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Abstract: The discrete element method (DEM) is commonly used to study various powders in
motion during transportation, screening, mixing, etc.; this requires several microscopic parameters
to characterize the complex mechanical behavior of the particles. Herein, a new discrete element
parameter calibration method is proposed to calibrate the ultrafine agglomerated powder (recycled
polyurethane powder). Optimal Latin hypercube sampling and virtual simulation experiments
were conducted using the commercial DEM software; the microscopic variables included the static
friction coefficient between the particles, collision recovery coefficient, Johnson–Kendall–Roberts
surface energy, static friction coefficient between the particles and wall, and collision recovery
coefficient. A predictive model based on genetic-algorithm-optimized feedforward neural network
(back propagation) was developed to calibrate the microscopic DEM simulation parameters. The cycle
search algorithm and mean-shift cluster analysis were used to confirm the input parameters’ range
by comparing the mean value of the dynamic angle of repose measured via the batch accumulation
test. These parameters were verified by the baffle lifting method and the rotating drum method. This
calibration method, once successfully developed, will be suitable for use in a variety of fine viscous
powder dynamic flow conditions.

Keywords: discrete element method; ultrafine agglomerated powder; dynamic angle of repose;
predictive model; mean-shift clustering analysis

1. Introduction

Currently, the main methods that are used for recovering and recycling thermosetting plastic
waste include the mechanical and physical method, the chemical method, and the energy recovery
method. The mechanical and physical method [1,2] can achieve complete recovery with high recovery
efficiency and low pollution. The recycling method is based on the principle that materials accumulate
under various mechanical forces, causing the accumulation of mechanical energy, destroying the
crosslinked molecular structural network, generating a recycled powder with a low crosslinking degree,
and realizing the recovery and recycling of the thermosetting plastic [3].

In industrial production, as shown in Figure 1, in the process of mixing and regenerating the
material after mechanical force pulverization, the active regenerated material is usually added, mixed,
and regenerated; then, a reagent such as a crosslinking agent is added and solidified to form a
thermoplastic finished material. However, during the production process, the powder is often in
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motion owing to processes such as transportation, sieving, and mixing. Therefore, during the DEM
calibration simulation, it is necessary to use the calibration test under complex dynamic conditions to
characterize the actual mechanical behavior of the powder.
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Recently, the discrete element method (DEM) has become a popular tool for describing the
movement of particles, including powders, seeds, and soil, especially in the mining, chemical,
pharmaceutical, and environmental industries, with the improvement of the computer capabilities [4,5].
DEM has been demonstrated to be a better tool than other simulation methods at this stage because
it can analyze and optimize the process parameters associated with the preparation of the particle
material and the operation of equipment used in the industry. In DEM simulations, several physical
properties of the materials involved in collision and the contacts that occur between them are readily
available, including the parameters that describe the intrinsic properties of a single contact material
such as its density, size, Poisson’s ratio, and Young’s modulus. However, the contact characteristics
will depend upon the specific model that is used while describing the interaction between particles and
between a particle and the device geometry. The commonly used contact models are the Hertz–Mindlin,
Johnson–Kendall–Roberts (JKR), and Bonding models; however, these models require the calibration
of a large number of contacts. Further, the parameters can be used to accurately characterize the
actual working conditions [6,7]. In the DEM parameter calibration test, the application of direct
measurement calibration or indirect virtual calibration is the primary method for obtaining the
aforementioned parameters. The characteristic parameters that are easy to measure can be directly
measured experimentally, and the measurement results can be considered to be the input value for
the DEM parameters. However, because of the anisotropy of some particulate matter, the direct
measurement results are observed to vary considerably. The difference between the established particle
model and the actual model is large, and the parameter measurement value cannot be directly applied
to the DEM numerical simulation. Therefore, numerous researchers have proposed the usage of virtual
simulation experiments to calibrate the contact parameters required in discrete element simulations and
have conducted extensive research [8,9]; however, these calibrations mostly use the “testing method”,
which exhibits high computing costs. To solve this problem, researchers have attempted to use
predictive models or apply optimization algorithms. Consider Wu [10] as an example, the triaxial shear
tester and stress–strain curve were used to determine the macroscopic mechanical properties of the
soil. Then, the genetic neural network was used to derive the DEM parameters. Cheng [11] proposed
a sequential quasi-Monte Carlo filter as a new calibration method for the DEM models of granular
materials. Rackl and Hanley [12] used Latin hypercube sampling and the kriging method to describe
and demonstrate a method based on the static angle method. Zhou et al. [13] calibrated the irregularly
expanded graphite particles, combining optimal Latin hypercube sampling and virtual simulation
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experiments to obtain the DEM parameters that are to be calibrated using an adaptive simulated
annealing optimization algorithm; further, the membership function was selected. The output values
were used to obtain several sets of optimal contact parameter sets. Do et al. [14] developed a parameter
calibration framework for discrete element models based on a multi-objective genetic algorithm (GA).
They used quartz sand particles to optimize the model accuracy and simulation time and demonstrated
that the contact parameters of the materials can be accurately calibrated within the optimal simulation
time. Simultaneously, coarse granulation is the most common modeling approach for the calibration
of the discrete element parameters of special particles (including wet particles and ultrafine polymer
powders), as demonstrated by Alizadeh et al. [15] for polyethylene glycol 400 (PEG 400). In a study
investigating the coating treatment of the EP particles, the concept of cohesive number was used in the
DEM numerical simulation to measure the shear modulus of the material or to change the particle
size to ensure that the surface energy could be rapidly scaled and that the calibration time could be
substantially reduced. Nasato et al. [16] used DEM to numerically simulate the wet granulation of
continuous granulators and investigated the possibility of seed-particle formation during a continuous
process to reduce the number of trials and processes. Further, a control method was designed to
define dimensionless number (cohesion number) on the basis of the effect of particle cohesion and
gravitational potential energy to investigate the effects of factors, such as the drum rotation speed,
particle surface energy, and particle size ratio, on the performance of the seed granulator. Among them,
reducing the shear modulus of the particles and improving the calculation ability are also necessary
content for coarse grain modeling. For example, J. Hærvig et al. [17] gave an analytical derivation
criterion for reducing computation time by reducing particle stiffness. The validity of the criterion
was verified by comparing the experimental data with the particle simulation of reducing the particle
stiffness. Yile Gu et al. [18] used an improved cohesion model for fluidized CFD-DEM simulations.
For viscous particles, the predicted flow pattern depends on the value of the particle spring stiffness
used in the simulation. An improved cohesive model was proposed, which was verified by the
simulation of two-particle collision, which provides satisfactory results for the fluidization of particles.

Therefore, based on the aforementioned summary and given that the recycled polyurethane (PU)
powder investigated in this study also exhibits strong adhesion, we selected the JKR model exhibiting
the agglomeration bonding effect as the characterization method to select the most sensitive discrete
meta-contact parameters. Simultaneously, we used the sample space obtained after Latin hypercube
sampling (LHS) sampling to simulate a series of parameter values on the basis of the determined range
of the contact parameters via the commercial DEM software. Finally, the back-propagation (BP) neural
network is trained to obtain an accurate prediction model. The calibration process is divided into
two phases. The first phase is based on the development of a BP neural network prediction model
optimized by the GA (Figure 2a), whereas the second phase is based on a neural network model
developed for specific particulate materials. The application of the calibration experiment resulted in
the selection of the DEM parameters (Figure 2b).

Training a BP neural network requires a series of DEM simulations in the selected range of
simulation parameters. Herein, the BP neural network was trained in conjunction with the improved
FBS-104 powder meter test. In engineering applications [19], the correlation coefficient (R2) is usually
greater than 90% before the neural network can be used as the predictive model; thus, the correlation
coefficient can be considered to be an evaluation criterion. Figure 2b denotes the application of the
BP neural network after training. The same powder measuring device is used to test the PU sample
to avoid introducing an error into the prediction model. Based on the trained BP neural network
database, the output will be the angle of repose, which is input into the loop search algorithm, and the
mean-shift cluster analysis method is used to solve the feasible domain of the DEM parameters. Then,
the candidate DEM parameter set are determined from the database and verified using the baffle lift
and rotary drum methods. This calibration method, once successfully developed, will be suitable for
use in a variety of fine viscous powder dynamic flow conditions.
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2. Experimental Method and DEM Modeling

2.1. Funnel Flow Meter Test Device

The test material was obtained by pulverizing the thermosetting PU closed rigid foam plastic in a
homemade thermosetting plastic pulverization and reclaiming test machine; powders with particle
sizes of 80 (0.18 mm) and 120 mesh (0.125 mm) and a small amount of 200-mesh (0.0750 mm) powder
were obtained. During the calibration process, the PU powder of the calibration object is prone to
agglomeration; therefore, agglomeration occurs in the rotating drum, leading to the formation of a
dynamic accumulation angle and the occurrence of the “avalanche” phenomenon, which is difficult
to overcome [20]. Therefore, the use of a funnel flow meter (modified FBS-104 powder meter) can
improve the cumulative mechanical properties caused by the angle. The device comprised a 120-mm
funnel, 94-mm diameter circular loading platform, brush, and Plexiglas bracket (Figure 3). However,
the powder cannot be normally formed to reduce the “pour” phenomenon of the powder particles
during the free-fall movement of the PU powder. The funnel outlet was designed to have a small
7◦ angle of inclination to reduce the material drop rate. During the whole test process, the material
slides down along the funnel wall with the brush at 60 rpm. Finally, the angle of repose of the powder
particles can be measured when the powder to be discharged accumulates on the receiving table to
form a stable material pile.

2.2. Angle-of-Repose Measurement

The angle of repose is used to describe the application of material particles in specific scenarios
and the corresponding mechanical behavior, including the liquid bridge force, friction force, van der
Waals force, and other forces that often exist between particles. Therefore, the material particles
are studied by considering the angle of repose as a macroscopic response value to ensure that the
appropriate microscopic DEM parameters of the material can be indirectly identified based on these
response values. The angle of repose is most commonly measured with a material in its unconstrained
state, as depicted in Figure 4a; the material particles are stacked and formed on the horizontal surface
without collapse [21], and the slope of the formed material is observed, which can be converted into
the material accumulation angle.
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Figure 4b–d denote that the PU powder pile exhibits good symmetry. Alizadeh et al. [15] proposed
that the high material is generally 10%–90% to avoid large fluctuations in the boundary contour of
the material particles during stacking. For fitting the final boundary contour, the contour is read
using the computer image processing technology and then processed by gradation and binarization;
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the boundary is subsequently extracted, and the boundary point is linearly fitted using the least-squares
method to obtain the left and right boundaries of the powder particle stack. The equation of the
contour is linearly fit, and the average value measured using the left and right angles is the angle of
repose. The specific process is presented in Figure 4a–d.

2.3. DEM Virtual Test Model

2.3.1. Coarse-Grain Modeling of the Particle Discrete Element Based on the JKR Contact Model

In this calibration test, we mainly studied a thermosetting PU powder with a particle size of
120 mesh (0.125 mm). A scanning electron microscopy image of the powder is depicted in Figure 5,
denoting that the powder particles are mostly not spherical. Therefore, the mechanical interlocking of
the particles may substantially contribute to the volumetric shear strength of the particulate material
and may affect its fluidity. Härtl and Ooi [22] denoted that geometric interlocking of the nonspherical
particles strongly affects the in vivo friction of the particulate materials and should be introduced in the
DEM simulations to capture the volumetric shear strength of the material. Simultaneously, Bharadwaj
et al. [23] proposed that duplicating the exact shape of the particles is unnecessary for calibrating the
powder discrete element parameters; they observed that the use of double-sphere paired particles
with an aspect ratio of greater than 1 can provide a satisfactory quantitative prediction and that the
aspect ratio could be increased to 2 without resulting in any significant difference. Given that the PU
powder used in this study exhibits a relatively complicated mechanical behavior and avoids large
errors associated with the establishment of the DEM model, it is further verified in Section 2.3.3. Thus,
we can conclude that the ball pairing with an aspect ratio of 1.3 was appropriate. This model is a
suitable replacement for the PU powder (Figure 6).
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Figure 6. Approximate replacement model for polyurethane powder (120 mesh) during the simulation.

The contact model is the core of the particle DEM. The JKR contact model [24–26] is an extension
of the Hertz contact theory. The model is based on elastic solid contact and focuses on the “overlap”
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of contact between particles. The particle-matching ball mainly has a tangential elastic force, and
the normal dissipative force and the tangential dissipative force interact. Two spherical particles are
assumed to agglomerate only on the contact surface (Figure 7). When the external load is P0 and the
elastic displacement is δ, the particle contact surface radius α0 can be obtained using the Hertz contact
theory if the particles are not agglomerated. However, if the particles agglomerate, the contact surface
radius α1 is greater than α0 although the external load is still P0.
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In industrial DEM modeling, a method of amplifying the particle size and reducing the shear
modulus is adopted because the number of particles may be in the order of several million, leading to
a long calculation time; however, a scientific and reasonable scale basis is required. Thus, the accurate
surface energy value, particle size, and mechanical properties should be coordinated in the JKR contact
model. To achieve this, the concept of cohesion number [27] is proposed. The cohesion number is
expressed as the ratio of cohesive work between particles to the gravitational potential energy of
the particles.

Cohesion number =
Work of cohesion

Gravitational potential energy
(1)

This can be mathematically expressed as follows:

Coh =
1
ρg

(
γ5

E∗
2
R∗

2

) 1
3

, (2)

where r denotes the density of the particles, g denotes the acceleration of gravity, γ denotes the average
surface energy of the particles, E* denotes the equivalent Young’s modulus of elasticity, and R* denotes
the equivalent particle size from among various particles. The parameter R* is calculated according to
Equation (3).

R∗= (
1

R1
+

1
R2

)−1, E∗= (
1− µ2

1

E1
+

1− µ2
2

E2
)−1, (3)

where R1 and R2 are the radii of the contacting spheres, E1 and E2 are their Young’s moduli, and m1

and m2 are their Poisson’s ratios.
During the simulation, to avoid large overlaps in the process of contact between particles, which

would increase the calculation cost, the cohesion number (Coh) is usually used to scale the particle
discrete element model; further, the particle size is increased according to a certain zoom level.
In addition, the equivalent surface energy is calculated by increasing the particle size and reducing
the shear modulus. In addition, Alizadeh et al. [15] used this method. For example, the average
surface energy of the PU particles is 0.0214 J/m2 [28]; when this value is substituted into Equation (2),
the cohesion number is observed to be 0.000622. When the average surface energy value is maintained
constant, the particle size is magnified 10 times. However, when the modulus is reduced by two
orders of magnitude, the equivalent surface energy used in the simulation is 4.0 J/m2. Simultaneously,
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to accurately calibrate the calculated parameter values, we refer to the surface energy values of similar
materials in the GEMM database provided by the EDEM software and expand the calibration range of
the surface energy values with the equivalent surface energy value (4.0 J/m2) as the intermediate value.
Expanding the surface energy value to both sides, we determine the value between 3 and 8 J/m2.

2.3.2. DEM Simulation Tests

The discrete element virtual calibration test is completely consistent with the test device described
in Section 2.1. Particle factory generation was compiled using the commercial DEM simulation
software with an API open-source interface; the filling rate was 0.56, and the generation time was
0.01 s. The funnel was filled with the particle group, and the large moment between the particles was
eliminated. After the particles were allowed to stand for 3 s, the brush was rotated at 60 rpm. At this
time, the particle group fell freely, with a gravitational acceleration of 9.81 m/s2 (Figure 8), and finally
formed a stable pile on the receiving table. The powder particle pile simulation time remained 20 s for
the whole process, and the final 2 s was used for the excessive porosity when the particles piled up
(this pile-up leads to the excessive formation of a simulated packing). The simulation test method
based on that described in Section 2.3.1 was used to propose a coarse-grained modeling criterion based
on the JKR model to characterize the actual accumulation phenomenon of the PU powder.Materials 2019, 12, x FOR PEER REVIEW 9 of 24 
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2.3.3. Sensitivity Analysis of the Particle Intrinsic Parameters

To simplify the calibration process, we analyze the effect of the particle Eigen parameters on the
angle of repose. Therefore, in combination with the range of values of the DEM simulation parameters
shown in Table 1, the Eigen parameters (density, Young’s modulus, Poisson’s ratio, and particle aspect
ratio) of the particles were investigated by the simulation test described in Section 2.3.2. Thus, we can
conclude that the angle of repose was affected.
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Table 1. Discrete element method (DEM) parameters, relevant symbols, and values/intervals used in
this study; parameters to be calibrated are set to intervals, which are marked withF.

DEM Parameter Symbol Value/Interval

Polyurethane Poisson’s ratio Vp 0.35–0.39
Polyurethane Young’s modulus

(Pa) GP 3.5× 109

Polyurethane density (kg·m−3) ρP 30–100
Poisson’s ratio of steel Vw1 0.3

Young’s modulus of steel (Pa) Gw1 1.0× 109

Steel density (kg·m−3) ρw1 7850
Poisson’s ratio of Plexiglas Vw2 0.4

Shear modulus of Plexiglas (Pa) Gw2 1.6× 1010

Density of Plexiglas (kg·m−3) ρw2 1385
Collision recovery coefficient

(particle–particle) epp F0.1–0.5

Static friction coefficient
(particle–particle) µpp F0.3–0.75

Rolling friction coefficient
(particle–particle)

µ
γ
pp 0.001

Collision recovery coefficient
(particle–wall) epw F0.1–0.6

Static friction coefficient
(particle–wall) µpw F0.5–2.5

Rolling friction coefficient
(particle–wall)

µ
γ
pw 0.001

JKR surface energy (J/m2) Γ F3–8

Figure 9a denotes that the Young’s modulus is between 3.5 × 106 and 3.5 × 107 Pa and that
the angle of repose gradually increases. Notably, almost no change is observed in the stacking
angle when the Young’s modulus becomes greater than 3.5 × 107 Pa. As described in Section 2.3.1,
the computational time of discrete element simulation can be minimized by reducing the magnitude of
Young’s modulus. In this case, the Young’s modulus is reduced by two orders of magnitude (set to
3.5 × 107 Pa). The mid-rest angle has almost no effect. In addition, the particle density has little
effect on the angle of repose (Figure 9b), consistent with the results obtained from other studies [29].
Similarly, the particle Poisson’s ratio increases from 0.3 to 0.7. Only a small reduction is observed in
the static angle of repose of the particles (approximately 0.5). In the results of Bharadwaj et al. [23],
the best aspect ratio problem for coarse particle granulation is proposed in Section 2.3.1, as depicted in
Figure 9d. When the width ratio becomes 1.3, the angle of repose of the particles tends to be stable,
consistent with the prediction of the static angle.

A set of thermodynamic PU powders with a particle size of 120 mesh (0.125 mm) was obtained
through the aforementioned batch simulation test; the intrinsic parameters were Gp = 3.5× 107 Pa,
ρP = 60 kg·m−3, Vp = 0.4, particle aspect ratio = 1.3.
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3. Development and Application of the BP Prediction Model

3.1. BP Neural Network Database

Multidimensional sampling of the calibrated discrete element contact parameters was performed
using a uniform distribution-based LHS method [30] to form a virtual test sample space. The distribution
function domain of each stochastic input variable is equally divided into ∆Xk

i (k = 1, 2, . . . , N) in
probability, and each subinterval is subjected to independent equal-probability sampling. During
each deterministic calculation analysis, sampling is strictly guaranteed in each subinterval. To ensure
that the extracted random numbers belong to each subinterval, the random number Vi in the i-th
subinterval must satisfy the following conditions:

Vi =
V
N

+
i− 1

N
, (4)

i− 1
N

< Vi <
i

N
, (5)

where i = 1, 2, . . . , N; Vi is the random number of the first subinterval; and V is the random number
with evenly distributed intervals. The LHS sampling design for n-dimensional random Xi (i = 1, 2, . . . ,
N) variables involves the following two steps:

(1) Divide each random variable into N equal-probability subintervals ∆Xk
i (k = 1, 2, . . . , N),

and obtain the midpoint of each subinterval as a sample representative Xk
i of the corresponding

random variable.
(2) For each random variable Xi, extract a sample representative Xk

i and arrange it according to
a random number, and arrange the samples of all the random variables according to random
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numbers, resulting in N random arrangements. Each sample contains a sample of all the random
variables representing Xk

i .

In this study, the sampling parameters epp, µpp, epw, µpw, and Γ, which were to be calibrated,
were sampled at 120 sample points for BP neural network training and verification. Thus, all the
sampling points constitute a 5 × 120 matrix. Each row of the matrix represents a variable, and each
column represents a set of test parameters, with the first 80 samples denoting the training data and the
final 40 denoting the validation data. The virtual test data are presented in Table A1 of Appendix A.

3.2. BP Neural Network Structure Design

The BP neural network was proposed by Rumelhart and McClelland [31]; it is a multilayer
feedforward neural network trained according to the error BP algorithm. It is extensively used in many
fields as a supervised learning algorithm that maps a set of inputs to the accurate output [32,33]. This
study is based on the Sigmoid weighting function and uses the mean square error (MSE) deviation
function as the core content of the BP neural network. In the current study related to discrete element
parameter calibration, the DEM parameter is the general input layer, whereas the angle of repose
is the output layer. Based on the DEM batch simulation experiment presented in Section 2.3.2, this
study establishes an approximate model of the relation between the microscopic parameters and the
macroscopic angle response for each set of sample points. The topological structure of the BP neural
network prediction model for the particle macro parameter is presented in Figure 10. In addition,
the numerical fluctuation of static angle is measured because of the defects of the BP neural network
itself. Therefore, the GA is used to adjust the weight and threshold of the network to reduce the
influence of noise in the model. Finally, the behavior of the particles can be predicted for any set of
DEM simulation parameters. The BP neural network prediction model is subsequently used to extend
the finite numerical simulation database to “infinity.”Materials 2019, 12, x FOR PEER REVIEW 12 of 24 
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3.3. Optimization of the BP Neural Network Performance on the Basis of the GA

While dealing with nonlinear problems, the BP neural network algorithm often converges to local
solutions because of its serial search mechanism. To address this problem, the GA of “survival of the
fittest in nature” is adopted [34]. Optimization to form a parallel search optimization method makes it
easy to converge into the global sample space. While training the BP neural network, as depicted in
Figure 11, the objective is to continuously optimize the weight and threshold of each layer such that the
error between the final network output static angle value and the predicted output is sufficiently small
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in accordance with our expectations. The process of optimization is the process of constant “evolution”
of weights and thresholds. During each iteration, the weights and thresholds are selected on the basis
of the “natural environment,” mutations, and crossovers and then leave excellent varieties, i.e., weights
and offsets minimize output errors. Inferior varieties are eliminated, and, after multiple iterations,
the “genes” of weights and thresholds improve, achieving the training objectives. Furthermore,
the GA-BP neural network is able to fit the data using fewer iterative steps. In this study, it can quickly
find the input DEM parameters and optimize the target using the preset MSE values, thereby achieving
global optimization faster.
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In the BP neural network, the number of nodes in the input and output layers are determined,
and the appropriateness of the number of nodes in the hidden layer is determined, which directly affects
the performance of the network. In general, in case of a large sample space, a multilayer network is more
accurate than a single-layer network; however, the time required for training considerably increases.
An excessive number of hidden-layer nodes will increase the redundancy of the network, whereas the
presence of very few hidden-layer nodes will increase the network error. No clear theoretical guidance
is available for determining the number of hidden-layer nodes, which are generally determined by a
combination of empirical formula methods and repeated test methods [35] and can be given as follows:

h =
√

m + n+a, (6)

where h is the number of hidden-layer nodes, m is the number of input layer nodes, and n is the number
of output layer nodes, which is an adjustment constant between 1 and 10. The number of neurons in
the hidden layer of the obtained Equation (6) is approximately 3–12, which is further explored below.

Figure 12 denotes the relation between the number of neural network hidden-layer neurons
determined by the BP neural network prediction model and the response-angle coefficient of
determination R2. When the number of neurons in the hidden layer became seven, the coefficient of
determination of the verification sample reached a maximum of 0.924. Therefore, seven hidden-layer
neurons were selected to establish a BP neural network model for predicting the angle of repose.
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3.4. Prediction Results and Discussion

Among the 120 sets of sample spaces sampled by Latin hypercube, 80 sets of data were used in the
BP neural network training model, whereas the remaining 40 groups were used in the post-training
BP model to analyze the fitting accuracy of the BP model to the DEM model. The training data and
forecast data used in this study are presented in Table A1 of Appendix A. The fitting accuracy of the
BP model was evaluated by the coefficient R2 determined in Equation (7). The closer the value of R2

is to 1, the more accurate will be the BP model. In general, the approximate model and R2
≥ 0.9 are

considered for engineering applications.

R2 = 1−

∑N
i=1

(
yi − ŷi

)2

∑N
i=1

(
yi − yi

)2 , (7)

where yi is the first simulated value of the model, ŷi is the first predicted value of the model, yi is the
average of the simulated values, and N is the number of samples. The coefficient of determination
R2 based on the stacking angle of Equation (7) is 0.93. Figure 13 presents a comparison between the
predicted and simulated values.
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sets and (b) BP prediction values and DEM simulation response values.

As can be observed from Figure 13a, the evaluation coefficient is obtained as 0.924, which is
calculated in accordance with Equation (7) by linearly fitting the relation between the DEM simulation
value and the predicted value. However, Figure 13a also shows a small number of discrete points
which can be attributed to the initial state and flow process of the sample powder particles to be tested
during the simulation and to the poor reproducibility of the angle of repose caused by randomness.
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The predicted value of the BP model and the DEM simulation response angle are compared in
Figure 13b. This discrete phenomenon can be observed only in a small amount, and the predicted
value is close to the DEM simulation value, indicating that the established BP model is sufficiently
reliable to be used for calibrating the DEM parameters.

3.5. Application of the BP Prediction Model

3.5.1. BP Model Predictive Value of the Angle-of-Repose Search

To accurately calibrate the DEM parameters, the sample space was expanded to 300 sample points
by LHS resampling and the mapping relation between the DEM parameters and the angle of repose
was successfully established through the developed BP neural network (Figure 14a). The results denote
a large dispersion and overlap in the output of the BP prediction model. To reasonably obtain a feasible
solution that satisfies the mapping relation and to achieve a target value of the stacking angle mean of
the actual test, which is listed in Appendix A, Table A2), the discrete outputs of the predicted output
are compared and eliminated. The difference between the output value of the BP prediction model and
that of the calibration experiment is less than 5% [19], and the condition is satisfied. These conditions
can be expressed as:

AORTol = Object
∣∣∣∣∣outputs− targets

targets

∣∣∣∣∣ ≤ 5%, (8)

Subject to outputs = f (inputs), (9)

inputsmin ≤ inputs ≤ inputsmax. (10)Materials 2019, 12, x FOR PEER REVIEW 15 of 24 
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To quickly obtain a feasible solution that satisfies these conditions, a common loop structure
algorithm is used to search for the distribution of the feasible domain space. The algorithm is presented
in Figure 15.

The specific steps are as follows:

(1) initialize the sample point i, and predict the output value AORi= AOR1;
(2) identify whether the sample point i exceeds 300 sample points;
(3) filter the predicted values of the BP prediction model according to the AORTol tolerance range

and store them in a new sample space;
(4) repeat steps (2) and (3) until 300 sample points have been searched, resulting in a new sample

space as depicted in Figure 14b.
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3.5.2. Mean-Shift Cluster Analysis

The mean-shift algorithm is a parameterless density estimation algorithm. The core idea of the
mean-shift algorithm is to first calculate the offset mean of the current pixel, move the point to its offset
mean, and continue to move as the starting point until the certain conditions are met and then stop
iterating. Calculate the similarity between the cluster center candidate point and the candidate area
sample, and use the maximum value of the similarity function to find the target mean-shift vector,
move the cluster center candidate point to the offset mean, and iterate until the cluster center candidate
point No offset occurs. In the DEM parameter optimization, a feasible domain may comprise multiple
subdomains exhibiting similar solution values, indicating similar particle macroscopic properties.
To effectively obtain the required DEM parameters, an appropriate algorithm is used to optimize
the distribution and combination of feasible solutions. The classification and differentiation of data
with approximate features using mean-shift clustering analysis [36] is a hill-climbing algorithm based
on kernel density estimation, which is a clustering algorithm that does not require the number of
clusters to be specified. Processing [37] and cluster analysis [38] are the commonly used cluster analysis
methods in the field of data mining. The purpose of mean-shift clustering is to find the data sample
points of the same cluster along the direction of increasing density. Further, the class with the highest
frequency of sample point access is marked as the class of the current point set. The clustering results
of this study for the optimized sample points (Figure 14b) are listed in Table 2.

Table 2. Results of mean-shift cluster analysis.

Group Calibrated DEM Parameters

epp µpp epw µpw Γ(J/m2)

1 0.320426 0.353256 0.490065 0.930533 5.974576
2 0.267255 0.371349 0.565715 0.670134 4.38862
3 0.295006 0.327425 0.506216 1.734846 4.818618
4 0.301659 0.350872 0.537846 1.660376 3.609546
5 0.262054 0.336516 0.519476 0.792432 7.318412
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3.6. Verification Instance

3.6.1. DEM Parameter Verification Under Quasi-Static Conditions

Under quasi-static conditions, the verification of DEM input parameters is the most basic calibration
method. The cumulative lift angle of polyurethane powder particles was verified by the baffle lift test
commonly used for static angle of repose. The test apparatus is presented in Figure 16f; the square
casing was made of 60 × 60 × 80 mm3 Plexiglas. During the test, a sample material with a mass
of 15 g was placed in the square shell. When the baffle was lifted at a constant speed of 0.1 m/s,
the flow of the PU powder resulted in the formation of a pile; after the particles of the population
were stabilized, the formed powder particles were inclined and horizontal. The angle between the
two is the static angle of repose of the powder. The simulation settings were consistent with the
experimental conditions, and five sets of calibration parameters optimized in Section 3.5.2 were used as
the inputs. The test simulation results are denoted in Figure 16a–e as 37.2◦, 38.1◦, 39.4◦, 37.6◦, and 40.1◦,
respectively. Surprisingly, it was found that the five sets of contact parameters under the dynamic
conditions after calibration also apply to the static angle of repose and meet the AORTol tolerances
proposed in Section 3.5.1.Materials 2019, 12, x FOR PEER REVIEW 17 of 24 
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3.6.2. Dynamic Condition DEM Parameter Verification

In order to further verify the DEM parameter calibration results, a more realistic dynamic angle of
repose of the PU particles was verified via a rotary drum test. The experimental setup is shown in
Figure 17. The cylinder is made of Plexiglas with an inner diameter and length of 45 and 100 mm,
respectively. Prior to the experiment, the particle surface was set to a level with a particle loading of
30%, a rotational speed of 60 rpm, and a clockwise rotation for 5 s. After standing for 2 s, the excessive
porosity was eliminated; after the particles were stabilized, the angle between the surface of the
particles and the horizontal plane was measured as the dynamic angle of repose. The five sets of
calibration parameters in Table 2 are used as inputs, and the simulation settings are consistent with the
experimental conditions. The test results are shown in Figure 18. Small errors indicate the validity of
the calibration results.
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3.6.3. Results and Discussion

In this section, mean-shift clustering analysis is used to obtain five sets of DEM parameter sets
input into the baffle lift and drum device for dynamic and static angle verification, respectively. Table 3
gives the relative error between the response angles under different load conditions. It is found that
the DEM parameter set measuring the dynamic angle of repose using the funnel flow test device
in Section 2.1 does not meet the static angle of repose verification (22.18%, 20.29%, 17.57%, 21.34%,
16.11%). Such a large error is due to the fact that the powder is subjected to different conditions of the
external load and the response-angle deviation is generated, which means that the material calibration
test and verification examples under dynamic/static conditions need to be performed separately.
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Table 3. Relative error between response angles under dynamic/static load conditions.

Group 1 Group 2 Group 3 Group 4 Group 5

Simulation of rotating drum/(◦) 47.5 48.5 49.1 49.1 48.1
Rotating drum test/(◦) 47.1

Rotating drum contrast test (relative error) 0.85% 2.97% 4.25% 4.25% 2.12%
Simulation of baffle lift/(◦) 37.2 38.1 39.4 37.6 40.1

Baffle lift test/(◦) 39.1
Baffle lift contrast test (relative error) 4.86% 2.56% 0.77% 3.84% 2.56%

Funnel flow meter test/(◦) 47.801
Funnel flow meter test and baffle lift

simulation (relative error) 22.18% 20.29% 17.57% 21.34% 16.11%

Funnel flow meter test and rotary drum
simulation (relative error) 0.63% 1.46% 2.72% 2.72% 0.63%

Whether under static (baffle lift test) or dynamic conditions (rotary drum test), the error between
the comparison tests is lower than 5%, which is also in line with the error criteria mentioned by
Ye et al. [19]. Simultaneously, we found that although the relative error verified by the baffle lift test is
small, it is between 0.77% and 4.86%. However, the simulation angles (37.2◦, 38.1◦, 39.4◦, 37.6◦, 40.1◦)
are smaller than the average angle of repose of the batch funnel flow meter test (47.801◦); instead,
the response angles of the simulation from the rotary drum are 47.5◦, 48.5◦, 49.1◦, 49.1◦, and 48.1◦, which
are closer to the funnel flow meter test static angle. This shows that the accuracy of the DEM parameters
of the PU powder calibration can be more clearly indicated via the rotary drum verification test.

4. Conclusions

The JKR model exhibiting adhesion characteristics was used for an ultrafine agglomerated powder
(120-mesh PU powder) that is difficult to calibrate, and the sample material was characterized. A DEM
model was used based on the improved FBS-104 powder measuring instrument. In the parameter
calibration method, the GA–BP optimization algorithm was used during the calibration test to reduce
the number of simulations required for optimization. The results of this study can be summarized
as follows:

• To achieve the DEM parameter calibration of the micron-scale material samples, the concept of
cohesion number proposed by Bharadwaj et al. [23] for coarse-grained discrete element modeling
can improve the calibration efficiency without affecting the calibration accuracy.

• In the DEM parameter calibration process, the BP approximation model modified using the GA
can easily converge into the global sample space to avoid local optimal solutions, which would
result in large errors in the calibration results.

• The study found that the rotating drum as a verification example of dynamic conditions can be
used to verify the DEM parameter set of the funnel flow meter more accurately than the baffle lift
test under static conditions and that the relative error is 0.63%–2.72%.

• The intrinsic parameters of the particles were explored during the simulation. The small range of
the intrinsic parameters of the particles did not strongly influence the angle of repose; however,
reducing the shear modulus was observed to considerably reduce the calculation cost.

• To avoid large dispersion and overlap between the predicted value and the simulated target value,
a combination of the cyclic search algorithm and mean-shift cluster analysis can be used to find
the optimal solution for each subclass in the sample space.

• Although the ultrafine agglomerated PU powder exhibited poor reproducibility with respect to the
angle of repose during the stacking test, the baffle lifting method verified that the predicted output
value of the BP model after training agreed with the angle obtained in the actual stacking test.

• During this calibration process, we observed that the DEM parameter calibration results are not
a set of solution sets; each output value (angle) has multiple sets of mapping relations with the
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input DEM parameters. This also revealed the calibration work of the DEM parameter, which is a
search process of the parameter set “best combination.” Based on a test design method, AOR was
used as the target response value to find a suitable mapping relation for application in this study.

• In the future, a large number of variables (bulk density, time step) can be added as the response
value of the output layer of the prediction model, and the influence of the DEM parameters on the
angle of repose can be further investigated.
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Appendix A

Table A1. BP neural network database.

epp µpp epw µpw Γ (J/m2) AOR (◦) Predicted Value AOR (◦)

0.148014 0.355076 0.135264 0.736817 0.736817 37.5 -
0.312023 0.537557 0.258614 1.551627 1.551627 43.2 -
0.327493 0.555877 0.270874 1.641178 1.641178 46.5 -
0.446438 0.689714 0.358998 2.222321 2.222321 52.2 -
0.141479 0.34653 0.130286 0.711667 0.711667 38.5 -
0.304733 0.531433 0.25321 1.52806 1.52806 46.5 -
0.16831 0.378255 0.152086 0.849553 0.849553 38.5 -

0.126852 0.331476 0.12139 0.649442 0.649442 38.5 -
0.423007 0.663505 0.341825 2.115487 2.115487 52.5 -
0.121281 0.323449 0.115855 0.604728 0.604728 36.5 -
0.333261 0.56006 0.272745 1.657726 1.657726 46.6 -
0.21847 0.432949 0.187752 1.096404 1.096404 44.5 -

0.241529 0.458257 0.205444 1.213885 1.213885 45.5 -
0.107443 0.308152 0.105226 0.545632 0.545632 33.7 -
0.212468 0.425678 0.183951 1.053621 1.053621 42.5 -
0.418222 0.65724 0.338593 2.095684 2.095684 50.9 -
0.276442 0.497534 0.231542 1.372128 1.372128 48.5 -
0.423445 0.667499 0.344465 2.128864 2.128864 51.5 -
0.319158 0.546443 0.262997 1.586359 1.586359 47.5 -
0.288473 0.512738 0.2408 1.444792 1.444792 47.5 -
0.296496 0.519416 0.246191 1.468489 1.468489 48.6 -
0.207081 0.420897 0.18249 1.038653 1.038653 44.5 -
0.299113 0.524424 0.247849 1.495777 1.495777 47.5 -
0.374274 0.610314 0.305546 1.878514 1.878514 48.8 -
0.153651 0.360635 0.14243 0.782299 0.782299 37.5 -
0.117663 0.32115 0.113377 0.589483 0.589483 35.5 -
0.151342 0.358549 0.138751 0.763457 0.763457 38.5 -
0.200513 0.412871 0.175436 1.01327 1.01327 43.2 -
0.272885 0.492047 0.228874 1.3599 1.3599 48.5 -
0.447476 0.690637 0.3602 2.243708 2.243708 53 -
0.462514 0.708098 0.371081 2.30172 2.30172 53.2 -
0.49869 0.747369 0.397784 2.498688 2.498688 54.9 -

0.408619 0.648391 0.330753 2.043503 2.043503 50.4 -
0.229198 0.443187 0.195137 1.144559 1.144559 46.3 -
0.124055 0.327711 0.117612 0.624993 0.624993 37.5 -
0.391213 0.627576 0.319341 1.959905 1.959905 50.6 -
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Table A1. Cont.

epp µpp epw µpw Γ (J/m2) AOR (◦) Predicted Value AOR (◦)

0.468248 0.714486 0.376739 2.335572 2.335572 54.5 -
0.367979 0.60188 0.30052 1.838435 1.838435 48.4 -
0.146516 0.350077 0.134187 0.722417 0.722417 38.5 -
0.471483 0.717974 0.379428 2.364548 2.364548 53.6 -
0.221485 0.43738 0.191663 1.114118 1.114118 43.6 -
0.135678 0.340273 0.125432 0.679225 0.679225 36.8 -
0.48366 0.732491 0.387561 2.425036 2.425036 54.2 -

0.377803 0.61492 0.309358 1.88945 1.88945 48.8 -
0.188603 0.400831 0.165758 0.947453 0.947453 41.4 -
0.452653 0.694399 0.363694 2.255973 2.255973 52.6 -
0.25078 0.470105 0.21425 1.25443 1.25443 48.6 -

0.380085 0.617621 0.312161 1.908359 1.908359 49.1 -
0.433769 0.678038 0.351069 2.17868 2.17868 51.7 -
0.306967 0.533354 0.256798 1.544442 1.544442 45.4 -
0.23591 0.450782 0.201923 1.181499 1.181499 47.5 -

0.224564 0.442093 0.192686 1.117348 1.117348 45.8 -
0.16351 0.374564 0.148299 0.817834 0.817834 39.5 -

0.302886 0.52835 0.251428 1.513066 1.513066 48.3 -
0.131847 0.336389 0.124413 0.655122 0.655122 35.5 -
0.23827 0.456382 0.202916 1.189952 1.189952 47.5 -

0.260284 0.481961 0.221172 1.305584 1.305584 46.7 -
0.254459 0.475788 0.215289 1.27702 1.27702 47.5 -
0.441856 0.685963 0.355206 2.206748 2.206748 51.5 -
0.32147 0.550521 0.266212 1.60286 1.60286 46.5 -

0.324843 0.552813 0.269607 1.623838 1.623838 46.3 -
0.18121 0.390041 0.160593 0.909805 0.909805 41.5 -

0.162969 0.369847 0.145247 0.803433 0.803433 38.4 -
0.19726 0.411867 0.173669 0.994007 0.994007 44.5 -

0.340307 0.573351 0.281061 1.707059 1.707059 47.1 -
0.170813 0.381489 0.153139 0.851311 0.851311 39.5 -
0.104023 0.307472 0.103119 0.526815 0.526815 31.8 -
0.387796 0.625467 0.317023 1.94451 1.94451 49.4 -
0.385571 0.619061 0.314785 1.926352 1.926352 49.3 -
0.410039 0.65005 0.333638 2.052398 2.052398 50.5 -
0.370615 0.604706 0.304686 1.852664 1.852664 48.6 -
0.282934 0.506236 0.236888 1.41209 1.41209 48.7 -
0.475776 0.723432 0.381433 2.371023 2.371023 53.7 -
0.102568 0.300973 0.101261 0.516099 0.516099 31.3 -
0.401425 0.640962 0.326776 2.003317 2.003317 50.4 -
0.432507 0.672806 0.347558 2.150266 2.150266 51.6 -
0.29331 0.516569 0.244004 1.465484 1.465484 47.9 -

0.361881 0.592732 0.297125 1.807417 1.807417 48.4 -
0.177314 0.389413 0.159907 0.886797 0.886797 39.4 -
0.259868 0.477258 0.218398 1.291127 1.291127 48.7 -
0.496221 0.742673 0.395921 2.48252 2.48252 54.7 54.1343
0.263487 0.487348 0.223437 1.31955 1.31955 47.8 47.09626
0.195801 0.408062 0.170152 0.983121 0.983121 43.5 43.07308
0.13885 0.342139 0.129412 0.694485 0.694485 37.9 37.10446

0.248251 0.468067 0.210299 1.239911 1.239911 48.7 46.61237
0.157703 0.365908 0.143041 0.798988 0.798988 38.4 39.31297
0.483311 0.729671 0.387418 2.409156 2.409156 54.1 53.59277
0.394428 0.632054 0.321426 1.975155 1.975155 49.7 49.52709
0.246637 0.461935 0.209964 1.220124 1.220124 48.4 46.35139
0.347334 0.580223 0.28592 1.737206 1.737206 47.4 47.99007
0.336898 0.566945 0.277764 1.684021 1.684021 46.8 47.7934
0.1753 0.383506 0.156862 0.876854 0.876854 40.5 40.91912

0.454227 0.697562 0.367317 2.278103 2.278103 52.7 52.33081
0.41565 0.65385 0.336594 2.068696 2.068696 50.7 50.44045

0.363435 0.596835 0.29987 1.833117 1.833117 48.5 48.34836
0.267718 0.488204 0.225227 1.33657 1.33657 46.8 47.16393
0.278919 0.500717 0.233969 1.388731 1.388731 48.5 47.34501
0.232639 0.448623 0.198307 1.166255 1.166255 46.3 45.81617
0.185732 0.396439 0.164037 0.919877 0.919877 43.5 41.91603
0.283575 0.507758 0.239619 1.417782 1.417782 47.6 47.3336
0.35404 0.58545 0.290478 1.772903 1.772903 47.8 48.11718

0.335475 0.565447 0.275944 1.672342 1.672342 46.7 47.80509
0.11331 0.314101 0.108047 0.558355 0.558355 37.5 34.5128
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Table A1. Cont.

epp µpp epw µpw Γ (J/m2) AOR (◦) Predicted Value AOR (◦)

0.205706 0.417912 0.17927 1.032569 1.032569 43.5 43.83734
0.31594 0.542452 0.260678 1.566943 1.566943 45.5 47.65645

0.405597 0.642057 0.328437 2.026057 2.026057 51.5 49.98852
0.490435 0.74106 0.394663 2.464506 2.464506 52.5 53.97321
0.115208 0.317845 0.110801 0.572423 0.572423 38 34.75902
0.192786 0.404665 0.167635 0.95128 0.95128 41.5 42.62196
0.358329 0.590099 0.293082 1.790835 1.790835 42 48.23795
0.352469 0.58337 0.287791 1.764129 1.764129 47.5 48.10753
0.398763 0.637235 0.322779 1.988032 1.988032 49.9 49.7124
0.344042 0.57628 0.284129 1.718395 1.718395 49.5 47.90788
0.216065 0.427818 0.187274 1.070227 1.070227 42.5 44.48258
0.464179 0.709876 0.3729 2.331597 2.331597 52.5 52.80379
0.48677 0.735263 0.391804 2.44262 2.44262 54.4 53.80025

0.478557 0.724111 0.384023 2.388136 2.388136 53.1 53.39367
0.427445 0.668181 0.345401 2.139559 2.139559 51.5 51.03914
0.457369 0.701879 0.369677 2.284386 2.284386 53 52.46019
0.438178 0.678875 0.354788 2.185601 2.185601 51.5 51.52571

Table A2. Batch funnel flow meter test.

Test Sequence Simulation
AOR (◦) Test Sequence Simulation

AOR (◦) Test Sequence Simulation
AOR (◦)

1 45.5 35 50.5 69 48.4
2 46.4 36 47 70 48.3
3 47.4 37 48.1 71 48.9
4 48.3 38 49.4 72 46.7
5 47.2 39 46.8 73 48.6
6 46.3 40 48.6 74 47.2
7 47.5 41 49.5 75 47.2
8 43.6 42 47.5 76 48.3
9 45.8 43 47.9 77 45.6
10 48.3 44 50.1 78 46.9
11 49.2 45 48.2 79 48.6
12 48.4 46 47.2 80 48.5
13 49.2 47 48.3 81 48.5
14 47.5 48 45.4 82 47.8
15 46.8 49 48.1 83 48.4
16 49.5 50 50.1 84 48.3
17 49.5 51 49.4 85 48.5
18 46.3 52 50.2 86 48.5
19 48.9 53 46.3 87 46.9
20 47.3 54 48.3 88 49.2
21 48.9 55 46.8 89 47.7
22 48.8 56 47.6 90 48.2
23 47.9 57 48.4 91 49.3
24 47.1 58 47.4 92 47.9
25 46.5 59 45.2 93 49.6
26 45.9 60 44.5 94 48.5
27 48.2 61 47.9 95 49.4
28 45.6 62 48.9 96 41.2
29 49.2 63 47.1 97 40.5
30 48.5 64 47.5 98 49.8
31 46.8 65 48.9 99 49.9
32 45.8 66 48.9 100 48.8
33 49.5 67 48.4
34 50.2 68 47.8

The average value of the static angle of the bulk accumulation experiment is 47.801◦.
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