC ceramic is the smallest from Figure 3b, and the von Mises stress gradually increases from
the central region to the edge. However, the von Mises stress of the filler metal layer is relatively large
and distributed in a certain region near the edge. The maximum von Mises stress occurs mainly at the
joint between SiC ceramic and filler metal, and the stress in region I gradually decreases from the filler
metal layer near SiC ceramics to the center of the filler metal layer, and the von Mises stress decreases
gradually from region I to region II. A similar wide enclosed area is formed in region II, which can
realize the effective bonding between filler metal and SiC ceramic [13]. The main reason is that the
residual stress in region II is relatively smaller, which shows that the material performance matches.
From the filler metal near SiC ceramic to the center of the filler metal layer, the regions (II, III, IV)
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become larger, moreover, the smaller von Mises stress in IV region is beneficial to reduce the residual
stress of the joint, while von Mises stress of the III region is opposite. Therefore, it can be inferred
that the most disadvantageous part of the joint is the filler metal layer near the SiC ceramic. At the
same time, the von Mises stress distribution of Zr-Cu alloy is similar to that of related alloys and SiC
ceramic [14,15], but the properties of Zr-Cu alloy are closer to that of SiC ceramic, resulting in relatively
small residual stress, which highlights the innovation and importance of Zr-Cu filler metal design.
In order to obtain an ideal SiC ceramic brazing joint, it is necessary to design Zr-based filler metal and
optimize brazing process parameters so as to adjust the von Mises stress distribution of the joint.

Figure 3. Von Mises stress of the different regions of the SiC ceramic joints at 1200 ◦C: (a) schematic
diagram of brazing joint slice, (b) SiC ceramic side, (c) filler metal near SiC ceramic, (d) filler metal
layer A, (e) filler metal layer B, (f) center of the filler metal.

According to the von Mises stress distribution of the SiC ceramic joint, combined with von Mises
criterion and the fluidity and restriction conditions of the filler metal in actual brazing process, the main
residual stress of the joint is the axial stress (σy), and the stress concentration mainly distributes at
the four edges of the brazing joint. So the stress distribution along the edges of brazed joints under
different thickness of the filler metal and cooling rates will be mainly investigated.

3.2. The Influence of Filler Metal Thickness on Axial Stress of Joint

The simulated axial stress distributions of the joints with different filler metal thickness are shown
in Figure 4. It can be found that the distribution of axial stress is mainly symmetrical in the center of
the brazing seam, and the maximum axial stress that occurs in the filler metal layer is compressive
stress, the compressive stress decreases gradually with the transition of the brazing seam center to SiC
ceramic, and the stress changes at the interface of the joint, and then the tensile stress appears in the
SiC ceramic finally. The compressive stress at the edge of the joint with the same thickness of filler
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metal layer is much greater than the tensile stress, which indicates that the axial stress of the joint
is mainly compressive stress. This is mainly due to the difference of thermal expansion coefficient
(α) and elastic modulus (E) between SiC ceramic and Zr–Cu filler metal at high temperature, which
indicates that Zr-based filler metal should be optimized to obtain brazed SiC ceramic joints with lower
stress. It is found that the maximum tensile stress or compressive stress of the joints increases with the
increase of the filler metal thickness from the Figure 4b. In conclusion, it is necessary to reduce the
residual stress, especially the compressive stress, at the same time, control the thickness of the filler
metal layer, in order to gain the joints with excellent mechanical properties.

Figure 4. Axis stress (σy) distribution of the SiC ceramic joints with different thickness of filler metal:
(a) distribution on the edge of joint, (b) Maximum tensile and compressive stresses.

3.3. The Effect of Different Cooling Rates on the Axial Stress of Joint

According to the stress distribution of the SiC ceramic joint with different thickness of filler metal,
and preparation conditions of the filler metal, the thickness of filler metal layer is 0.2 mm for further
study. The axial residual stress of joints that brazing a temperature at 1200 ◦C with different cooling
rates are shown in Figure 5. It can be seen that the axial stress of the joints, presenting compressive
stress, mainly concentrates on the filler metal layer at the same cooling rate. The compressive stress of
the joints gradually decreases from the center of brazing seam to the SiC ceramic, and stress of the
area near the SiC ceramic is transformed into tensile stress, and finally stabilizes to a certain value.
As shown in Figure 5b, the maximum compressive stresses of the joint increases with the increase of
cooling rate, and is higher than its maximum tensile stress under the same condition. Meanwhile,
the change of the axial stress at a point A in the center of the brazing seam with time under different
cooling rates is investigated. The axial compressive stress increases with the increase of cooling time
from Figure 5c. As a result, the axial stress of the joint enhances with the increase of cooling rate due to
the stress of the joint is not being released under rapid cooling.

3.4. Verification of FEM Simulation

According to the results of FEM simulation and considering the experimental conditions,
SiC ceramic and Zr-Cu filler metal with 0.2 mm thickness were heated to brazing temperature
1200 ◦C, and holding for 20 min, and then cooled to room temperature with the different cooling rate.
It can be found that brazed joints can achieve chemical metallurgical bonding between SiC ceramic
and Zr-Cu filler metal. The shear strength of the brazed SiC ceramic joints with different cooling rates
is shown in Figure 6. It can be seen that the shear strength of the joints that achieves the highest with
2 ◦C/min is about 72 MPa, and then decreases with the increase of cooling rate. At the same time, it was
found that the shear fracture location of the joint was mainly in the interfacial reaction layer, and there
were a few SiC ceramic particles in the fracture. The main reason is that the physical properties of
SiC ceramic and filler metal are quite different, especially their thermal expansion coefficient and
elastic modulus. The stress of SiC ceramic is mainly tensile stress and that of the filler metal layer
is compressive stress, and the axial stress mainly concentrates on the center of the filler metal layer.
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The faster the cooling rate is, the greater the axial stress concentration of the filler metal is, which will
lead to the decrease of the shear strength of the brazing SiC ceramic joints.

Figure 5. The axial stress (σy) distribution of SiC ceramic joints with different cooling rates: (a) the
edge distribution, (b) Maximum tensile and compressive stresses, (c) distribution of the node A.

Figure 6. Shear strength of the brazed SiC ceramic joint with different cooling rate.

The residual stresses of the experimental brazing joints with different cooling rates are compared
with the FEM simulation as shown in Figure 7. The residual stresses in the central region of the joint
and the area near the interface of SiC ceramic are all compressive stresses. The compressive stresses
of the joints increase with the increase of cooling rate. The variation of residual compressive stresses
in the central region of the joint is consistent with that in the experimental measurement. However,
the residual compressive stresses in the central region of the joint are slightly larger than those in the
FEM simulation at the same cooling rate. In the area near the interface of SiC ceramic, the joining of
the filler metal and SiC ceramic is assumed to be a physical bonding in the FEM simulation process,
and the interface reaction between Zr-Cu filler metal and SiC ceramic is not considered, resulting in
the residual compressive stress of the reaction layer is much larger than that of the FEM simulation at
the same cooling rate. If the results of FEM simulation are closer to the experimental test, the interface
reaction layer should be introduced into the FEM simulation process [4], the current detection methods
are difficult to obtain the interfacial reaction layer material relevant physical performance, especially
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the properties of the reaction layer material change with temperature. Only a few references are
involved [16,17], thus the physical properties of the interface reaction layer material need to be further
investigated. Although there are some errors between the experimental test and FEM simulation of
brazed SiC ceramic joints, the stress changing trend of the experimental test can basically better verify
the FEM simulation between SiC ceramic and Zr-Cu filler metal.

Figure 7. Residual stresses comparisons between the experimental test and the FEM simulation with
different cooling rate: (a) the center area of joint, (b) the interface reaction layer near SiC ceramic.

4. Conclusions

(1) Axial stress is an important component of residual stress in SiC ceramic brazing joint, and the
stress concentration mainly distributes symmetrically along the four edges of the SiC ceramic joint.
Axial stress is mainly composed of compressive stress and tensile stress, the compressive stress
decreases gradually from the center of the brazing seam to SiC ceramic, and transforms into tensile
stress at the side of SiC ceramic.

(2) The maximum compressive stress occurs in the center of the brazing seam, while the maximum
tensile stress occurs on the SiC ceramic side. The maximum compressive stress of the SiC ceramic
joint is much greater than its tensile stress, which results in the joint presenting compressive stress.
The compressive stresses are the lowest when the filler metal thickness is 0.1 mm and the cooling rate
is 2 ◦C/min, and increase with the increase of the filler metal layer thickness and cooling rate.

(3) The shear strength of the brazed SiC ceramic joint is the highest (i.e., 72 MPa) with brazed
at 1200 ◦C and 2 ◦C/min of the cooling rate, and then decreases with the increase of cooling rate.
The experimental residual stress is consistent with the results of FEM simulation, so the residual stress
of the brazed SiC ceramic joint using experimental test can basically better verify the stress of the
FEM simulation.
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